Chiffres dans les corps finis

Cathy Swaenepoel

Institut de Mathématiques de Marseille, Université d'Aix-Marseille, France.

Recherche soutenue par le projet ANR MUDERA.

LIPN, 8 janvier 2019.

In \mathbb{N} , it is usual to write the integers n in base $g \geq 2$:

$$n = \sum_{j=0}^{r-1} \varepsilon_j g^j$$

where the digits ε_j are such that $0 \le \varepsilon_j \le g-1$ and $\varepsilon_{r-1} \ge 1$.

The connection between the arithmetic properties of n and the properties of its digits leads to interesting questions.

We can mention results by: Gelfond, Fouvry-Mauduit, Erdős-Mauduit-Sárközy, Dartyge-Tenenbaum, Mauduit-Rivat, Wolke, Harman, Kátai, Bourgain, Maynard ...

Motivation

In the context of finite fields, Dartyge and Sárközy (2013)

- initiated the study of the concept of digits,
- obtained results on the connection between the "algebraic" properties of an element and the properties of its digits.

Further results in this spirit:

- Dartyge, Mauduit, Sárközy (2015),
- Gabdullin (2016),
- Dietmann, Elsholtz, Shparlinski (2016).

The algebraic structure of finite fields permits us to:

- formulate and study new questions (of analytic NT),
- solve problems whose analog in ${\mathbb N}$ might be out of reach.

Let p be a prime number and $q = p^r$ with $r \ge 1$. \mathbb{F}_q denotes the finite field with q elements.

- \mathbb{F}_q is a vector space over \mathbb{F}_p of dimension r,
- (\mathbb{F}_q^*, \times) is a cyclic group of order q-1,
- the set \mathcal{G} of primitive elements (generators of \mathbb{F}_q^*) satisfies $|\mathcal{G}| = \varphi(q-1).$

Concept of digits in \mathbb{F}_q

Let $q = p^r$, p prime, $r \ge 2$. Given a basis $\mathcal{B} = \{e_1, \ldots, e_r\}$ of \mathbb{F}_q over \mathbb{F}_p , every $x \in \mathbb{F}_q$ can be written uniquely

$$x = \sum_{j=1}^{r} \varepsilon_j e_j \tag{1}$$

where $\varepsilon_1, \ldots, \varepsilon_r \in \mathbb{F}_p$ are called (Dartyge, Sárközy) the "digits" of x.

If $\mathcal{B} = \{1, g, \dots, g^{r-1}\}$ where $g \in \mathcal{G}$ then (1) becomes:

$$x = \sum_{j=1}^{r} \varepsilon_j g^{j-1},$$

which reminds us of the representation of an integer x in base g. Sum of digits function in base $\mathcal{B} : s_{\mathcal{B}}(x) = \sum_{j=1}^{r} \varepsilon_{j}$.

Known results on digits in \mathbb{F}_q

Question: Given a subset \mathcal{F} of \mathbb{F}_q and a property of the digits, how many elements of \mathcal{F} satisfy this property? (This is a way to study the pseudo-random properties of the digits of the elements of \mathcal{F} .)

Dartyge and Sárközy (2013): number of

•
$$x \in \mathbb{F}_q$$
 such that $s_{\mathcal{B}}(P(x)) = s_q$

•
$$g \in \mathcal{G}$$
 such that $s_{\mathcal{B}}(P(g)) = s$.

Dartyge, Mauduit, Sárközy (2015): idem with missing digits. Gabdullin (2016): squares with missing digits.

Dietmann, Elsholtz, Shparlinski (2016): number of squares with restricted digits.

For polynomial values in $\mathbb N$ with degree $\geq 3,$ only partial results are known.

New results

1 Prescribing the sum of digits of some special sequences in \mathbb{F}_q : $s_{\mathcal{B}}(P(x)) = s$ and $s_{\mathcal{B}}(P(g)) = s$

2 "Distribution" of the sum of digits of products in \mathbb{F}_q :

$$s_{\mathcal{B}}(cd) = s, c \in \mathcal{C}, d \in \mathcal{D}$$

3 Prescribing the digits of some special sequences in \mathbb{F}_q :

$$\varepsilon_{j_1}(P(x)) = \alpha_{j_1}, \dots, \varepsilon_{j_k}(P(x)) = \alpha_{j_k}$$

$$\varepsilon_{j_1}(P(g)) = \alpha_{j_1}, \dots, \varepsilon_{j_k}(P(g)) = \alpha_{j_k}$$

Consider first $\{P(x) : x \in \mathbb{F}_q\}.$

Given a polynomial $P \in \mathbb{F}_q[X]$ and $s \in \mathbb{F}_p$, let

$$\mathcal{D}(P,s) = \{ x \in \mathbb{F}_q : s_{\mathcal{B}}(P(x)) = s \}.$$

Question: Estimate $|\mathcal{D}(P,s)|$.

