Chiffres dans les corps finis

Cathy Swaenepoel

Institut de Mathématiques de Marseille, Université d'Aix-Marseille, France.

Recherche soutenue par le projet ANR MUDERA.
LIPN, 8 janvier 2019.

Digits

In \mathbb{N}, it is usual to write the integers n in base $g \geq 2$:

$$
n=\sum_{j=0}^{r-1} \varepsilon_{j} g^{j}
$$

where the digits ε_{j} are such that $0 \leq \varepsilon_{j} \leq g-1$ and $\varepsilon_{r-1} \geq 1$.
The connection between the arithmetic properties of n and the properties of its digits leads to interesting questions.

We can mention results by:
Gelfond, Fouvry-Mauduit, Erdős-Mauduit-Sárközy,
Dartyge-Tenenbaum, Mauduit-Rivat, Wolke, Harman, Kátai, Bourgain, Maynard ...

In the context of finite fields, Dartyge and Sárközy (2013)

- initiated the study of the concept of digits,
- obtained results on the connection between the "algebraic" properties of an element and the properties of its digits.

Further results in this spirit:

- Dartyge, Mauduit, Sárközy (2015),
- Gabdullin (2016),
- Dietmann, Elsholtz, Shparlinski (2016).

The algebraic structure of finite fields permits us to:

- formulate and study new questions (of analytic NT),
- solve problems whose analog in \mathbb{N} might be out of reach.

Basic properties of \mathbb{F}_{q}

Let p be a prime number and $q=p^{r}$ with $r \geq 1$.
\mathbb{F}_{q} denotes the finite field with q elements.

- \mathbb{F}_{q} is a vector space over \mathbb{F}_{p} of dimension r,
- $\left(\mathbb{F}_{q}^{*}, \times\right)$ is a cyclic group of order $q-1$,
- the set \mathcal{G} of primitive elements (generators of \mathbb{F}_{q}^{*}) satisfies $|\mathcal{G}|=\varphi(q-1)$.

Concept of digits in \mathbb{F}_{q}

Let $q=p^{r}, p$ prime, $r \geq 2$.
Given a basis $\mathcal{B}=\left\{e_{1}, \ldots, e_{r}\right\}$ of \mathbb{F}_{q} over \mathbb{F}_{p}, every $x \in \mathbb{F}_{q}$ can be written uniquely

$$
\begin{equation*}
x=\sum_{j=1}^{r} \varepsilon_{j} e_{j} \tag{1}
\end{equation*}
$$

where $\varepsilon_{1}, \ldots, \varepsilon_{r} \in \mathbb{F}_{p}$ are called (Dartyge, Sárközy) the "digits" of x.
If $\mathcal{B}=\left\{1, g, \ldots, g^{r-1}\right\}$ where $g \in \mathcal{G}$ then (1) becomes:

$$
x=\sum_{j=1}^{r} \varepsilon_{j} g^{j-1}
$$

which reminds us of the representation of an integer x in base g.
Sum of digits function in base $\mathcal{B}: s_{\mathcal{B}}(x)=\sum_{j=1}^{r} \varepsilon_{j}$.

Question: Given a subset \mathcal{F} of \mathbb{F}_{q} and a property of the digits, how many elements of \mathcal{F} satisfy this property?
(This is a way to study the pseudo-random properties of the digits of the elements of \mathcal{F}.)

Dartyge and Sárközy (2013): number of

- $x \in \mathbb{F}_{q}$ such that $s_{\mathcal{B}}(P(x))=s$,
- $g \in \mathcal{G}$ such that $s_{\mathcal{B}}(P(g))=s$.

Dartyge, Mauduit, Sárközy (2015): idem with missing digits.
Gabdullin (2016): squares with missing digits.
Dietmann, Elsholtz, Shparlinski (2016): number of squares with restricted digits.

