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A scheme of the lectures

Lecture 1
O(1) Dense Loop Model, Fully Packed Loops, Plane Partitions

statement of the Razumov-Stroganov correspondence
FPL, ASM, TSSCPP and all that (with plenty of bijections)

Lecture 2
Proof of the Razumov-Stroganov correspondence

lemmas from Yang-Baxter integrability
lemmas from the generalized Wieland gyration

Lecture 3
Asymptotics of large Alternating Sign Matrices
rederivation of the Colomo-Pronko arctic curve

arctic curve for the triangoloid domain
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General bibliography on background topics

D.M. Bressoud and J. Propp,

How the Alternating Sign Matrix Conjecture was solved

Notices of the American Mathematical Society 46 637-646 (1999)

D.M. Bressoud, Proofs and Confirmations:

the Story of the Alternating Sign Matrix Conjecture

Lecture Notes of Les Houches Summer School, session 89, July 2008

Exact Methods in Low-dim. Statistical Physics and Quantum Computing

6 B. Nienhuis Loop models

7 N. Reshetikhin Integrability of the 6-vertex model

12 R. Kenyon The dimer model

17 P. Zinn-Justin Integrability and combinatorics: selected topics

å P. Zinn-Justin, HDR Report, arXiv: math-ph/0901.0665

å Tiago Fonseca, PhD Thesis
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Stating the Razumov-Stroganov
correspondence
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A prolog in Eastern Arts. . .

For hystorical and religious rea-
sons, there has been a flourishing
of geometrical tilings in Eastern
Arts and Architecture...

(photos are of Isfahan)
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A prolog in Eastern Arts. . .

...Here you see, besides regular
tilings, also random tilings of the
plane...
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...Here you see, besides regular
tilings, also random tilings of the
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A prolog in Eastern Arts. . .

...and well, ok, this is not a Plane
Partitions, but...
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Three Random Tiling Problems

O(1) Dense Loop Model
XXZ Quantum Spin Chain at ∆ = −1

2
Potts Model at edge-percolation
–
Fully-Packed Loops (FPL) in a square
Alternating Sign Matrices (ASM)
Six-Vertex Model at ∆ = + 1

2 (Ice Model)
“Gog” triangles
–
TSSCPP (Plane Partitions)
Dimer coverings / Lozenge tilings
NILP (Non-intersecting Lattice Paths)
“Magog” triangles
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...
•

...
•
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Link patterns

A link pattern π ∈ LP (n) is a pairing of {1, 2, . . . , 2n}
having no pairs (a, c), (b, d) such that a < b < c < d
(i.e., the drawing consists of n non-crossing arcs).

1 2

3

4

5

67

8

9

10
1 2 3 4 5 6 7 8 9 10

They are Cn = 1
n+1

(2n
n

)
(the n-th Catalan number),

are in easy bijection with Dyck Paths of length 2n
and with non-crossing partitions of n elements.

...and many other things...
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Link patterns in the Dense Loop Model

To a dense-loop configuration on a semi-infinite cylinder,
a link pattern π is naturally associated,
as the connectivity pattern for the points on the boundary.
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Link patterns in Fully-Packed Loops

To a Fully-Packed Loop configuration,
a link pattern π is naturally associated,
from connectivities among the black terminations on the boundary.
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The Razumov-Stroganov correspondence

1
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Ψ̃n(π) : probability of π
in the O(1) Dense Loop Model
in the {1, ..., 2n} × N cylinder

Ψn(π) : probability of π
for FPL with uniform measure

in the n × n square

Razumov-Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Ψ̃n(π) = Ψn(π)
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Dihedral symmetry of FPL

A corollary of the Razumov-Stroganov correspondence. . .
(. . . that was known before the Razumov-Stroganov conjecture)

call R the operator that rotates a link pattern by one position

Dihedral symmetry of FPL (proof: Wieland, 2000)

Ψn(π) = Ψn(Rπ)
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Deconstructing∗ the Razumov-Stroganov
correspondence

∗ Deconstruction is an approach, introduced by Jacques Derrida, which

rigorously pursues the meaning of a text to the point of exposing the

contradictions and internal oppositions upon which it is apparently

founded and showing that those foundations are irreducibly unstable, or

impossible. (Wikipedia: Deconstruction)
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General protocol for random structures

Positions x ∈ V , in a graph G = (V ,E )

Local variables φ(x), attached to positions.
E.g., φ : V → {�,�} ∼= {1, 0}

Unnormalized measure µ(φ) (encoded by G)

Generating function Z =
∑

φ µ(φ).

Expectation on local k-point events:

〈φ(x1) · · ·φ(xk)〉 :=
1

Z

∑
φ

µ(φ)φ(x1) · · ·φ(xk)

...non-local observables...
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...our three models within this framework...

O(1) Dense Loops FPL Plane Partitions
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A hierarchy of problems

l Independent (Bernoulli) processes – percolation models
l Determinantal processes – fermionic models
l Yang-Baxter–Integrable systems
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A hierarchy of problems

l Independent (Bernoulli) processes – percolation models
l Determinantal processes – fermionic models
l Yang-Baxter–Integrable systems

D µ(φ) =
∏

1≤i≤n µi (φ(xi ))
D all k-point functions are trivial,
as the 1-point fn. encodes them all!
D Z =

∏
1≤i≤n(ai + bi )

〈φ(x1) · · ·φ(xk)〉 =
∏

1≤i≤k 〈φ(xi )〉 =
∏

1≤i≤k
axi

axi
+bxi

D the only non-trivial probabilistic events are non-local
(e.g., for percolation, Cardy formula)

z-w G.R. Grimmett, Percolation, Springer GMW-321, 1999 Vol. 321

z-w W. Werner, Lectures on two-dimensional critical percolation,

lect. notes IAS-Park City summer school 2007 arXiv:0710.0856
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A hierarchy of problems

l Independent (Bernoulli) processes – percolation models
l Determinantal processes – fermionic models
l Yang-Baxter–Integrable systems

D Examples: Ising Model, Dimers, Spanning Trees,
Abelian Sandpile. . .
D Z = det L for a certain n × n matrix L (or even smaller)
D k-point fn. are the determinant of a k × k matrix
G (x1, . . . , xk), whose entries are a “kernel function”
Gij = K(xi , xj) ∝ (L−1)xixj : the 2-point fn. encodes them all!
D closed expression for Z even for O(n) local weights

z-w B.J. Hough, M. Krishnapur, Y. Peres and B. Virag,

Zeros of Gaussian Analytic Functions and Determinantal Point Pro-

cesses, stat-www.berkeley.edu/∼peres/GAF book.pdf

z-w K. Johansson, The arctic circle boundary and the Airy process,

Annals of Prob. 33 1-30 (2005) arXiv:math/0306216
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A hierarchy of problems

l Independent (Bernoulli) processes – percolation models
l Determinantal processes – fermionic models
l Yang-Baxter–Integrable systems

D YB eq. leads to remarkable exchange properties
D allows for only O(

√
n) weights, attached to the spectral lines

D on the cylinder, Z is solved in terms of Bethe equations
D Z and few special k-point fns. may have simple expressions
(and possibly a determinant)
D specific percolation and fermionic systems
are often special points on the YB-integrable manifold.

z-w R.J. Baxter, Exactly Solved Models in Statistical Mechanics,

Academic Press (1982)

http://tpsrv.anu.edu.au/Members/baxter/book

z-w C. Gómez, M. Ruiz-Altaba and G. Sierra, Quantum Groups in

Two dimensional Physics, Cambridge UP (1996)
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A hierarchy of problems

l Independent (Bernoulli) processes – percolation models
l Determinantal processes – fermionic models
l Yang-Baxter–Integrable systems

Bernoulli Y-B Integrable Determinantal
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Exact Sampling and bijections

Consider the computational complexity Tφ(n) for sampling configs
of size n from the measure µ(φ)

This concept is “robust” under bijections and combinatorial
rewritings of the problem:
if X : φ→ ψ is a map implemented with complexity TX (n),

Tφ(n)− TX−1(n) ≤ Tψ(n) ≤ Tφ(n) + TX (n)

If, for large n, TX±1(n)� Tψ(n),Tφ(n), then Tψ(n) ∼ Tφ(n).