Heuristically, we expect: $|\mathcal{D}(P,s)| \approx \frac{q}{p}$.

Prescribing the sum of digits of P(x)

Theorem (Dartyge, Sárközy, 2013)

If $P \in \mathbb{F}_q[X]$ is of degree $n \ge 1$ with (n,q) = 1 then, for $s \in \mathbb{F}_p$,

$$\left|\left|\mathcal{D}(P,s)\right| - \frac{q}{p}\right| \le (n-1)\sqrt{q}.$$

If $P = X^d$, we can save a factor $1/\sqrt{p}$:

Theorem (S.)

If d divides q-1 then, for any $s \in \mathbb{F}_p^*$,

$$|\mathcal{D}(X^d,s)| - \frac{q}{p} \bigg| \le \begin{cases} (d-1)\sqrt{q}/p & \text{if } d \mid \delta, \\ (d-1)\sqrt{q}/\sqrt{p} & \text{otherwise,} \end{cases}$$
(2)

where $\delta = (q-1)/(p-1) \in \mathbb{N}$.

In the special case where d = 2, (2) is an equality.

Prescribing the sum of digits of P(x)

In degree 2, we obtain the exact formula:

Theorem (S.)

If $p \geq 3$ and if $P(X) = a_2 X^2 + a_1 X + a_0 \in \mathbb{F}_q[X]$ with $a_2 \neq 0$ then, writing $\nu_P = s_{\mathcal{B}}(a_0 - a_1^2(4a_2)^{-1})$, for any $s \in \mathbb{F}_p$, we have

$$\left| |\mathcal{D}(P,s)| - \frac{q}{p} \right| = \begin{cases} \sqrt{q}/\sqrt{p} & \text{if } s \neq \nu_P \text{ and } r \text{ is odd,} \\ \sqrt{q}/p & \text{if } s \neq \nu_P \text{ and } r \text{ is even,} \\ 0 & \text{if } s = \nu_P \text{ and } r \text{ is odd,} \\ (1 - p^{-1})\sqrt{q} & \text{if } s = \nu_P \text{ and } r \text{ is even.} \end{cases}$$

Key argument: multiplicative character sums of the form:

$$\sum_{\substack{x \in \mathbb{F}_q^* \\ s_{\mathcal{B}}(x) = s}} \chi(x)$$

can be expressed as a product of Gaussian sums.

Cathy Swaenepoel

The set \mathcal{G} of generators is a set of remarkable elements in \mathbb{F}_q . More generally, we can consider $\{P(g) : g \in \mathcal{G}\}$.

Given a polynomial $P \in \mathbb{F}_q[X]$ and $s \in \mathbb{F}_p$, let

$$\mathcal{D}_{\mathcal{G}}(P,s) = \{g \in \mathcal{G} : s_{\mathcal{B}}(P(g)) = s\} = \mathcal{D}(P,s) \cap \mathcal{G}.$$

Question: Estimate $|\mathcal{D}_{\mathcal{G}}(P,s)|$.

Heuristically, we expect:
$$|\mathcal{D}_{\mathcal{G}}(P,s)| pprox rac{arphi(q-1)}{p}.$$

Theorem (S.)

If
$$P \in \mathbb{F}_q[X]$$
 is of degree n with $(n,q) = 1$ and if $s \in \mathbb{F}_p$, then

$$\left|\left|\mathcal{D}_{\mathcal{G}}(P,s)\right| - \frac{\varphi(q-1)}{p}\right| < \frac{\varphi(q-1)}{q-1}\left((n2^{\omega(q-1)} - 1)\sqrt{q} + 1\right)$$

where $\omega(q-1)$ is the number of distinct prime factors of q-1.

This improves a result of Dartyge and Sárközy by a factor $\frac{\varphi(q-1)}{q-1}$.