For polynomial values in \mathbb{N} with degree ≥ 3, only partial results are known.
(1) Prescribing the sum of digits of some special sequences in \mathbb{F}_{q} :

$$
s_{\mathcal{B}}(P(x))=s \text { and } s_{\mathcal{B}}(P(g))=s
$$

(2) "Distribution" of the sum of digits of products in \mathbb{F}_{q} :

$$
s_{\mathcal{B}}(c d)=s, c \in \mathcal{C}, d \in \mathcal{D}
$$

(3) Prescribing the digits of some special sequences in \mathbb{F}_{q} :

$$
\begin{aligned}
& \varepsilon_{j_{1}}(P(x))=\alpha_{j_{1}}, \ldots, \varepsilon_{j_{k}}(P(x))=\alpha_{j_{k}} \\
& \varepsilon_{j_{1}}(P(g))=\alpha_{j_{1}}, \ldots, \varepsilon_{j_{k}}(P(g))=\alpha_{j_{k}}
\end{aligned}
$$

Consider first $\left\{P(x): x \in \mathbb{F}_{q}\right\}$.
Given a polynomial $P \in \mathbb{F}_{q}[X]$ and $s \in \mathbb{F}_{p}$, let

$$
\mathcal{D}(P, s)=\left\{x \in \mathbb{F}_{q}: s_{\mathcal{B}}(P(x))=s\right\} .
$$

Question: Estimate $|\mathcal{D}(P, s)|$.
Heuristically, we expect: $|\mathcal{D}(P, s)| \approx \frac{q}{p}$.

Prescribing the sum of digits of $P(x)$

Theorem (Dartyge, Sárközy, 2013)

If $P \in \mathbb{F}_{q}[X]$ is of degree $n \geq 1$ with $(n, q)=1$ then, for $s \in \mathbb{F}_{p}$,

$$
\left||\mathcal{D}(P, s)|-\frac{q}{p}\right| \leq(n-1) \sqrt{q}
$$

If $P=X^{d}$, we can save a factor $1 / \sqrt{p}$:

Theorem (S.)

If d divides $q-1$ then, for any $s \in \mathbb{F}_{p}^{*}$,

$$
\left|\left|\mathcal{D}\left(X^{d}, s\right)\right|-\frac{q}{p}\right| \leq \begin{cases}(d-1) \sqrt{q} / p & \text { if } d \mid \delta \tag{2}\\ (d-1) \sqrt{q} / \sqrt{p} & \text { otherwise }\end{cases}
$$

where $\delta=(q-1) /(p-1) \in \mathbb{N}$.
In the special case where $d=2$,(2) is an equality.

Prescribing the sum of digits of $P(x)$

In degree 2, we obtain the exact formula:

Theorem (S.)

If $p \geq 3$ and if $P(X)=a_{2} X^{2}+a_{1} X+a_{0} \in \mathbb{F}_{q}[X]$ with $a_{2} \neq 0$ then, writing $\nu_{P}=s_{\mathcal{B}}\left(a_{0}-a_{1}^{2}\left(4 a_{2}\right)^{-1}\right)$, for any $s \in \mathbb{F}_{p}$, we have

$$
\left||\mathcal{D}(P, s)|-\frac{q}{p}\right|= \begin{cases}\sqrt{q} / \sqrt{p} & \text { if } s \neq \nu_{P} \text { and } r \text { is odd } \\ \sqrt{q} / p & \text { if } s \neq \nu_{P} \text { and } r \text { is even, } \\ 0 & \text { if } s=\nu_{P} \text { and } r \text { is odd, } \\ \left(1-p^{-1}\right) \sqrt{q} & \text { if } s=\nu_{P} \text { and } r \text { is even. }\end{cases}
$$

Key argument: multiplicative character sums of the form:

$$
\sum_{\substack{x \in \mathbb{F}_{q}^{*} \\ s_{\mathcal{B}}(x)=s}} \chi(x)
$$

can be expressed as a product of Gaussian sums.

Prescribing the sum of digits of $P(g)$

The set \mathcal{G} of generators is a set of remarkable elements in \mathbb{F}_{q}. More generally, we can consider $\{P(g): g \in \mathcal{G}\}$.