Bernoulli Y-B Integrable Determinantal

Tφ(n) ∼ n No guarantee Tφ(n) . n4

(obvious) (but often CFTP!) by divide&conquer

Andrea Sportiello Around the Razumov-Stroganov correspondence



Exact Sampling and bijections

Consider the computational complexity Tφ(n) for sampling configs
of size n from the measure µ(φ)

This concept is “robust” under bijections and combinatorial
rewritings of the problem:
if X : φ→ ψ is a map implemented with complexity TX (n),

Tφ(n)− TX−1(n) ≤ Tψ(n) ≤ Tφ(n) + TX (n)

If, for large n, TX±1(n)� Tψ(n),Tφ(n), then Tψ(n) ∼ Tφ(n).

Bernoulli Y-B Integrable Determinantal

Tφ(n) ∼ n No guarantee Tφ(n) . n4

(obvious) (but often CFTP!) by divide&conquer

Andrea Sportiello Around the Razumov-Stroganov correspondence



Exact Sampling and bijections

Consider the computational complexity Tφ(n) for sampling configs
of size n from the measure µ(φ)

This concept is “robust” under bijections and combinatorial
rewritings of the problem:
if X : φ→ ψ is a map implemented with complexity TX (n),

Tφ(n)− TX−1(n) ≤ Tψ(n) ≤ Tφ(n) + TX (n)

If, for large n, TX±1(n)� Tψ(n),Tφ(n), then Tψ(n) ∼ Tφ(n).

Bernoulli Y-B Integrable Determinantal

Tφ(n) ∼ n No guarantee Tφ(n) . n4

(obvious) (but often CFTP!) by divide&conquer

Andrea Sportiello Around the Razumov-Stroganov correspondence



Exact Sampling and bijections

Consider the computational complexity Tφ(n) for sampling configs
of size n from the measure µ(φ)

This concept is “robust” under bijections and combinatorial
rewritings of the problem:
if X : φ→ ψ is a map implemented with complexity TX (n),

Tφ(n)− TX−1(n) ≤ Tψ(n) ≤ Tφ(n) + TX (n)

If, for large n, TX±1(n)� Tψ(n),Tφ(n), then Tψ(n) ∼ Tφ(n).

Bernoulli Y-B Integrable Determinantal

Tφ(n) ∼ n

No guarantee Tφ(n) . n4

(obvious)

(but often CFTP!) by divide&conquer

Andrea Sportiello Around the Razumov-Stroganov correspondence



Exact Sampling and bijections

Consider the computational complexity Tφ(n) for sampling configs
of size n from the measure µ(φ)

This concept is “robust” under bijections and combinatorial
rewritings of the problem:
if X : φ→ ψ is a map implemented with complexity TX (n),

Tφ(n)− TX−1(n) ≤ Tψ(n) ≤ Tφ(n) + TX (n)

If, for large n, TX±1(n)� Tψ(n),Tφ(n), then Tψ(n) ∼ Tφ(n).

Bernoulli Y-B Integrable Determinantal

Tφ(n) ∼ n

No guarantee

Tφ(n) . n4

(obvious)

(but often CFTP!)

by divide&conquer

Andrea Sportiello Around the Razumov-Stroganov correspondence



Exact Sampling and bijections

Consider the computational complexity Tφ(n) for sampling configs
of size n from the measure µ(φ)

This concept is “robust” under bijections and combinatorial
rewritings of the problem:
if X : φ→ ψ is a map implemented with complexity TX (n),

Tφ(n)− TX−1(n) ≤ Tψ(n) ≤ Tφ(n) + TX (n)

If, for large n, TX±1(n)� Tψ(n),Tφ(n), then Tψ(n) ∼ Tφ(n).

Bernoulli Y-B Integrable Determinantal

Tφ(n) ∼ n No guarantee Tφ(n) . n4

(obvious) (but often CFTP!) by divide&conquer

Andrea Sportiello Around the Razumov-Stroganov correspondence



Reconstructing the Razumov-Stroganov
correspondence

Andrea Sportiello Around the Razumov-Stroganov correspondence



The 6-Vertex Model

A famous Yang-Baxter–integrable system is the 6-Vertex Model:

l you have a degree-4 graph G,

l variables are edge-orientations,

l weights are on the vertices,

depend on the four arrows,
through spectral parameters
attached to the lines,
and a global parameter q

a = zq − w/q︷ ︸︸ ︷ b = z − w︷ ︸︸ ︷ c = (1/q − q)
√

zw︷ ︸︸ ︷
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The 6-Vertex Model

A famous Yang-Baxter–integrable system is the 6-Vertex Model:

∆ =
a2 + b2 − c2

2ab
=

1

2

(
q +

1

q

)

l you have a degree-4 graph G,

l variables are edge-orientations,

l weights are on the vertices,

depend on the four arrows,
through spectral parameters
attached to the lines,
and a global parameter q

a = zq − w/q︷ ︸︸ ︷ b = z − w︷ ︸︸ ︷ c = (1/q − q)
√

zw︷ ︸︸ ︷
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0

0 0 +1 0 0 0

+1−1 0 +1 0 0

0 +1 0 0 0 0
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

• or • according
to parity;
• • → •−I−•
• • → •−J−•
Forget parity;

0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0

0 0 +1 0 0 0

+1−1 0 +1 0 0

0 +1 0 0 0 0
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

• or • according
to parity;
• • → •−I−•
• • → •−J−•
Forget parity;

6-vertex
config
(DWBC)

0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0
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0 +1 0 0 0 0
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

• or • according
to parity;
• • → •−I−•
• • → •−J−•
Forget parity;

6-vertex
config
(DWBC)

Arrow directions
along rows/cols
get flipped at •, •

0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0

0 0 +1 0 0 0

+1−1 0 +1 0 0

0 +1 0 0 0 0
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Fully-Packed Loops ý 6VM ý Alternating Sign Matrices

FPL
config

• or • according
to parity;
• • → •−I−•
• • → •−J−•
Forget parity;

6-vertex
config
(DWBC)

Arrow directions
along rows/cols
get flipped at •, •

ASM config
0 0 +1 0 0 0

0 +1−1 0 0 +1

0 0 0 0 +1 0

0 0 +1 0 0 0

+1−1 0 +1 0 0

0 +1 0 0 0 0
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6VM ý permutation, height function, monotone triangle
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6VM ý permutation, height function, monotone triangle
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6VM ý permutation, height function, monotone triangle

mark east- and
north-bound

arrows...