Key argument: In the upper bound for additive character sums of the form

$$\sum_{g \in \mathcal{G}} \psi(P(g))$$

used by Dartyge and Sárközy, we save a factor $\frac{\varphi(q-1)}{q-1}$.

I Prescribing the sum of digits of some special sequences in \mathbb{F}_q :

 $s_{\mathcal{B}}(P(x)) = s$ and $s_{\mathcal{B}}(P(g)) = s$

2 "Distribution" of the sum of digits of products in \mathbb{F}_q : $s_{\mathcal{B}}(cd) = s, c \in \mathcal{C}, d \in \mathcal{D}$

If Prescribing the digits of some special sequences in \mathbb{F}_q :

$$\varepsilon_{j_1}(P(x)) = \alpha_{j_1}, \dots, \varepsilon_{j_k}(P(x)) = \alpha_{j_k}$$
$$\varepsilon_{j_1}(P(g)) = \alpha_{j_1}, \dots, \varepsilon_{j_k}(P(g)) = \alpha_{j_k}$$

Given $\mathcal{C} \subset \mathbb{F}_q^*$ and $\mathcal{D} \subset \mathbb{F}_q^*$ large enough, the products cd with $c \in \mathcal{C}$ and $d \in \mathcal{D}$ are expected to be "well distributed".

The challenge is to find a lower bound for |C| and |D| to ensure this behaviour for a given randomness criterion.

Sárközy and co-authors have studied many problems in this spirit.

Given
$$\mathcal{C} \subset \mathbb{F}_q^*$$
, $\mathcal{D} \subset \mathbb{F}_q^*$ and $\mathcal{A} \subset \mathbb{F}_p$, let
 $\mathcal{E} = \{(c,d) \in \mathcal{C} \times \mathcal{D} : s_{\mathcal{B}}(cd) \in \mathcal{A}\}.$

Question (Sárközy): Find a sharp lower bound on $|\mathcal{C}|$ and $|\mathcal{D}|$ to ensure that $\mathcal{E} \neq \emptyset$.

Interesting subsets \mathcal{A} of \mathbb{F}_p include:

•
$$\{s\}$$
 for $s \in \mathbb{F}_p$,

- subgroups of \mathbb{F}_p^* (for instance squares),
- set of all generators of \mathbb{F}_p^* .

Products *cd* whose sum of digits is fixed

If $\mathcal{A} = \{s\}$ with $s \in \mathbb{F}_p^*$, what is the **expected value for** $|\mathcal{E}|$?

Observe first that:

- $|\{z \in \mathbb{F}_q : s_{\mathcal{B}}(z) = s\}| = p^{r-1} = q/p$,
- \bullet the proportion of $(x,y)\in \mathbb{F}_q^*\times \mathbb{F}_q^*$ such that $s_{\mathcal{B}}(xy)=s$ is

$$\frac{1}{(q-1)^2} \cdot \underbrace{(q-1)}_x \cdot \underbrace{q/p}_{y \text{ s.t. } s_{\mathcal{B}}(xy)=s} = \frac{q}{(q-1)p}$$

If the pairs (c, d) were reasonably well distributed, we would expect:

$$|\mathcal{E}| \approx |\mathcal{C}| |\mathcal{D}| \frac{q}{(q-1)p}.$$

Products cd whose sum of digits is fixed

Theorem (S.) If $\mathcal{A} = \{s\}$ with $s \in \mathbb{F}_p^*$ and $\mathcal{C} \subset \mathbb{F}_q^*$, $\mathcal{D} \subset \mathbb{F}_q^*$ then

$$|\mathcal{E}| - \frac{|\mathcal{C}||\mathcal{D}|}{(q-1)} \frac{q}{p} \le \frac{\sqrt{q}}{\sqrt{p}} \sqrt{|\mathcal{C}||\mathcal{D}|}.$$

Corollary (S.)

If $s \in \mathbb{F}_p^*$ and $|\mathcal{C}||\mathcal{D}| \ge pq$ then there exists $(c, d) \in \mathcal{C} \times \mathcal{D}$ such that $s_{\mathcal{B}}(cd) = s$.

Remark: This result is *optimal up to a constant factor*: there are explicit sets C and D such that pq/16 < |C||D| < pq and $\mathcal{E} = \emptyset$.