Given a polynomial $P \in \mathbb{F}_{q}[X]$ and $s \in \mathbb{F}_{p}$, let

$$
\mathcal{D}_{\mathcal{G}}(P, s)=\left\{g \in \mathcal{G}: s_{\mathcal{B}}(P(g))=s\right\}=\mathcal{D}(P, s) \cap \mathcal{G} .
$$

Question: Estimate $\left|\mathcal{D}_{\mathcal{G}}(P, s)\right|$.
Heuristically, we expect: $\left|\mathcal{D}_{\mathcal{G}}(P, s)\right| \approx \frac{\varphi(q-1)}{p}$.

Prescribing the sum of digits of $P(g)$

Theorem (S.)

If $P \in \mathbb{F}_{q}[X]$ is of degree n with $(n, q)=1$ and if $s \in \mathbb{F}_{p}$, then

$$
\left|\left|\mathcal{D}_{\mathcal{G}}(P, s)\right|-\frac{\varphi(q-1)}{p}\right|<\frac{\varphi(q-1)}{q-1}\left(\left(n 2^{\omega(q-1)}-1\right) \sqrt{q}+1\right)
$$

where $\omega(q-1)$ is the number of distinct prime factors of $q-1$.
This improves a result of Dartyge and Sárközy by a factor $\frac{\varphi(q-1)}{q-1}$.
Key argument: In the upper bound for additive character sums of the form

$$
\sum_{g \in \mathcal{G}} \psi(P(g))
$$

used by Dartyge and Sárközy, we save a factor $\frac{\varphi(q-1)}{q-1}$.
(1) Prescribing the sum of digits of some special sequences in \mathbb{F}_{q} :

$$
s_{\mathcal{B}}(P(x))=s \text { and } s_{\mathcal{B}}(P(g))=s
$$

(2) "Distribution" of the sum of digits of products in \mathbb{F}_{q} :

$$
s_{\mathcal{B}}(c d)=s, c \in \mathcal{C}, d \in \mathcal{D}
$$

(3) Prescribing the digits of some special sequences in \mathbb{F}_{q} :

$$
\begin{aligned}
& \varepsilon_{j_{1}}(P(x))=\alpha_{j_{1}}, \ldots, \varepsilon_{j_{k}}(P(x))=\alpha_{j_{k}} \\
& \varepsilon_{j_{1}}(P(g))=\alpha_{j_{1}}, \ldots, \varepsilon_{j_{k}}(P(g))=\alpha_{j_{k}}
\end{aligned}
$$

Given $\mathcal{C} \subset \mathbb{F}_{q}^{*}$ and $\mathcal{D} \subset \mathbb{F}_{q}^{*}$ large enough, the products $c d$ with $c \in \mathcal{C}$ and $d \in \mathcal{D}$ are expected to be "well distributed".

The challenge is to find a lower bound for $|\mathcal{C}|$ and $|\mathcal{D}|$ to ensure this behaviour for a given randomness criterion.

Sárközy and co-authors have studied many problems in this spirit.

Given $\mathcal{C} \subset \mathbb{F}_{q}^{*}, \mathcal{D} \subset \mathbb{F}_{q}^{*}$ and $\mathcal{A} \subset \mathbb{F}_{p}$, let

$$
\mathcal{E}=\left\{(c, d) \in \mathcal{C} \times \mathcal{D}: s_{\mathcal{B}}(c d) \in \mathcal{A}\right\} .
$$

Question (Sárközy):
Find a sharp lower bound on $|\mathcal{C}|$ and $|\mathcal{D}|$ to ensure that $\mathcal{E} \neq \emptyset$.
Interesting subsets \mathcal{A} of \mathbb{F}_{p} include:

- $\{s\}$ for $s \in \mathbb{F}_{p}$,
- subgroups of \mathbb{F}_{p}^{*} (for instance squares),
- set of all generators of \mathbb{F}_{p}^{*}.