...you see a
permutation of

row/column-indices
(crossings count the
inversion number)
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6VM ý permutation, height function, monotone triangle

mark east- and
north-bound

arrows...

...or directed
non-crossing paths,

which are not of
Gessel-Viennot

type...
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6VM ý permutation, height function, monotone triangle

mark south-bound
arrows, and read

column positions...

6
4 8

4 7 8
2 4 7 9

1 4 5 7 9
1 2 4 6 8 9

1 2 4 5 7 8 10
1 2 3 5 6 8 9 10

1 2 3 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

...you get a
monotone triangle,

base = (1, 2, . . . , n),
strict horizontally

and weak elsewhere
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6VM ý permutation, height function, monotone triangle

draw a line for a
coherent flow...

...you get an
Eulerian graph,
regions can be

2-coloured resp.
boundaries
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6VM ý permutation, height function, monotone triangle

draw a line for a
coherent flow...

0 1 2 3 4 5 6 7 8 9 10
9
8
7
6
5
4
3
2
1
012345678910

9
8
7
6
5
4
3
2
1

...they’re also
level lines of a

height function,
with ±1-slope b.c.
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...in summary...

FPL 6-vertex ASM

0 1 2 3 4 5 6 7 8 9 10
9
8
7
6
5
4
3
2
1
012345678910

9
8
7
6
5
4
3
2
1

6
4 8

4 7 8
2 4 7 9

1 4 5 7 9
1 2 4 6 8 9

1 2 4 5 7 8 10
1 2 3 5 6 8 9 10

1 2 3 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

height function quasi-NILP monotone triangle
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Alternating Sign Matrices: some history

Alternating Sign Matrices arose in combinatorics
through the work of Mills, Robbins and Rumsey (’80s). . .
they took the old Dodgson Condensation Algorithm (1866)

det M =
det M1,1 det Mn,n − det M1,n det Mn,1

det M1n,1n

and defined a λ-determinant algorithmically, as

detλM =
detλM1,1detλMn,n − λ detλM1,ndetλMn,1

detλM1n,1n

The result is (surprisingly) a Laurent polynomial in entries mij :
“old” permutations take a λk factor, “new” terms are the
non-trivial ASM, and have also (1− λ)h factors. . .
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...a 3× 3 example:

det M = m11m22m33 + m12m23m31 + m13m21m32

− m11m23m32 − m12m21m33 − m13m22m31

z-w J. Propp: Lambda-determinants and Domino Tilings, 2005
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...a 3× 3 example:

detλM = m11m22m33 + λ2m12m23m31 + λ2m13m21m32

−λm11m23m32 − λm12m21m33 − λ3m13m22m31

−λ(1− λ)
m12m21m23m32

m22

z-w J. Propp: Lambda-determinants and Domino Tilings, 2005
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λ-determinants, years later...

. . . Now this Laurent phenomenon, i.e. the λ-determinant being a
Laurent polynomial in matrix entries, is well understood in the
wider frame of Fomin-Zelevinsky Cluster Algebras

z-w S. Fomin, A. Zelevinsky: The Laurent Phenomenon, 2002

z-w Ph. Di Francesco, R. Kedem: Q-system, Cluster Algebras, Paths

and Total Positivity, 2010

...and the λ-determinant is an integrable DWBC 6-Vertex partition
function (with “electric fields”) at a fermionic point

a = −λ a′ = 1 b = 1 b′ = 1 c = mij
c ′ =

1− λ
mij

a′/a = −λ; b′/b = 1; ∆ =
aa′ + bb′ − cc ′

2
√

aa′bb′
= 0; t =

√
bb′

aa′
=
√
−λ.
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O(n) Dense Loops, Potts Model and Temperley-Lieb
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O(n) Dense Loops, Potts Model and Temperley-Lieb

interlace a “blue” and a “white” square grids of points
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O(n) Dense Loops, Potts Model and Temperley-Lieb

for every square plaquette e, either connect the blue opposite
endpoints (with weight we), or the white ones (with weight 1/we)

= we +
1

we

Andrea Sportiello Around the Razumov-Stroganov correspondence



O(n) Dense Loops, Potts Model and Temperley-Lieb

include the overall “topological” factors: a λ per blue connected
component (i.e., white independent cycle), and a ρ per white
connected component (i.e., blue independent cycle)

in 2D: independent cycle ≡ no chords
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O(n) Dense Loops, Potts Model and Temperley-Lieb

the generating function is the Q-state Potts Model on the square
lattice, with local weights we , and Q = λρ
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O(n) Dense Loops, Potts Model and Temperley-Lieb

Consider now the contours of white/blue domains...
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O(n) Dense Loops, Potts Model and Temperley-Lieb

...they produce a dense packing of loops, for tiling the (45-degree
rotated) square lattice with the two Temperley-Lieb tiles

= we +
1

we
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O(n) Dense Loops, Potts Model and Temperley-Lieb

include a “topological” factor n per cycle
this correspond to the O(n) Dense Loop Model,
for n2 = Q = λρ
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O(n) Dense Loops: height representation

In 2D, we have a 2nd order phase transition only in the range

−2 ≤ n ≤ 2 0 ≤ Q ≤ 4

Set n = 2 cosφ, and make n local, using complex numbers:

2 cosφ = e iφ +e−iφ θ
exp

(
θ

2π iφ
)

h + 1h

height representation −→ Coulomb Gas techniques

z-w B. Nienhuis, Two-dimensional critical phenomena and the

Coulomb Gas, in Phase Transitions and Critical Phenomena vol. 11, 1987
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Loops Ö Oriented Loops Ö Arrows

The formulation as Oriented Loops has simultaneously degrees of
freedom for Temperley-Lieb plaquettes and for arrows

We can now sum over the plaquette d.o.f., and find a
6-Vertex Model

a = 1 a′ = 1 b = 1 b′ = 1 c = c ′ = 2 cos(φ/2)
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Loops Ö Oriented Loops Ö Arrows

The formulation as Oriented Loops has simultaneously degrees of
freedom for Temperley-Lieb plaquettes and for arrows

We can now sum over the plaquette d.o.f., and find a
6-Vertex Model

a = 1 a′ = 1 b = 1 b′ = 1 c = c ′ = 2 cos(φ/2)

n = ω − 2 = −∆/2
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Integer Partitions and Plane Partitions

Take a 2D quadrant N2,
Pile squares (subject to “gravity” along the (1, 1) axis).
That is, produce subsets π ⊂ N2 such that, if (x , y) ∈ π, then
{(x ′, y ′)}1≤x ′≤x

1≤y ′≤y

⊆ π

Call |π| the number of squares in π

Related to partitions of an integer:
|π| = a1 + a2 + . . .+ ak

with a1 ≥ a2 ≥ . . . ≥ ak ,
and thus with a long history
(Euler, Sylvester, Frobenius, Hardy-Ramanujan,...)