Products cd whose sum of digits belongs to a subgroup

Let \mathcal{A} be a nontrivial subgroup of \mathbb{F}_p^* and $m = |\mathcal{A}|$.

Theorem (S.)

If C and D satisfy the two conditions: (1) $|C||D| \ge 4pq/m^2$ (2) $\Delta_{\mathcal{A}}(C) \le \frac{1}{m}$ and $\Delta_{\mathcal{A}}(D) \le \frac{1}{m}$ then, there exists $(c,d) \in C \times D$ such that $s_{\mathcal{B}}(cd) \in \mathcal{A}$.

The technical condition (2) is true with a probability close to 1 (see below).

Remark: This result is *optimal up to a constant factor*: there are explicit sets C and D satisfying (2) such that $pq/(16m^2) < |C||D| < pq/m^2$ and $\mathcal{E} = \emptyset$.

If $p \ge 3$ and A is the set of squares in \mathbb{F}_p^* (thus $m = |A| = \frac{p-1}{2}$), this implies:

Corollary (S.)

If C and D satisfy the two conditions: (1) $|C||D| \ge \frac{16p}{(p-1)^2}q$ (2) $\Delta_{\mathcal{A}}(C) \le \frac{1}{m}$ and $\Delta_{\mathcal{A}}(D) \le \frac{1}{m}$ then, there exists $(c,d) \in C \times D$ such that $s_{\mathcal{B}}(cd)$ is a square in \mathbb{F}_p^* .

If $|\mathcal{C}| = |\mathcal{D}|$, it suffices to suppose $|\mathcal{C}| \ge \frac{4\sqrt{p}}{p-1}\sqrt{q}$ to ensure that (1) is satisfied. Notice that this lower bound is usually below \sqrt{q} .

Study of the condition (2)

For any nonempty subset $\mathcal{C} \subset \mathbb{F}_q^*$, let

$$T_{\mathcal{A}}(\mathcal{C}) = \frac{1}{m} \sum_{t \in \mathcal{A} \setminus \{1\}} \frac{|\mathcal{C} \cap t\mathcal{C}|}{|\mathcal{C}|}$$

and

$$\Delta_{\mathcal{A}}(\mathcal{C}) = T_{\mathcal{A}}(\mathcal{C}) - \left(\frac{m-1}{m}\right) \frac{|\mathcal{C}| - 1}{q-2}.$$

Recall condition (2): $\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}$ and $\Delta_{\mathcal{A}}(\mathcal{D}) \leq \frac{1}{m}$.

Condition (2) is true "on average":

Lemma (S.)

For any
$$1 \leq d \leq q-1$$
,
the mean value of $\Delta_{\mathcal{A}}(\mathcal{C})$ over all $\mathcal{C} \subset \mathbb{F}_q^*$ with $|\mathcal{C}| = d$ is 0.

Study of the condition (2)

Recall condition (2):
$$\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}$$
 and $\Delta_{\mathcal{A}}(\mathcal{D}) \leq \frac{1}{m}$.

Lemma (S.)

For any $1 \leq d \leq q-1$, the variance of $\Delta_A(C)$ over all $C \subset \mathbb{F}_q^*$ with $|\mathcal{C}| = d$ satisfies

$$\frac{1}{\binom{q-1}{d}}\sum_{|\mathcal{C}|=d} \left(\Delta_{\mathcal{A}}(\mathcal{C})\right)^2 = O\left(\frac{1}{mq}\right).$$

The probability that condition (2) is true is close to 1: $\mathbb{P}\left(\Delta_{\mathcal{A}}(\mathcal{C}) \leq \frac{1}{m}\right) = 1 - O\left(\frac{m}{q}\right)$ with $\frac{m}{q} \to 0$ as $q \to +\infty$.

Examples of subsets C such that $\Delta_{\mathcal{A}}(C) \leq \frac{1}{m}$: all subsets of affine hyperplanes of the form $\{x \in \mathbb{F}_q : f(x) = s\}$ where f is an \mathbb{F}_p -linear form and $s \in \mathbb{F}_p^*$. The study of the quantity $|C \cap tC|$ is of independent interest.

