Roots $x_k(y)$ of a formal power series $f(x, y) = \sum_{n=0}^{\infty} a_n(y) x^n$

with applications to graph enumeration and q-series

Alan Sokal New York University / University College London

Lectures at Paris XIII — 24 May and 7 June 2011 Dedicated to the memory of Philippe Flajolet

LECTURE #3

The leading root of the partial theta function

The basic set-up, reviewed

• Start from a formal power series

$$f(x,y) = \sum_{n=0}^{\infty} a_n(y) x^n$$

where

(a)
$$a_0(0) = a_1(0) = 1$$

(b) $a_n(0) = 0$ for $n \ge 2$
(c) $a_n(y) = O(y^{\nu_n})$ with $\lim_{n \to \infty} \nu_n = \infty$

and coefficients lie in a commutative ring-with-identity-element R.

- There exists a unique formal power series $x_0(y) \in R[[y]]$ satisfying $f(x_0(y), y) = 0$. We call $x_0(y)$ the **leading root** of f.
- Since $x_0(y)$ has constant term -1, we write $x_0(y) = -\xi_0(y)$ where $\xi_0(y) = 1 + O(y)$.
- We saw in Lecture #2 that $\xi_0(y)$ can be computed by
 - An elementary method.
 - A method based on the explicit implicit function formula.
 - A method based on the exponential formula.

Method based on the explicit implicit function formula

• In Lecture #2 we derived the formula

$$\frac{\xi_0(y)^{\beta} - 1}{\beta} = \sum_{m=1}^{\infty} \frac{1}{m} \sum_{n_1, \dots, n_m \ge 0} \binom{\beta - 1 + \sum n_i}{m - 1} \prod_{i=1}^m (-1)^{n_i} \widehat{a}_{n_i}(y)$$

where

$$\widehat{a}_n(y) = \begin{cases} a_n(y) - 1 & \text{for } n = 0, 1 \\ a_n(y) & \text{for } n \ge 2 \end{cases}$$

- Can this formula be used for proofs of nonnegativity???
- Recall the definition: $\xi_0(y) \in S_\beta$ in case $\frac{\xi_0(y)^\beta 1}{\beta} \succeq 0$ (coefficientwise nonnegativity)
- Empirically I know that $\xi_0(y) \in S_\beta$ when $a_n(y) = \alpha_n y^{n(n-1)/2}$ and
 - (a) $\beta \ge -2$ with $\alpha_n = 1$ (partial theta function)
 - (b) $\beta \ge -1$ with $\alpha_n = 1/n!$ (deformed exponential function)

(c)
$$\beta \geq -1$$
 with $\alpha_n = (1-q)^n/(q;q)_n$ and $q > -1$

- How can we see these facts from this formula??? [open combinatorial problem]
- All these examples have $\widehat{a}_n(y) \succeq 0$. The factors $(-1)^{n_i}$ then seem to cause trouble.

A very simple case: Alternating signs

Proposition. Suppose that

$$(-1)^n \widehat{a}_n(y) \succeq 0 \quad \text{for all } n \ge 0$$

where

$$\widehat{a}_n(y) = \begin{cases} a_n(y) - 1 & \text{for } n = 0, 1\\ a_n(y) & \text{for } n \ge 2 \end{cases}$$

Then $\xi_0(y) \in \mathcal{S}_\beta$ and in fact

$$\frac{\xi_0(y)^{\beta} - 1}{\beta} \succeq \sum_{n=0}^{\infty} (-1)^n \widehat{a}_n(y)$$

in the following cases:

(a)
$$\beta = 1$$

(b) $\beta = -1$ whenever $a_0(y) = 1$
(c) $\beta = -3$ whenever $a_0(y) = a_1(y) = 1$
(d) $\beta = -(2k - 1)$ whenever $a_0(y) = a_1(y) = 1$ and $a_2(y) = \ldots = a_{k-1}(y) = 0$