Also related to Random Walk on Z

Generating function:
∑
π

q|π| =
∏
j≥1

1

1− qj
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Unrestricted Plane Partitions

Take the 3D octant N3.
Pile cubes (subject to “gravity” along the (1, 1, 1) axis).
That is, produce subsets π ⊂ N3 such that, if (x , y , z) ∈ π, then
{(x ′, y ′, z ′)}1≤x ′≤x

1≤y ′≤y
1≤z ′≤z

⊆ π

Call |π| the number of cubes in π

Generating fn.: (MacMahon, 1912)∑
π

q|π| =
∏
j≥1

1

(1− qj)j

Meaningful for q ∈ C, |q| < 1

Can be sliced into a string of integer partitions,
ordered w.r.t. inclusion
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Plane Partitions in a box

In a compact box, can push q to the “combinatorial point” q = 1

No symmetry:
P.A. MacMahon (1915)

Ma,b,c =
∏

0≤ i<a
0≤ j<b
0≤ k<c

i + j + k + 2

i + j + k + 1
=

∏
0≤ j<c

j!(j + a + b)!

(j + a)!(j + b)!

a

b

c

. . . various symmetry classes. . .

Maximally symmetric (TSSCPP):
G. Andrews (1994)

An =
∏

0≤ j<n

(3j + 1)!

(n + j)!
=

∏
0≤ j<n

j! (3j + 1)!

(2j)!(2j + 1)!

n

Andrea Sportiello Around the Razumov-Stroganov correspondence



Plane Partitions and Fully-Packed Loops

# TSSCPP in a hexagon of side 2n = # FPL in a square of side n

(Proof: Zeilberger 1996, with generating functions and much more;
Kuperberg 1996, specializing results from the Six-vertex model)

We have no bijectional clue of why this is true
We have no TSSCPP candidate for FPL link pattern classes

But a natural τ -enumeration for TSSCPP
is also natural for the O(1) Dense Loop Model
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

Let’s go back to the a× b × c boxed Plane Partition, and see why
lozenge occupations are a determinantal process...

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

Andrea Sportiello Around the Razumov-Stroganov correspondence



Boxed Plane Partitions as Non-Intersecting Lattice Paths

Let’s go back to the a× b × c boxed Plane Partition, and see why
lozenge occupations are a determinantal process...

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

We have c directed paths on the
square lattice, connecting top and
bottom sides, which do not intersect
(NILP)
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

Let’s go back to the a× b × c boxed Plane Partition, and see why
lozenge occupations are a determinantal process...

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

If it weren’t for the non-intersecting
constraint, the number of path con-
figs would just be

(a+b
a

)c
, that is....
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

Let’s go back to the a× b × c boxed Plane Partition, and see why
lozenge occupations are a determinantal process...

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

If it weren’t for the non-intersecting
constraint, the number of path con-
figs would just be

(a+b
a

)c
, that is....

det


(a+b

a

)
0 0 0

0
(a+b

a

)
0 0

0 0
(a+b

a

)
0

0 0 0
(a+b

a

)
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

Let’s go back to the a× b × c boxed Plane Partition, and see why
lozenge occupations are a determinantal process...

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

The non-intersecting constraint,
through a magic cancellation com-
ing from configs with “the wrong
pairing”, leads to the formula...
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a

b

c
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a
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a−1
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a
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Boxed Plane Partitions as Non-Intersecting Lattice Paths

Let’s go back to the a× b × c boxed Plane Partition, and see why
lozenge occupations are a determinantal process...

z-w I. Gessel and G. Viennot, Binomial determinants, paths,

and hook length formulae, 1985

a

b

c

The non-intersecting constraint,
through a magic cancellation com-
ing from configs with “the wrong
pairing”, leads to the formula...

det


(a+b

a

) (a+b
a+1

) (a+b
a+2

) (a+b
a+3

)(a+b
a−1

) (a+b
a

) (a+b
a+1

) (a+b
a+2

)(a+b
a−2

) (a+b
a−1

) (a+b
a

) (a+b
a+1

)(a+b
a−3

) (a+b
a−2

) (a+b
a−1

) (a+b
a

)


Why?
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Passing through gates

¶ · ¸

π(φ) : ¬ ®Consider a collection of gates, of width 1.

We consider configurations φ = (M,X ),
composed of n directed paths,
going through the gates.

A matrix M = {m(j)
i }

encodes the indices of the gates
visited by the paths.

A matrix X = {x (j)
i }

encodes the positions x ∈ [0, 1]
at which the gates are crossed.

Paths go through neighbouring gates,

i.e. m
(j)
i+1 −m

(j)
i ∈ {0, 1}

The measure is dµ(φ) = ε(π(φ))
∏

i ,j dx
(j)
i f (m

(j)
i+1,m

(j)
i )
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Passing through gates

¶ · ¸

π(φ) : ¬ ®

M =

(
0 1 2 3 3
1 1 2 3 3
2 2 2 3 4

)

Consider a collection of gates, of width 1.

We consider configurations φ = (M,X ),
composed of n directed paths,
going through the gates.

A matrix M = {m(j)
i }

encodes the indices of the gates
visited by the paths.

A matrix X = {x (j)
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encodes the positions x ∈ [0, 1]
at which the gates are crossed.

Paths go through neighbouring gates,
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(j)
i+1 −m
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i ∈ {0, 1}

The measure is dµ(φ) = ε(π(φ))
∏

i ,j dx
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¶ · ¸

π(φ) : ¬ ®
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(
0.5 0.8 · · ·
0.2 0.3
· · ·

)
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Passing through gates

¶ · ¸

π(φ) : ¬ ®Recall the form of the measure:
dµ(φ) = ε(π(φ))

∏
i ,j dx

(j)
i f (m

(j)
i+1,m

(j)
i )

Calculate the generating function
Z =

∫P dµ(φ)

The local weights f (..)
depend on M only.
The entries of X
can be exchanged freely.

If in φ a gate is crossed by k paths,
symmetrize the contribution to Z
summing over the k! rewirings

The relative weight from different φ′ only comes
from the factor ε(π(φ′)) in dµ(φ′)
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Passing through gates

¶ · ¸

π(φ) : ¬ ®and gives an overall factor∑
σ∈Sk

ε(σ) =

{
1 k = 0, 1
0 k ≥ 2

Thus, the symmetrized
contribution of φ is zero
if any gate is crossed
two or more times...

now you can integrate over X ,
and get the desired NILP,
i.e., lozenge tilings.

General principle:
± exchange rule → involution lemmas → 0-1 occupations!
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Unrestricted Plane Partitions as an independent process

A picture-reminder of integer partitions and plane partitions...