If $\mathcal{A}=\{s\}$ with $s \in \mathbb{F}_{p}^{*}$, what is the expected value for $|\mathcal{E}|$?
Observe first that:

- $\left|\left\{z \in \mathbb{F}_{q}: s_{\mathcal{B}}(z)=s\right\}\right|=p^{r-1}=q / p$,
- the proportion of $(x, y) \in \mathbb{F}_{q}^{*} \times \mathbb{F}_{q}^{*}$ such that $s_{\mathcal{B}}(x y)=s$ is

$$
\frac{1}{(q-1)^{2}} \cdot \underbrace{(q-1)}_{x} \cdot \underbrace{q / p}_{y \text { s.t. } s_{\mathcal{B}}(x y)=s}=\frac{q}{(q-1) p} .
$$

If the pairs (c, d) were reasonably well distributed, we would expect:

$$
|\mathcal{E}| \approx|\mathcal{C} \| \mathcal{D}| \frac{q}{(q-1) p}
$$

Products $c d$ whose sum of digits is fixed

Theorem (S.)

If $\mathcal{A}=\{s\}$ with $s \in \mathbb{F}_{p}^{*}$ and $\mathcal{C} \subset \mathbb{F}_{q}^{*}, \mathcal{D} \subset \mathbb{F}_{q}^{*}$ then

$$
\left||\mathcal{E}|-\frac{|\mathcal{C}||\mathcal{D}|}{(q-1)} \frac{q}{p}\right| \leq \frac{\sqrt{q}}{\sqrt{p}} \sqrt{|\mathcal{C}||\mathcal{D}|}
$$

Corollary (S.)

If $s \in \mathbb{F}_{p}^{*}$ and $|\mathcal{C}||\mathcal{D}| \geq p q$ then there exists $(c, d) \in \mathcal{C} \times \mathcal{D}$ such that $s_{\mathcal{B}}(c d)=s$.

Remark: This result is optimal up to a constant factor: there are explicit sets \mathcal{C} and \mathcal{D} such that $p q / 16<|\mathcal{C}||\mathcal{D}|<p q$ and $\mathcal{E}=\emptyset$.

Corollary (S.)

If $\lim _{q \rightarrow+\infty} \frac{|\mathcal{C}||\mathcal{D}|}{p^{2} q}=+\infty$, the sums $s_{\mathcal{B}}(c d)$ are well distributed in \mathbb{F}_{p}.

Products $c d$ whose sum of digits belongs to a subgroup

Let \mathcal{A} be a nontrivial subgroup of \mathbb{F}_{p}^{*} and $m=|\mathcal{A}|$.

Theorem (S.)

If \mathcal{C} and \mathcal{D} satisfy the two conditions:
(1) $|\mathcal{C}||\mathcal{D}| \geq 4 p q / m^{2}$
(2) $\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}$ and $\Delta_{\mathcal{A}}(\mathcal{D}) \leq \frac{1}{m}$
then, there exists $(c, d) \in \mathcal{C} \times \mathcal{D}$ such that $s_{\mathcal{B}}(c d) \in \mathcal{A}$.
The technical condition (2) is true with a probability close to 1 (see below).

Remark: This result is optimal up to a constant factor: there are explicit sets \mathcal{C} and \mathcal{D} satisfying (2) such that $p q /\left(16 m^{2}\right)<|\mathcal{C}||\mathcal{D}|<p q / m^{2}$ and $\mathcal{E}=\emptyset$.

Products $c d$ whose sum of digits is a square

If $p \geq 3$ and \mathcal{A} is the set of squares in \mathbb{F}_{p}^{*} (thus $m=|\mathcal{A}|=\frac{p-1}{2}$), this implies:

Corollary (S.)

If \mathcal{C} and \mathcal{D} satisfy the two conditions:
(1) $|\mathcal{C}||\mathcal{D}| \geq \frac{16 p}{(p-1)^{2}} q$
(2) $\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}$ and $\Delta_{\mathcal{A}}(\mathcal{D}) \leq \frac{1}{m}$
then, there exists $(c, d) \in \mathcal{C} \times \mathcal{D}$ such that $s_{\mathcal{B}}(c d)$ is a square in \mathbb{F}_{p}^{*}.

If $|\mathcal{C}|=|\mathcal{D}|$, it suffices to suppose $|\mathcal{C}| \geq \frac{4 \sqrt{p}}{p-1} \sqrt{q}$ to ensure that
(1) is satisfied. Notice that this lower bound is usually below \sqrt{q}.