Proof. Follows almost immediately from

$$\frac{\xi_0(y)^{\beta} - 1}{\beta} = \sum_{m=1}^{\infty} \frac{1}{m} \sum_{n_1, \dots, n_m \ge 0} \binom{\beta - 1 + \sum n_i}{m - 1} \prod_{i=1}^m (-1)^{n_i} \widehat{a}_{n_i}(y)$$

(a) Set $\beta = 1$. Then the RHS of the Proposition comes from the term m = 1. All the other terms are $\succeq 0$ since $(-1)^n \widehat{a}_n(y) \succeq 0$ and $\begin{pmatrix} \beta - 1 + \sum n_i \\ m - 1 \end{pmatrix} \ge 0$.

- (b) Set $\beta = -1$ and observe that the sum can be restricted to $n_1, \ldots, n_m \geq 1$. If m = 1 we have $\begin{pmatrix} \beta 1 + \sum n_i \\ m 1 \end{pmatrix} = 1$ and we get the RHS of the Proposition. If $m \geq 2$ we have $\sum n_i \geq 2$, so that $\beta 1 + \sum n_i$ is a nonnegative integer and hence $\begin{pmatrix} \beta 1 + \sum n_i \\ m 1 \end{pmatrix} \geq 0$.
- (c) is analogous to (b), but using $\beta = -3$ and observing that the sum can be restricted to $n_1, \ldots, n_m \ge 2$, so that $m \ge 2$ implies $\sum n_i \ge 4$.
- (d) is analogous to (b), but using $\beta = -(2k-1)$ and observing that the sum can be restricted to $n_1, \ldots, n_m \ge k$, so that $m \ge 2$ implies $\sum n_i \ge 2k$.

A slight strengthening (by rescaling of f)

Corollary.

(a) If
$$(-1)^n \frac{a_n(y)}{a_1(y)} \succeq 0$$
 for all $n \neq 1$, then $\xi_0(y) \in \mathcal{S}_1$ and satisfies

$$\begin{aligned} \xi_0(y) \succeq \frac{a_0(y)}{a_1(y)} + \sum_{n=2}^{\infty} (-1)^n \frac{a_n(y)}{a_1(y)} \,. \end{aligned}$$
(b) If $1 - \frac{a_1(y)}{a_0(y)} \succeq 0$ and $(-1)^n \frac{a_n(y)}{a_0(y)} \succeq 0$ for all $n \geq 2$, then
 $\xi_0(y) \in \mathcal{S}_{-1}$ and satisfies

$$\xi_0(y)^{-1} \preceq \frac{a_1(y)}{a_0(y)} - \sum_{n=2}^{\infty} (-1)^n \frac{a_n(y)}{a_0(y)}.$$

Proof.

- (a) Apply part (a) of the Proposition to $f(x, y)/a_1(y)$. (b) Apply part (b) of the Proposition to $f(x, y)/a_0(y)$.

Alternative (elementary) proof of the Corollary

- No need to use explicit implicit function formula. Just bare hands!
- **Proof of part (a):** Start from the equation $f(-\xi_0(y), y) = 0$, divide by $a_1(y)$, and add $\xi_0(y)$ to both sides:

$$\xi_0(y) = \frac{a_0(y)}{a_1(y)} + \sum_{n=2}^{\infty} (-1)^n \frac{a_n(y)}{a_1(y)} \xi_0(y)^n$$

• The unique solution to this equation can be found iteratively as follows: Define a map $\mathcal{F}: R[[y]] \to R[[y]]$ by

$$(\mathcal{F}\xi)(y) = \frac{a_0(y)}{a_1(y)} + \sum_{n=2}^{\infty} (-1)^n \frac{a_n(y)}{a_1(y)} \xi(y)^n$$

and define a sequence $\xi_0^{(0)}, \xi_0^{(1)}, \ldots \in R[[y]]$ by $\xi_0^{(0)} = 1$ and $\xi_0^{(k+1)} = \mathcal{F}\xi_0^{(k)}$. I then claim that

$$\xi_0^{(0)} \preceq \xi_0^{(1)} \preceq \xi_0^{(2)} \preceq \ldots \preceq \xi_0$$

and that

$$\xi_0^{(k)}(y) = \xi_0(y) + O(y^{k+1})$$

Proof of claim:

- If f(y) and g(y) are formal power series satisfying $0 \leq f \leq g$, then the hypotheses of the Corollary [part (a)] guarantee that $0 \leq \mathcal{F}f \leq \mathcal{F}g$.
- Applying this repeatedly to the obvious inequality $0 \leq \xi_0^{(0)} \leq \xi_0^{(1)}$, we obtain $\xi_0^{(0)} \leq \xi_0^{(1)} \leq \xi_0^{(2)} \leq \dots$

- Likewise, if f(y) and g(y) are formal power series satisfying $f(y)-g(y) = O(y^{\ell})$ for some $\ell \ge 0$, then it is easy to see that $(\mathcal{F}f)(y) - (\mathcal{F}g)(y) = O(y^{\ell+1})$ [since $a_n(y)/a_1(y) = O(y)$ for all $n \ge 2$].
- Applying this repeatedly to the obvious fact $\xi_0^{(1)}(y) \xi_0^{(0)}(y) = O(y)$, we obtain $\xi_0^{(k+1)}(y) \xi_0^{(k)}(y) = O(y^{k+1})$.
- It follows that $\xi_0^{(k)}(y)$ converges as $k \to \infty$ (in the topology of formal power series) to a limiting series $\xi_0^{(\infty)}(y)$, and that this limiting series satisfies $\mathcal{F}\xi_0^{(\infty)} = \xi_0^{(\infty)}$. But this means that $\xi_0^{(\infty)}(y) = \xi_0(y)$. It also follows that $\xi_0^{(k)}(y) = \xi_0(y) + O(y^{k+1})$. The inequality of the Corollary is precisely the statement $\xi_0 \succeq \xi_0^{(1)}$.
- The proof of part (b) is similar.
- Can parts (c) and (d) of the Proposition be given a similarly elementary proof?
- Can results analogous to the Proposition be proven for the spaces S_{β} with $\beta \neq 1, -1, -3, -5, \ldots$?

But isn't the case of alternating signs too trivial?

- After all, the most interesting examples have *constant signs*.
- Then the irritating factors $(-1)^{n_i}$ cannot be avoided.

The partial theta function $\Theta_0(x, y) = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2}$ (which has constant signs!)

It seems that $\xi_0(y) \in \mathcal{S}_1$:

$$\xi_0(y) = 1 + y + 2y^2 + 4y^3 + 9y^4 + 21y^5 + 52y^6 + 133y^7 + 351y^8 + 948y^9 + 2610y^{10} + \dots + \text{ terms through order } y^{6999}$$

and indeed that $\xi_0(y) \in \mathcal{S}_{-1}$:

$$\xi_0(y)^{-1} = 1 - y - y^2 - y^3 - 2y^4 - 4y^5 - 10y^6 - 25y^7 - 66y^8$$

-178y⁹ - 490y¹⁰ - ... - terms through order y⁶⁹⁹⁹

and indeed that $\xi_0(y) \in \mathcal{S}_{-2}$:

$$\xi_0(y)^{-2} = 1 - 2y - y^2 - y^4 - 2y^5 - 7y^6 - 18y^7 - 50y^8$$

-138y⁹ - 386y¹⁰ - ... - terms through order y⁶⁹⁹⁹

Can we prove any of this???

Yes!!!