Integer Partitions (Unrestricted) Plane Partitions

Generating function: Generating function:∑
π

q|π| =
∏
j≥1

1

1− qj

∑
π

q|π| =
∏
j≥1

1

(1− qj)j
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Unrestricted Plane Partitions as an independent process

For integer partitions a = (a1, . . . , ak)
we have a unique decomposition as a = (· · · , k , k , . . . , k︸ ︷︷ ︸

νk

, · · · )

If we consider the measure µ(a) ∝ q|a| =
∏

k(qk)νk ,
we recognize an independent process for the variables νk

Consequences:
Exact Sampling: the νk ’s are independent geometric variables,

νk
d
=

⌊
ln rand(0, 1)

k ln q

⌋
Analyticity of Z : the generating function factorizes,

Z (q) =
∑
a

q|a| =
∏
k

Zk(q) =
∏
k

1

1− qk

the zeroes of Z (q) for q ∈ C are union of the zeroes of the Zk(q)’s
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Unrestricted Plane Partitions as an independent process

This is very much like what happens for the integers:

For integers n ∈ N+ we have a unique prime decomposition
n =

∏
p∈P pνp

If we consider the measure µα(n) ∝ n−α =
∏

p∈P(p−α)νp ,
we recognize an independent process for the exponents νp

Consequences:
Exact Sampling:

ln n
d
=
∑
p∈P

ln p

⌊
− ln rand(0, 1)

α ln p

⌋
Analyticity of Z : Euler product formula for Riemann ζ function

ζ(α) =
∑
n

1

nα
=
∏
p∈P

Zp(α) =
∏
p∈P

1

1− p−α

Andrea Sportiello Around the Razumov-Stroganov correspondence



Unrestricted Plane Partitions as an independent process

For Unrestricted Plane Partitions π, MacMahon formula states

ZPP(q) =
∑
π

q|π| =
∏
j≥1

1

(1− qj)j

Do we have a “unique prime decomposition”

π = p
ν1,1

1,1 p
ν2,1

2,1 p
ν2,2

2,2 p
ν3,1

3,1 p
ν3,2

3,2 p
ν3,3

3,3 · · ·

such that the prime object pk,h has k cubes (thus carries a qk)?
Note: this would imply the formula for ZPP(q).

Answer: in a sense, yes... the “primes” are the “hooks”
z-w Bender and Knuth, Enumeration of Plane Partitions, 1972

z-w I. Pak, Hook length formula and geometric combinatorics, 2001
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The Pak Algorithm

From the independent variables ν(x , y) ≡ νx+y−1,x ,
to h(x , y), the height of the pile of cubes in (x , y)

N operation A: X → X + max(N,E );
W X E

S operation B: X → −X + max(N,E ) + min(S ,W );

To clear (x , y) means to apply A at (x , y), and B at (x + z , y + z)z≥1

For x = (x , y), say x ≺ x′ if x < x ′ and y < y ′

1. the input is your ν = {ν(x , y)}.
2. take S ⊂ N2, closed under ≺, and S ⊇ {(x , y) : ν(x , y) > 0}.
3. clear all (x , y) ∈ S , in a whatever order compatible with ≺

(larger first).

4. the result is your h = {h(x , y)}.
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The Pak Algorithm

N operation A: X → X + max(N,E );
W X E operation B: X → −X + max(N,E ) + min(S ,W );

S C(x , y): apply A at (x , y), and B at (x + z , y + z)z≥1

1. the input is your ν = {ν(x , y)}.
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The Pak Algorithm

N operation A: X → X + max(N,E );
W X E operation B: X → −X + max(N,E ) + min(S ,W );

S C(x , y): apply A at (x , y), and B at (x + z , y + z)z≥1

2. take S ⊂ N2, convex and containing all positive ν’s.
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The Pak Algorithm

N operation A: X → X + max(N,E );
W X E operation B: X → −X + max(N,E ) + min(S ,W );

S C(x , y): apply A at (x , y), and B at (x + z , y + z)z≥1

3. clear all (x , y) ∈ S , larger first, w.r.t. partial ordering.
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The Pak Algorithm

N operation A: X → X + max(N,E );
W X E operation B: X → −X + max(N,E ) + min(S ,W );

S C(x , y): apply A at (x , y), and B at (x + z , y + z)z≥1

4. the result is your h = {h(x , y)}.
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The Pak Algorithm

A bit hard to follow... Let’s see some simpler cases:

1. A single νx ,y > 0 makes a height-ν hook-shaped
height function
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The Pak Algorithm

A bit hard to follow... Let’s see some simpler cases:

2. A chain of νxi ,yi > 0, for (x1, y1) ≺ (x2, y2) ≺ . . .,
leads to the sum of the previous hook-shaped height
functions
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The Pak Algorithm

A bit hard to follow... Let’s see some simpler cases:

2. A chain of νxi ,yi > 0, for (x1, y1) ≺ (x2, y2) ≺ . . .,
leads to the sum of the previous hook-shaped height
functions
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The Pak Algorithm

A bit hard to follow... Let’s see some simpler cases:

3. A diagonal of νxi ,yi > 0, for (xi , yi ) not ordered w.r.t.
≺, makes the hooks to stack one on top of the other,
the higher values of ν are stacked before
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The Pak Algorithm

A bit hard to follow... Let’s see some simpler cases:

3. A diagonal of νxi ,yi > 0, for (xi , yi ) not ordered w.r.t.
≺, makes the hooks to stack one on top of the other,
the higher values of ν are stacked before
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THIS SHOULD BE THE END OF THE FIRST LECTURE...
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Lecture 2
Proof of the Razumov-Stroganov correspondence
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The Razumov-Stroganov correspondence... a reminder

1
2 3 4

5

6

7

8

9

10

11
121314

15

16

17

18

19

20
1

2 3 4
5

6

7

8

9

10

11
121314

15

16

17

18

19

20

1 2 3 4 5
6

7

8

9

10

1112131415
16

17

18

19

20

Ψ̃n(π) : probability of π
in the O(1) Dense Loop Model
in the {1, ..., 2n} × N cylinder

Ψn(π) : probability of π
for FPL with uniform measure

in the n × n square

Razumov-Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Ψ̃n(π) = Ψn(π)
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Dihedral symmetry of FPL

We stated yesterday that the surprising corollary of the
Razumov-Stroganov 2001 conjecture, on dihedral symmetry
of FPL ψn(π) enumerations, was already a theorem by then...

call R the operator that rotates a link pattern by one position

Dihedral symmetry of FPL (proof: Wieland, 2000)

Ψn(π) = Ψn(Rπ)

1 2
3

4

5

67
8

9

10

1 2
3

4

5

67
8

9

10
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Plane Partitions and Fully-Packed Loops

# TSSCPP in a hexagon of side 2n = # FPL in a square of side n

(Proof: Zeilberger 1996, with generating functions and much more;
Kuperberg 1996, specializing results from the Six-vertex model)

We have no bijectional clue of why this is true

z-w D.M. Bressoud and J. Propp, How the Alternating Sign Matrix

Conjecture was solved, (1999)
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FPL in fancy domains...

We considered so far FPL in the n × n square domain, with
alternating boundary conditions,

i.e. consistent fillings of this:

into things like this:

b c

a

b

22 21 20 19 18
17

16

15

14

a

c

b

a

23

24

25

26

1

2

3

4

c

b

c

a

5
6

7
8

9

13

12

11

10
...what about
domains like this?...
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Plane Partitions and Fully-Packed Loops

# TSSCPP in a hexagon of side 2n = # FPL in a square of side n

...maybe generalize Razumov-Stroganov before proving it?...
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Plane Partitions and Fully-Packed Loops

# TSSCPP in a hexagon of side 2n = # FPL in a square of side n

...maybe generalize Razumov-Stroganov before proving it?...
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First part of the proof:
old facts from integrability
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The Temperley-Lieb(1) monoid

Consider the graphical action over link patterns π ∈ LP (n)
(throw away detached cycles)

R :
1 2 3 ··· 2n

ej :
1 2 3 ··· j j+1 ···2n

··· ···

The maps {ej}1≤ j≤2n and R±1 generate a semigroup
Example:

e1(π) :
1 2 3 4 5 6 7 8 9 10

=
1 2 3 4 5 6 7 8 9 10

e2(π) :
1 2 3 4 5 6 7 8 9 10

=
1 2 3 4 5 6 7 8 9 10

Consider the linear space CLP(n), linear span of basis vectors |π〉.
Operators ej and R±1 are linear operators over CLP(n)
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O(1) dense loop model: the Markov Chain over LP (n)

A config with t − 1 layers.