Green and Konyagin (2009): if C is a subset of a group G of prime order with $|C| = \gamma |G|$ then there exists $x \in G$ such that

$$\left| |\mathcal{C} \cap x\mathcal{C}| - \gamma^2 |G| \right| = O(|G|(\log \log |G|/\log |G|)^{1/3}).$$

Notice that a similar statement with $G = \mathbb{F}_q^*$ does not hold: if \mathcal{C} is the set of squares then $|\mathcal{C}| = \gamma |G|$ with $\gamma = 1/2$ and $\mathcal{C} \cap x\mathcal{C} = \emptyset$ or \mathcal{C} .

Question: for $G = \mathbb{F}_q^*$ and \mathcal{C} such that $|\mathcal{C}| = \gamma |G|$, give natural conditions on \mathcal{C} so that $|\mathcal{C} \cap x\mathcal{C}|$ is "close" to $\gamma^2 |G|$ for at least one $x \in G$.

I Prescribing the sum of digits of some special sequences in \mathbb{F}_q :

$$s_{\mathcal{B}}(P(x)) = s$$
 and $s_{\mathcal{B}}(P(g)) = s$

② "Distribution" of the sum of digits of products in \mathbb{F}_q : $s_{\mathcal{B}}(cd)=s,c\in\mathcal{C},d\in\mathcal{D}$

3 Prescribing the digits of some special sequences in \mathbb{F}_q :

$$\varepsilon_{j_1}(P(x)) = \alpha_{j_1}, \dots, \varepsilon_{j_k}(P(x)) = \alpha_{j_k}$$

$$\varepsilon_{j_1}(P(g)) = \alpha_{j_1}, \dots, \varepsilon_{j_k}(P(g)) = \alpha_{j_k}$$

Let $P \in \mathbb{F}_q[X]$ and consider $\{P(x) : x \in \mathbb{F}_q\}$.

If $1 \leq k \leq r,$ what is the number of $x \in \mathbb{F}_q$ such that P(x) has k prescribed digits?

Let $P \in \mathbb{F}_q[X]$ and consider $\{P(x) : x \in \mathbb{F}_q\}$.

If $1 \leq k \leq r,$ what is the number of $x \in \mathbb{F}_q$ such that P(x) has k prescribed digits?

Given
$$J \subset \{1, \ldots, r\}$$
 with $|J| = k$ and $\alpha = (\alpha_j)_{j \in J} \in (\mathbb{F}_p)^k$, let

$$\mathcal{F}_q(P,k,J,\alpha) = \{x \in \mathbb{F}_q : \varepsilon_j(P(x)) = \alpha_j \text{ for all } j \in J\}$$

be the set of all elements $x \in \mathbb{F}_q$ such that for any $j \in J$, the *j*-th digit of P(x) in base \mathcal{B} is α_j .

Question: Estimate $|\mathcal{F}_q(P, k, J, \alpha)|$.

Theorem (S.)

If $P \in \mathbb{F}_q[X]$ is of degree $n \ge 1$ with (n,q) = 1 then, for any $1 \le k \le r$, for any $J \subset \{1, \ldots, r\}$ with |J| = k and any $\alpha \in (\mathbb{F}_p)^k$, we have

$$\left|\mathcal{F}_q(P,k,J,\alpha)\right| - \frac{q}{p^k} \le \frac{p^k - 1}{p^k} (n-1)\sqrt{q};$$

in particular, if

$$(n-1)(p^k-1) < \sqrt{q} = p^{r/2}$$

then $\mathcal{F}_q(P, k, J, \alpha) \neq \emptyset$.

Consequence: if $p \ge 3$ and if $k \le r/2$ then $\mathcal{F}_q(X^2, k, J, \alpha) \ne \emptyset$.

Prescribing the digits of polynomial values

Corollary (S.)

For any $n \geq 1$, for any $\varepsilon > 0$, uniformly over $k \leq (1/2 - \varepsilon)r$, $P \in \mathbb{F}_{p^r}[X]$ of degree n, J with |J| = k and $\alpha \in (\mathbb{F}_p)^k$:

$$|\mathcal{F}_{p^r}(P,k,J,\alpha)| = p^{r-k}(1+o(1)), \quad (p^r \to +\infty, p \nmid n, r \ge 2).$$

Let Q_{p^r} be the set of squares in \mathbb{F}_{p^r} . The number of squares with a given proportion < 0.5 of prescribed digits is asymptotically as expected:

Corollary (S.)