Proof for the partial theta function

• Use standard notation for q-shifted factorials:

$$(a;q)_n = \prod_{j=0}^{n-1} (1 - aq^j)$$
$$(a;q)_{\infty} = \prod_{j=0}^{\infty} (1 - aq^j) \quad \text{for } |q| < 1$$

• A pair of identities for the partial theta function:

$$\sum_{n=0}^{\infty} x^n y^{n(n-1)/2} = (y;y)_{\infty} (-x;y)_{\infty} \sum_{n=0}^{\infty} \frac{y^n}{(y;y)_n (-x;y)_n}$$
$$\sum_{n=0}^{\infty} x^n y^{n(n-1)/2} = (-x;y)_{\infty} \sum_{n=0}^{\infty} \frac{(-x)^n y^{n^2}}{(y;y)_n (-x;y)_n}$$

as formal power series and as analytic functions on $(x, y) \in \mathbb{C} \times \mathbb{D}$

- Rewrite these as $\sum_{n=0}^{\infty} x^n y^{n(n-1)/2} = (y;y)_{\infty} (-xy;y)_{\infty} \left[1 + x + \sum_{n=1}^{\infty} \frac{y^n}{(y;y)_n (-xy;y)_{n-1}} \right]$ $\sum_{n=0}^{\infty} x^n y^{n(n-1)/2} = (-xy;y)_{\infty} \left[1 + x + \sum_{n=1}^{\infty} \frac{(-x)^n y^{n^2}}{(y;y)_n (-xy;y)_{n-1}} \right]$
- Brackets on the RHS (minus the initial 1+x) have alternating signs in x (i.e. have nonnegative coefficients as a series in -x and y)
- So we have reduced to the easy case of alternating signs!
- The second identity has $a_0(y) = 1$, so we prove also $\xi_0(y) \in \mathcal{S}_{-1}$.
- With a bit more work we can prove $\xi_0(y) \in \mathcal{S}_{-2}$.

The preceding proof, written more explicitly

• Let's say we use the first identity:

$$\Theta_0(x,y) = (y;y)_{\infty} (-xy;y)_{\infty} \left[1 + x + \sum_{n=1}^{\infty} \frac{y^n}{(y;y)_n (-xy;y)_{n-1}} \right]$$

• So $\Theta_0(x, y) = 0$ is equivalent to "brackets = 0".

• Insert $x = -\xi_0(y)$ and bring $\xi_0(y)$ to the LHS:

$$\xi_0(y) = 1 + \sum_{n=1}^{\infty} \frac{y^n}{\prod_{j=1}^n (1-y^j) \prod_{j=1}^{n-1} [1-y^j \xi_0(y)]}$$

- This formula can be used iteratively to determine $\xi_0(y)$, and in particular to prove the strict positivity of its coefficients:
- Define the map $\mathcal{F}: \mathbb{Z}[[y]] \to \mathbb{Z}[[y]]$ by

$$(\mathcal{F}\xi)(y) = 1 + \sum_{n=1}^{\infty} \frac{y^n}{\prod_{j=1}^n (1-y^j) \prod_{j=1}^{n-1} [1-y^j \xi(y)]}$$

• Define a sequence $\xi_0^{(0)}, \xi_0^{(1)}, \ldots \in \mathbb{Z}[[y]]$ by $\xi_0^{(0)} = 1$ and $\xi_0^{(k+1)} = \mathcal{F}\xi_0^{(k)}$.

- Then $\xi_0^{(0)} \leq \xi_0^{(1)} \leq \ldots \leq \xi_0$ and $\xi_0^{(k)}(y) = \xi_0(y) + O(y^{3k+1}).$
- In particular, $\lim_{k\to\infty} \xi_0^{(k)}(y) = \xi_0(y)$, and $\xi_0(y)$ has strictly positive coefficients.
- Thomas Prellberg has a combinatorial interpretation of $\xi_0(y)$ and $\xi_0^{(k)}(y)$.

Elementary proof of the first identity

• Proof uses nothing more than Euler's first and second identities

$$\frac{1}{(t;q)_{\infty}} = \sum_{n=0}^{\infty} \frac{t^n}{(q;q)_n}$$
$$(t;q)_{\infty} = \sum_{n=0}^{\infty} \frac{(-t)^n q^{n(n-1)/2}}{(q;q)_n}$$

valid for $(t,q) \in \mathbb{D} \times \mathbb{D}$ and $(t,q) \in \mathbb{C} \times \mathbb{D}$, respectively.