Add a new layer, of i.i.d. tiles,
with prob. p = 1/2...

Some loops get detached from
the boundary. You have a con-
fig with t layers, and a new link
pattern.

Rates Tp=1/2(π, π′)
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A config with t − 1 layers.
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with prob. p = 1/2...

Some loops get detached from
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pattern.
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O(1) dense loop model: an example at work

Now repeat the game...

...but add i.i.d. tiles, with prob.
p → 0 ...

For most of the layers you just
rotate. From time to time, you
have a single non-trivial tile.

Rates Tp→0(π, π′)

Non-trivial layers look like
operators R ej
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Integrability: commutation of Transfer Matrices

Call Tp(π, π′) the matrix of transition rates
(on the space of link patterns CLP(n))

for tiling one layer using probability p.

Trivial: Ψ̃p(π), the steady state, is the unique eigenstate of
Tp(π, π′) with all positive entries

A magic application of Yang-Baxter: [Tp,Tp′ ] = 0

Consequence: Ψ̃p(π) ≡ Ψ̃p′(π) and we can get Ψ̃(π) := Ψ̃1/2(π)
from the study of the easier Tp→0(π, π′)

Call Hn =
2n∑
i=1

(ei − 1) and |s̃n〉 =
∑

π Ψ̃(π)|π〉.

Realize R−1Tp = I + pH +O(p2). We thus have

Hn|s̃n〉 = 0
linear-algebra characterization of Ψ̃(π)
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The Razumov-Stroganov correspondence: reloaded
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|s̃n〉 :=
∑

π∈LP(n)

Ψ̃n(π)|π〉

Hn|s̃n〉 = 0

|sn〉 =
∑

φ∈Fpl (n)

|π(φ)〉

Fpl (n) = {FPL in n× n square }

Razumov-Stroganov correspondence
(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Hn|sn〉 = 0
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(conjecture: Razumov Stroganov, 2001; proof: AS Cantini, 2010)

Hn|sn〉 = 0
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Second part of the proof:
new facts from gyration

Andrea Sportiello Around the Razumov-Stroganov correspondence



Wieland gyration: how it works
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Wieland gyration: how it works
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exchanging black and white

Andrea Sportiello Around the Razumov-Stroganov correspondence



Wieland gyration: how it works
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Wieland gyration: how it works
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Wieland gyration: how it works
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Wieland gyration: how it works
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Wieland gyration: how it works
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Wieland gyration: how it works
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Link pattern π... ...and R π...
...and, on the conjugate
of the intermediate step...
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Wieland gyration: how it works
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An unnoticed lemma on gyration orbits

Call O(φ) the orbit of φ under Wieland gyration.
For a face α, say

Nα(φ) =

{ +1 if you have

−1 if you have
0 otherwise

A lemma on Nα
∀ FPL φ, face α

∑
φ′∈O(φ)

Nα(φ′) = 0
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Wieland gyration: why it works

Easier to visualize the ⇔ exchange on the few , faces...
...but better use the conjugate config at intermediate step,

and think that , are the only faces fixed in the transformation
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This inverts degblack(v)↔ degwhite(v),
and preserves connectivity of open-path endpoints
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Wieland gyration: why it works

Easier to visualize the ⇔ exchange on the few , faces...
...but better use the conjugate config at intermediate step,

and think that , are the only faces fixed in the transformation

This inverts degblack(v)↔ degwhite(v),
and preserves connectivity of open-path endpoints

Andrea Sportiello Around the Razumov-Stroganov correspondence



Wieland gyration: why it works

Easier to visualize the ⇔ exchange on the few , faces...
...but better use the conjugate config at intermediate step,

and think that , are the only faces fixed in the transformation

This inverts degblack(v)↔ degwhite(v),
and preserves connectivity of open-path endpoints
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Wieland gyration: why it works

We have seen why Wieland gyration works “in the bulk”: now we
see how it works “globally”:

A graph with vertices
of degree 2 and 4...
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Wieland gyration: why it works

We have seen why Wieland gyration works “in the bulk”: now we
see how it works “globally”:

...a decomposition of
the edge-set into cycles
` ≤ 4

Andrea Sportiello Around the Razumov-Stroganov correspondence



Wieland gyration: why it works

We have seen why Wieland gyration works “in the bulk”: now we
see how it works “globally”:

A FPL configuration
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Wieland gyration: why it works

We have seen why Wieland gyration works “in the bulk”: now we
see how it works “globally”:

Invert colouration in all
faces except and :
same link pattern for
open paths (connecting
red bullets)
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Wieland gyration: why it works

Andrea Sportiello Around the Razumov-Stroganov correspondence



Wieland gyration: where it works

So, the trick is:
• invert degblack(v)↔ degwhite(v)
• preserve connectivity of open paths

• Works with the Wieland recipe, on faces ` = 4
• Works with just complementation, on faces ` = 1, 2, 3
• Can’t work at all on faces ` ≥ 5
• At boundaries, pair external legs to produce triangles,

and you’re within the framework above... figs in next slide!

A single move exists on plenty of graphs...
but rotation comes from two moves!

If you want two, you get a very strict classification theorem
(essentially, convex planar quadrangulations, and up to 4 triangles)

...however, many more domains than just n × n squares!
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... how do we recover the setting above
with vertices of degree 2 and 4?
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A configuration on (Λ, τ+)
(i.e., first leg is black)
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... how do we recover the setting above
with vertices of degree 2 and 4?

The construction of G+,
pairing (2j − 1, 2j) legs
(plaquettes are in yellow)

mark in red and
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... how do we recover the setting above
with vertices of degree 2 and 4?

The result of map H+
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... how do we recover the setting above
with vertices of degree 2 and 4?
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Split auxiliary vertices
to recover the (Λ, τ−)
geometry
(i.e., first leg is white)
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... how do we recover the setting above
with vertices of degree 2 and 4?

The construction of G−,
pairing (2j , 2j + 1) legs

mark in blue and
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... how do we recover the setting above
with vertices of degree 2 and 4?

The result of map H−
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Wieland gyration: where it works

...in the original square domain for FPL we have “external legs”
(i.e., vertices of degree 1)... how do we recover the setting above
with vertices of degree 2 and 4?
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Split auxiliary vertices
to recover the (Λ, τ+)
original geometry
(with a rotated
link pattern). . .
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Wieland gyration: where it works

An example of our “convex planar quadrangulations, and up to 4
triangles” general domains...
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(bottom line: an elementary generalization of Wieland strategy
gives rotational symmetry for FPL enumerations above)
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The Razumov-Stroganov correspondence: generalised
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|s̃n〉 :=
∑

π∈LP(n)

Ψ̃n(π)|π〉

Hn|s̃n〉 = 0

|sΛ〉 =
∑

φ∈Fpl (Λ)

|π(φ)〉

Fpl (Λ) = {FPL in domain Λ}

Razumov-Stroganov correspondence on Wieland domains
(proof: AS Cantini, 2010)

Ψ̃n(π) = ΨΛ(π) i.e. Hn|sΛ〉 = 0
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The Razumov-Stroganov correspondence: generalised
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|s̃n〉 :=
∑

π∈LP(n)

Ψ̃n(π)|π〉

Hn|s̃n〉 = 0

|sΛ〉 =
∑

φ∈Fpl (Λ)

|π(φ)〉

Fpl (Λ) = {FPL in domain Λ}

Razumov-Stroganov correspondence on Wieland domains
(proof: AS Cantini, 2010)

Ψ̃n(π) = ΨΛ(π) i.e. Hn|sΛ〉 = 0
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Yet one word on gyration... the boundary conditions

We have seen how to generalise the domain,
using black/white alternating boundary conditions

What does it happen if we generalise on boundary conditions?