Study of the condition (2)

For any nonempty subset $\mathcal{C} \subset \mathbb{F}_{q}^{*}$, let

$$
T_{\mathcal{A}}(\mathcal{C})=\frac{1}{m} \sum_{t \in \mathcal{A} \backslash\{1\}} \frac{|\mathcal{C} \cap t \mathcal{C}|}{|\mathcal{C}|}
$$

and

$$
\Delta_{\mathcal{A}}(\mathcal{C})=T_{\mathcal{A}}(\mathcal{C})-\left(\frac{m-1}{m}\right) \frac{|\mathcal{C}|-1}{q-2} .
$$

Recall condition (2): $\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}$ and $\Delta_{\mathcal{A}}(\mathcal{D}) \leq \frac{1}{m}$.
Condition (2) is true "on average":

Lemma (S.)

For any $1 \leq d \leq q-1$,
the mean value of $\Delta_{\mathcal{A}}(\mathcal{C})$ over all $\mathcal{C} \subset \mathbb{F}_{q}^{*}$ with $|\mathcal{C}|=d$ is 0 .

Study of the condition (2)

Recall condition (2): $\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}$ and $\Delta_{\mathcal{A}}(\mathcal{D}) \leq \frac{1}{m}$.

Lemma (S.)

For any $1 \leq d \leq q-1$, the variance of $\Delta_{\mathcal{A}}(\mathcal{C})$ over all $\mathcal{C} \subset \mathbb{F}_{q}^{*}$ with $|\mathcal{C}|=d$ satisfies

$$
\frac{1}{\binom{q-1}{d}} \sum_{|\mathcal{C}|=d}\left(\Delta_{\mathcal{A}}(\mathcal{C})\right)^{2}=O\left(\frac{1}{m q}\right)
$$

The probability that condition (2) is true is close to 1 :
$\mathbb{P}\left(\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}\right)=1-O\left(\frac{m}{q}\right)$ with $\frac{m}{q} \rightarrow 0$ as $q \rightarrow+\infty$.
Examples of subsets \mathcal{C} such that $\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}$:
all subsets of affine hyperplanes of the form $\left\{x \in \mathbb{F}_{q}: f(x)=s\right\}$ where f is an \mathbb{F}_{p}-linear form and $s \in \mathbb{F}_{p}^{*}$.

Quantity $|\mathcal{C} \cap t \mathcal{C}|$

The study of the quantity $|\mathcal{C} \cap t \mathcal{C}|$ is of independent interest.
Green and Konyagin (2009): if \mathcal{C} is a subset of a group G of prime order with $|\mathcal{C}|=\gamma|G|$ then there exists $x \in G$ such that

$$
\left||\mathcal{C} \cap x \mathcal{C}|-\gamma^{2}\right| G\left|\mid=O\left(|G|(\log \log |G| / \log |G|)^{1 / 3}\right)\right.
$$

Notice that a similar statement with $G=\mathbb{F}_{q}^{*}$ does not hold: if \mathcal{C} is the set of squares then $|\mathcal{C}|=\gamma|G|$ with $\gamma=1 / 2$ and $\mathcal{C} \cap x \mathcal{C}=\emptyset$ or \mathcal{C}.

Question: for $G=\mathbb{F}_{q}^{*}$ and \mathcal{C} such that $|\mathcal{C}|=\gamma|G|$, give natural conditions on \mathcal{C} so that $|\mathcal{C} \cap x \mathcal{C}|$ is "close" to $\gamma^{2}|G|$ for at least one $x \in G$.
(1) Prescribing the sum of digits of some special sequences in \mathbb{F}_{q} :

$$
s_{\mathcal{B}}(P(x))=s \text { and } s_{\mathcal{B}}(P(g))=s
$$

(2) "Distribution" of the sum of digits of products in \mathbb{F}_{q} :

$$
s_{\mathcal{B}}(c d)=s, c \in \mathcal{C}, d \in \mathcal{D}
$$

(3) Prescribing the digits of some special sequences in \mathbb{F}_{q} :

$$
\begin{aligned}
& \varepsilon_{j_{1}}(P(x))=\alpha_{j_{1}}, \ldots, \varepsilon_{j_{k}}(P(x))=\alpha_{j_{k}} \\
& \varepsilon_{j_{1}}(P(g))=\alpha_{j_{1}}, \ldots, \varepsilon_{j_{k}}(P(g))=\alpha_{j_{k}}
\end{aligned}
$$