For any $\varepsilon > 0$, uniformly over $k \le (1/2 - \varepsilon)r$, J with |J| = k and $\alpha \in (\mathbb{F}_p)^k$, $\alpha \ne 0$,

$$|\{y \in \mathcal{Q}_{p^r} : \varepsilon_j(y) = \alpha_j \text{ for all } j \in J\}| = \frac{p^{r-k}}{2}(1+o(1))$$

as $p^r \to +\infty, p \ge 3, r \ge 2$.

Prescribing the digits of x^2

When $P = X^2$, we can prove a more precise result.

Theorem (S.)

If $p \geq 3$ then, for any $1 \leq k \leq r$, for any $J \subset \{1, \ldots, r\}$ with |J| = k and any $\alpha \in (\mathbb{F}_p)^k$, $\alpha \neq 0$, we have

$$\left|\left|\mathcal{F}_{q}(X^{2},k,J,\alpha)\right|-\frac{q}{p^{k}}\right| \leq \begin{cases} \frac{\sqrt{q}}{\sqrt{p}} & \text{if } r \text{ is odd,} \\ \left(\frac{2}{p}-\frac{1}{p^{k}}\right)\sqrt{q} & \text{if } r \text{ is even.} \end{cases}$$
(3)

We save a factor

- $1/\sqrt{p}$ if r is odd,
- 2/p is r is even.

If k = 1 then (3) is an equality.

If k = 2 or k = 3, there are some values of p and r for which (3) is also an equality.

Cathy Swaenepoel

Prescribing the digits of P(g)

Let $P \in \mathbb{F}_q[X]$ and consider $\{P(g) : g \in \mathcal{G}\}$.

If $1 \le k \le r$, what is the number of $g \in \mathcal{G}$ such that P(g) has k prescribed digits?

Question: Estimate $|\mathcal{G} \cap \mathcal{F}_q(P, k, J, \alpha)|$.

Prescribing the digits of P(g)

Let $P \in \mathbb{F}_q[X]$ and consider $\{P(g) : g \in \mathcal{G}\}$.

If $1 \le k \le r$, what is the number of $g \in \mathcal{G}$ such that P(g) has k prescribed digits?

Question: Estimate $|\mathcal{G} \cap \mathcal{F}_q(P, k, J, \alpha)|$.

Theorem (S.)

For any $n \ge 1$, for any $\varepsilon > 0$, uniformly over $k \le (1/2 - \varepsilon)r$, $P \in \mathbb{F}_{p^r}[X]$ of degree n, J with |J| = k and $\alpha \in (\mathbb{F}_p)^k$:

$$|\mathcal{G} \cap \mathcal{F}_{p^r}(P,k,J,\alpha)| = \frac{\varphi(p^r-1)}{p^k}(1+o(1))$$

as $p^r \to +\infty, p \nmid n, r \ge 2$.

In particular, the number of generators with a given proportion <0.5 of prescribed digits is asymptotically as expected.

Cathy Swaenepoel

- Weil's Theorem,
- orthogonality relations for additive and multiplicative characters of \mathbb{F}_q ,
- Gaussian sums,
- upper bounds for additive and multiplicative character sums such as

$$\sum_{\substack{x \in \mathbb{F}_q^* \\ s_{\mathcal{B}}(x) = s}} \chi(x), \qquad \qquad \sum_{g \in \mathcal{G}} \psi(P(g)).$$

Remarks

If $f:\mathbb{F}_q\to\mathbb{F}_p$ is a linear transformation and $f\neq 0$ then

- there exists a basis \mathcal{B} such that $f = s_{\mathcal{B}}$,
- the previous results can be reformulated with f instead of $s_{\mathcal{B}}$.

The trace $\operatorname{Tr} : \mathbb{F}_q \to \mathbb{F}_p$ defined by $\operatorname{Tr}(x) = x + x^p + \cdots + x^{p^{r-1}}$ is a linear transformation of basic importance in finite fields.

For instance, we proved that if $p\geq 3$ and if ${\mathcal C}$ and ${\mathcal D}$ satisfy the two conditions:

(1)
$$|\mathcal{C}||\mathcal{D}| \ge \frac{16p}{(p-1)^2}q$$

(2) technical condition (true with probability close to 1) then, there exists $(c, d) \in \mathcal{C} \times \mathcal{D}$ such that $\operatorname{Tr}(cd)$ is a square in \mathbb{F}_n^* .