Pairing consecutive legs with the same colour produces arcs,
and “loses link-pattern information”: gyration holds for
linear combinations of Ψ(π), instead of component-wise.

These linear combinations, induced by arcs, are well-described by
Temperley-Lieb operators.

This fact suggested us that gyration on domains
with a “defect” in the boundary conditions was related to
Razumov-Stroganov (in its “linear-algebra formulation”...)
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An example with generic boundary conditions

Example: the state |sc
j 〉 (that we define in the next slide) satisfies

(R ej−1 − ej)|sc
j 〉 = 0
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An example with generic boundary conditions

Example: the state |sc
j 〉 (that we define in the next slide) satisfies

(R ej−1 − ej)|sc
j 〉 = 0
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The structure of the proof

Rewrite the starting H|s〉 = 0 as S(ej − 1)|s〉 = 0
S := 1 + R + · · ·+ R2n−1

Write “|s〉 = |sa
j 〉+ |sb

j 〉+ |sc
j 〉”,

i.e., marginalise w.r.t. a single matrix entry (on the boundary).

|s〉 = = + +

= + +

= |sa
j 〉 + |sb

j 〉 + |sc
j 〉
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The structure of the proof

Combining recursion relations with the new gyration relations gives

S(ej − 1)|sa
j 〉 = S(ej+1 − 1)(|sa

j+1〉+ |sc
j+1〉)

S(ej − 1)|sb
j 〉 = S(ej−1 − 1)(|sb

j−1〉+ |sc
j−1〉)

Recursion end up at the corners of the domain, and you get

H|s〉 =
∑

j

S(ej − 1)|sc
j 〉

Note: we have “(ejj − 1)|sc
jj 〉” terms, not “(ejj − 1)|sc

kk〉”
and a double sum, as in the näıve approach!

The summands are separately zero, as seen using the lemma on Nα
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What is left to do

• We can deal with ASM, HTASM, QTASM (also refined),
all special cases of our generalization

• We get as corollary the translation of integrability results
from the spin chain to ASM, and vice versa

• Yet another corollary is the generalization of the “Alternating
Sign Matrix conjecture” to the whole family of Wieland domains

(at least for what concerns divisibility)
...but we miss:

• The refined conjecture for the monodromy matrix by
Ph. Di Francesco in cond-mat/0407477 (JSTAT 2004, P08009)

• VSASM – USASM – UUSASM – OSASM, refined with
boundary parameters, and Razumov-Stroganov correspondence

for the closed spin chain and symplectic characters
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An example of our generalized ASM–TSSCPP Theorem

From Zeilberger / Kuperberg, we know that # TSSCPP of size 2n
equals An, i.e. # FPL of size n.

From Razumov-Stroganov on a
domain Λ (with 2n black legs),
we know that

AΛ = AnK (Λ) K (Λ) ∈ N

These numbers K (Λ) are to be
determined. We now do this for
the “triangoloid”, proving

Aa,b,c = Aa+b+cMa,b,c

b c
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(where Ma,b,c is the number of Plane Partitions in the a× b × c
box, MacMahon 1915 formula)
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THIS SHOULD BE THE END OF THE SECOND LECTURE...
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Lecture 3
Asymptotics of large Alternating Sign Matrices
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Reminder of local bijections for ASM

FPL 6-vertex ASM

0 1 2 3 4 5 6 7 8 9 10
9
8
7
6
5
4
3
2
1
012345678910

9
8
7
6
5
4
3
2
1

6
4 8

4 7 8
2 4 7 9

1 4 5 7 9
1 2 4 6 8 9

1 2 4 5 7 8 10
1 2 3 5 6 8 9 10

1 2 3 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

height function quasi-NILP monotone triangle
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Asymptotic shapes: the problem

In large Alternating Sign Matrices you see the emergence
of frozen regions and limit shapes...

The analytic determination of these curves is our subject today.
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Domino Tilings of the Aztec Diamond ý ASM at ω = 2

weighted “Domino Tilings of the Aztec Diamond”
(a planar-graph dimer-covering problem,

thus a determinantal problem...)

w sw
x ,y w se

x ,y

wnw
x ,y wne

x ,y

x : 1 2 3 · · ·

1

2

3

...

y :
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Domino Tilings of the Aztec Diamond ý ASM at ω = 2

Recall the 6-Vertex Model weights...

a(x , y) a′(x , y) b(x , y) b′(x , y) c(x , y) c ′(x , y)

...and now consider the following map: (note: ∆ = 0)

w sw
x ,y wne

x ,y w se
x ,y wnw

x ,y 1 w se
x ,y wnw

x ,y + w sw
x ,y wne

x ,y

a a′ b b′ c c ′
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...they’re also determinantal a’la Gessel-Viennot...

The NILP construction for Domino Tilings of the Aztec Diamond
is similar to the one for Lozenge Tilings on the triangular lattice,
with Motzkin paths ({±1, 0}) instead of ordinary {±1} lattice paths
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...they’re also determinantal a’la Gessel-Viennot...

The NILP construction for Domino Tilings of the Aztec Diamond
is similar to the one for Lozenge Tilings on the triangular lattice,
with Motzkin paths ({±1, 0}) instead of ordinary {±1} lattice paths
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Domino Tilings of the Aztec Diamond: a bigger picture

Let’s have a look at a bigger
picture... (here L = 64)

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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Domino Tilings of the Aztec Diamond: a bigger picture

The use of colours allow to visu-
alize the boundary of the frozen
regions, as well as the NILP’s...

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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Domino Tilings of the Aztec Diamond: a bigger picture

...believe it or not, the limit
shape, called Arctic curve, is a
circle.

picture taken from:

z-w H. Cohn, N. Elkies and J. Propp,
Local statistics for random domino
tilings of the Aztec diamond, 1995
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Arctic Circles in dimer-covering models...

A similar feature was also known to occur in lozenge tilings of a
regular hexagon (the MacMahon n × n × n “boxed” problem)
z-w H. Cohn, M. Larsen and J. Propp, The Shape of a Typical Boxed

Plane Partition, 1998
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dimer coverings of periodic planar bipartite graphs

So, we find similar features in dimer coverings of periodic planar
bipartite graphs, for different unit tiles. A general unified theory
indeed exists:

z-w R. Kenyon, A. Okounkov, S. Sheffield, Dimers and Amoebae, 2003

However, in this class of models, lozenge tilings are by far the most
studied case, even more than the square lattice.