Prescribing the digits of polynomial values

Let $P \in \mathbb{F}_{q}[X]$ and consider $\left\{P(x): x \in \mathbb{F}_{q}\right\}$.
If $1 \leq k \leq r$, what is the number of $x \in \mathbb{F}_{q}$ such that $P(x)$ has k prescribed digits?

Let $P \in \mathbb{F}_{q}[X]$ and consider $\left\{P(x): x \in \mathbb{F}_{q}\right\}$.
If $1 \leq k \leq r$, what is the number of $x \in \mathbb{F}_{q}$ such that $P(x)$ has k prescribed digits?

Given $J \subset\{1, \ldots, r\}$ with $|J|=k$ and $\alpha=\left(\alpha_{j}\right)_{j \in J} \in\left(\mathbb{F}_{p}\right)^{k}$, let

$$
\mathcal{F}_{q}(P, k, J, \alpha)=\left\{x \in \mathbb{F}_{q}: \varepsilon_{j}(P(x))=\alpha_{j} \text { for all } j \in J\right\}
$$

be the set of all elements $x \in \mathbb{F}_{q}$ such that for any $j \in J$, the j-th digit of $P(x)$ in base \mathcal{B} is α_{j}.

Question: Estimate $\left|\mathcal{F}_{q}(P, k, J, \alpha)\right|$.

Prescribing the digits of polynomial values

Theorem (S.)

If $P \in \mathbb{F}_{q}[X]$ is of degree $n \geq 1$ with $(n, q)=1$ then, for any
$1 \leq k \leq r$, for any $J \subset\{1, \ldots, r\}$ with $|J|=k$ and any $\alpha \in\left(\mathbb{F}_{p}\right)^{k}$, we have

$$
\left|\left|\mathcal{F}_{q}(P, k, J, \alpha)\right|-\frac{q}{p^{k}}\right| \leq \frac{p^{k}-1}{p^{k}}(n-1) \sqrt{q} ;
$$

in particular, if

$$
(n-1)\left(p^{k}-1\right)<\sqrt{q}=p^{r / 2}
$$

then $\mathcal{F}_{q}(P, k, J, \alpha) \neq \emptyset$.
Consequence: if $p \geq 3$ and if $k \leq r / 2$ then $\mathcal{F}_{q}\left(X^{2}, k, J, \alpha\right) \neq \emptyset$.

Prescribing the digits of polynomial values

Corollary (S.)

For any $n \geq 1$, for any $\varepsilon>0$, uniformly over $k \leq(1 / 2-\varepsilon) r$, $P \in \mathbb{F}_{p^{r}}[X]$ of degree n, J with $|J|=k$ and $\alpha \in\left(\mathbb{F}_{p}\right)^{k}$:

$$
\left|\mathcal{F}_{p^{r}}(P, k, J, \alpha)\right|=p^{r-k}(1+o(1)), \quad\left(p^{r} \rightarrow+\infty, p \nmid n, r \geq 2\right)
$$

Let $\mathcal{Q}_{p^{r}}$ be the set of squares in $\mathbb{F}_{p^{r}}$.
The number of squares with a given proportion <0.5 of prescribed digits is asymptotically as expected:

Corollary (S.)

For any $\varepsilon>0$, uniformly over $k \leq(1 / 2-\varepsilon) r$, J with $|J|=k$ and $\alpha \in\left(\mathbb{F}_{p}\right)^{k}, \alpha \neq 0$,

$$
\mid\left\{y \in \mathcal{Q}_{p^{r}}: \varepsilon_{j}(y)=\alpha_{j} \text { for all } j \in J\right\} \left\lvert\,=\frac{p^{r-k}}{2}(1+o(1))\right.
$$

$$
\text { as } p^{r} \rightarrow+\infty, p \geq 3, r \geq 2
$$

Prescribing the digits of x^{2}

When $P=X^{2}$, we can prove a more precise result.