• Write

$$\sum_{n=0}^{\infty} x^n y^{n(n-1)/2} = \sum_{n=0}^{\infty} x^n y^{n(n-1)/2} \frac{(y;y)_{\infty}}{(y;y)_n (y^{n+1};y)_{\infty}}$$

• Insert Euler's first identity for $1/(y^{n+1}; y)_{\infty}$:

$$\begin{split} \Theta_0(x,y) &= (y;y)_{\infty} \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(y;y)_n} \sum_{k=0}^{\infty} \frac{y^{(n+1)k}}{(y;y)_k} \\ &= (y;y)_{\infty} \sum_{k=0}^{\infty} \frac{y^k}{(y;y)_k} \sum_{n=0}^{\infty} \frac{(xy^k)^n y^{n(n-1)/2}}{(y;y)_n} \\ &= (y;y)_{\infty} \sum_{k=0}^{\infty} \frac{y^k}{(y;y)_k} (-xy^k;y)_{\infty} \quad \text{by Euler's second identity} \\ &= (y;y)_{\infty} (-x;y)_{\infty} \sum_{k=0}^{\infty} \frac{y^k}{(y;y)_k (-x;y)_k} \end{split}$$

- This identity goes back to Heine (1847), but does not seem to be very well known.
- It can be found in Fine (1988) and Andrews and Warnaar (2007).
- Did anyone know it between 1847 and 1988???

Proof of the first and second identities

• A simple limiting case of Heine's first and second transformations

$${}_{2}\phi_{1}(a,b;c;q,z) = \frac{(b;q)_{\infty} (az;q)_{\infty}}{(c;q)_{\infty} (z;q)_{\infty}} {}_{2}\phi_{1}(c/b,z;az;q,b)$$

$${}_{2}\phi_{1}(a,b;c;q,z) = \frac{(c/a;q)_{\infty} (az;q)_{\infty}}{(c;q)_{\infty} (z;q)_{\infty}} {}_{2}\phi_{1}(abz/c,a;az;q,c/a)$$

for the basic hypergeometric function

$$_{2}\phi_{1}(a,b;c;q,z) = \sum_{n=0}^{\infty} \frac{(a;q)_{n} (b;q)_{n}}{(q;q)_{n} (c;q)_{n}} z^{n}$$

- Just set b = q and z = -x/a, then take $a \to \infty$ and $c \to 0$.
- This is how Heine (1847) proved the first identity.
- Heine didn't know his second transformation, which is apparently due to Rogers (1893).
- Who first wrote the second identity for the partial theta function???
- Surely it must have been known before Andrews and Warnaar (2007)!?!

Can any of this be generalized?

• Recall our friend

$$\widetilde{R}(x, y, q) = \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(1+q) \cdots (1+q+\ldots+q^{n-1})}$$

- Can this proof be extended to cases $q \neq 0$?
- Here is a general identity:

$$\sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(q;q)_n} = \frac{1}{(q;q)_{\infty}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} q^{\ell(\ell+1)/2}}{(q;q)_{\ell}} \Theta_0(xq^{\ell},y)$$

• Can deduce generalizations of the first and second identities for the partial theta function:

$$\begin{split} \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(q;q)_n} &= \\ \frac{(y;y)_{\infty}}{(q;q)_{\infty}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} q^{\ell(\ell+1)/2}}{(q;q)_{\ell}} (-xq^{\ell};y)_{\infty} \sum_{n=0}^{\infty} \frac{y^n}{(y;y)_n (-xq^{\ell};y)_n} \\ \sum_{n=0}^{\infty} \frac{x^n y^{n(n-1)/2}}{(q;q)_n} &= \\ \frac{1}{(q;q)_{\infty}} \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} q^{\ell(\ell+1)/2}}{(q;q)_{\ell}} (-xq^{\ell};y)_{\infty} \sum_{n=0}^{\infty} \frac{(-xq^{\ell})^n y^{n^2}}{(y;y)_n (-xq^{\ell};y)_n} \end{split}$$

• But I don't know what to do with these formulae, because of the factors $(-1)^{\ell}$.