Theorem (S.)

If $p \geq 3$ then, for any $1 \leq k \leq r$, for any $J \subset\{1, \ldots, r\}$ with $|J|=k$ and any $\alpha \in\left(\mathbb{F}_{p}\right)^{k}, \alpha \neq 0$, we have

$$
\left|\left|\mathcal{F}_{q}\left(X^{2}, k, J, \alpha\right)\right|-\frac{q}{p^{k}}\right| \leq \begin{cases}\frac{\sqrt{q}}{\sqrt{p}} & \text { if } r \text { is odd } \tag{3}\\ \left(\frac{2}{p}-\frac{1}{p^{k}}\right) \sqrt{q} & \text { if } r \text { is even. }\end{cases}
$$

We save a factor

- $1 / \sqrt{p}$ if r is odd,
- $2 / p$ is r is even.

If $k=1$ then (3) is an equality.
If $k=2$ or $k=3$, there are some values of p and r for which (3) is also an equality.

Prescribing the digits of $P(g)$
Let $P \in \mathbb{F}_{q}[X]$ and consider $\{P(g): g \in \mathcal{G}\}$.
If $1 \leq k \leq r$, what is the number of $g \in \mathcal{G}$ such that $P(g)$ has k prescribed digits?

Question: Estimate $\left|\mathcal{G} \cap \mathcal{F}_{q}(P, k, J, \alpha)\right|$.

Prescribing the digits of $P(g)$

Let $P \in \mathbb{F}_{q}[X]$ and consider $\{P(g): g \in \mathcal{G}\}$.
If $1 \leq k \leq r$, what is the number of $g \in \mathcal{G}$ such that $P(g)$ has k prescribed digits?

Question: Estimate $\left|\mathcal{G} \cap \mathcal{F}_{q}(P, k, J, \alpha)\right|$.

Theorem (S.)

For any $n \geq 1$, for any $\varepsilon>0$, uniformly over $k \leq(1 / 2-\varepsilon) r$, $P \in \mathbb{F}_{p^{r}}[X]$ of degree n, J with $|J|=k$ and $\alpha \in\left(\mathbb{F}_{p}\right)^{k}$:

$$
\left|\mathcal{G} \cap \mathcal{F}_{p^{r}}(P, k, J, \alpha)\right|=\frac{\varphi\left(p^{r}-1\right)}{p^{k}}(1+o(1))
$$

as $p^{r} \rightarrow+\infty, p \nmid n, r \geq 2$.
In particular, the number of generators with a given proportion <0.5 of prescribed digits is asymptotically as expected.

Main arguments

- Weil's Theorem,
- orthogonality relations for additive and multiplicative characters of \mathbb{F}_{q},
- Gaussian sums,
- upper bounds for additive and multiplicative character sums such as

$$
\sum_{\substack{x \in \mathbb{F}_{q}^{*} \\ s_{\mathcal{B}}(x)=s}} \chi(x), \quad \sum_{g \in \mathcal{G}} \psi(P(g)) .
$$

If $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ is a linear transformation and $f \neq 0$ then

- there exists a basis \mathcal{B} such that $f=s_{\mathcal{B}}$,
- the previous results can be reformulated with f instead of $s_{\mathcal{B}}$.

The trace $\operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{p}$ defined by $\operatorname{Tr}(x)=x+x^{p}+\cdots+x^{p^{r-1}}$ is a linear transformation of basic importance in finite fields.

For instance, we proved that if $p \geq 3$ and if \mathcal{C} and \mathcal{D} satisfy the two conditions:
(1) $|\mathcal{C}||\mathcal{D}| \geq \frac{16 p}{(p-1)^{2}} q$
(2) technical condition (true with probability close to 1) then, there exists $(c, d) \in \mathcal{C} \times \mathcal{D}$ such that $\operatorname{Tr}(c d)$ is a square in \mathbb{F}_{p}^{*}.