This because the spectral curve associated to this lattice (sic!) is
the simplest possible: P(z ,w) = z + w − 1.

This study culminates into

z-w R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers

equation, 2005
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Semi-strict Gelfand Patterns

...but let’s start with something more classic...

z-w H. Cohn, M. Larsen and J. Propp, The Shape of a Typical Boxed

Plane Partition, 1998

Partial lozenge tilings (with a given string of defects on one
boundary) are related to Semi-strict Gelfand Patterns (a version of
monotone-triangle–like things, we already encountered for ASM’s).

SSGP are counted by a Z-valued Vandermonde:

#

{ x1 x2 · · · xn

n

}
=

∏
1≤i<j≤n

xj − xi

j − i

z-w I.M. Gelfand and M.L. Tsetlin, Finite-dimensional representations of

the group of unimodular matrices, 1950
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A couple of remarks...

Remark 1: Interestingly, Semi-strict Gelfand Patterns
“form bases of representations of SL(n), and one can deduce the
Gelfand-Tsetlin formula from this fact using the Weyl dimension
formula” (but also derive it combinatorially).

Remark 2: The Gelfand-Tsetlin for-
mula also counts the very same mono-
tone triangles T for ASM’s, but with a
factor 2−r(T ), where r(T ) is the num-
ber of entries of T that occur also
in the preceding row. Thus, ASM at
ω = 2, the determinantal point.

6
4 8

4 7 8
2 4 7 9

1 4 5 7 9
1 2 4 6 8 9

1 2 4 5 7 8 10
1 2 3 5 6 8 9 10

1 2 3 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

z-w N. Elkies, G. Kuperberg, M. Larsen and J. Propp, Alternating sign

matrices and domino tilings, 1991
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A too-short introduction to Kenyon-Okounkov Theory

z-w R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers

equation, 2005

How do you get the arctic curve for lozenge tilings in a fancy
domain?

1. Think to your lozenge tiling as a plane partition, for which you
want to determine the asymptotics of the height function h(x , y).
Here (x , y) are coordinates in the plane orthogonal to (1, 1, 1).
Call z and w the components of ∇h.

2. Recall that the spectral curve P(z ,w) pertinent to lozenges is
P(z ,w) = z + w − 1. It is a Harnack curve in general.
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z-w R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers

equation, 2005

How do you get the arctic curve for lozenge tilings in a fancy
domain?

1. Think to your lozenge tiling as a plane partition, for which you
want to determine the asymptotics of the height function h(x , y).
Here (x , y) are coordinates in the plane orthogonal to (1, 1, 1).
Call z and w the components of ∇h.
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A too-short introduction to Kenyon-Okounkov Theory

3. Variational formulation Ü Euler-Lagrange eqsuations
Ü complex inviscid Burgers eq. Ü method of complex characteristics
Ü find an analytic function Q(z ,w) (algebraic for slope-kπ/3
domains) such that

∇h(x , y) =

(
z(x , y)
w(x , y)

)
↔

{
P(z ,w) = 0

Q(z ,w) =
(
xz ∂

∂z + yw ∂
∂w

)
P(z ,w)

4. The arctic curve is the locus of double roots. Having P, Q
algebraic, you get an algebraic R(x , y) = 0 from the discriminant.

5. Isolated higher order roots show up as cusps in the arctic curve.
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An example: the cardioid
for the hexagonal domain
with a frozen corner

picture taken from:
z-w R. Kenyon, A. Okounkov,

Limit shapes and the complex
Burgers equation, 2005
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An example: the cardioid
for the hexagonal domain
with a frozen corner

picture taken from:
z-w R. Kenyon, A. Okounkov,

Limit shapes and the complex
Burgers equation, 2005
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...and Yang-Baxter–integrable systems?...

All of this is beautiful, but planar dimer coverings are determinantal...

As we know, in various cases (in-
cluded ω-enumerations of ASM)
they are a special point on a
YB-integrable line (ω = 2 for
ASM/domino tilings of the Aztec
Diamond)

Numerical simulations (thanks
CFTP!) seem to show that the
arctic curve varies smoothly with
ω, at least on some interval...

ω = 1...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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...and Yang-Baxter–integrable systems?...

All of this is beautiful, but planar dimer coverings are determinantal...

As we know, in various cases (in-
cluded ω-enumerations of ASM)
they are a special point on a
YB-integrable line (ω = 2 for
ASM/domino tilings of the Aztec
Diamond)

Numerical simulations (thanks
CFTP!) seem to show that the
arctic curve varies smoothly with
ω, at least on some interval...

ω = 32...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland

Andrea Sportiello Around the Razumov-Stroganov correspondence



...and Yang-Baxter–integrable systems?...

All of this is beautiful, but planar dimer coverings are determinantal...

As we know, in various cases (in-
cluded ω-enumerations of ASM)
they are a special point on a
YB-integrable line (ω = 2 for
ASM/domino tilings of the Aztec
Diamond)

Numerical simulations (thanks
CFTP!) seem to show that the
arctic curve varies smoothly with
ω, at least on some interval...

ω = 52...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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...and Yang-Baxter–integrable systems?...

All of this is beautiful, but planar dimer coverings are determinantal...

As we know, in various cases (in-
cluded ω-enumerations of ASM)
they are a special point on a
YB-integrable line (ω = 2 for
ASM/domino tilings of the Aztec
Diamond)

Numerical simulations (thanks
CFTP!) seem to show that the
arctic curve varies smoothly with
ω, at least on some interval...

ω = 72...but what is know theoretically?

from this point on, ASM pictures are produced with C code based
on a version kindly provided by Ben Wieland
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The Colomo-Pronko formula

...but what is know theoretically?

...this was almost nothing up to recent times...
Then Colomo and Pronko came with a series of papers in which:

I they found explicitly the Arctic Curve for ω = 1 ASM;

I they found a formula for the Arctic Curve at generic ω, in
terms of the refined enumerations Aω(n; r);

I they found the necessary asymptotic properties of Aω(n; r)
using methods of Random Matrices, first for ω ≤ 4, and then,
together with P. Zinn-Justin, also for ω > 4 (where the
corresponding 6-Vertex Model is “antiferromagnetic”);

z-w F. Colomo and A.G. Pronko,

The arctic circle revisited, 2007
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The Colomo-Pronko formula

...but what is know theoretically?

...this was almost nothing up to recent times...
Then Colomo and Pronko came with a series of papers in which:

I they found explicitly the Arctic Curve for ω = 1 ASM;

I they found a formula for the Arctic Curve at generic ω, in
terms of the refined enumerations Aω(n; r);

I they found the necessary asymptotic properties of Aω(n; r)
using methods of Random Matrices, first for ω ≤ 4, and then,
together with P. Zinn-Justin, also for ω > 4 (where the
corresponding 6-Vertex Model is “antiferromagnetic”);

z-w F. Colomo and A.G. Pronko,

The limit shape of large alternating sign matrices, 2008
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The Colomo-Pronko formula

...but what is know theoretically?

...this was almost nothing up to recent times...
Then Colomo and Pronko came with a series of papers in which:

I they found explicitly the Arctic Curve for ω = 1 ASM;

I they found a formula for the Arctic Curve at generic ω, in
terms of the refined enumerations Aω(n; r);

I they found the necessary asymptotic properties of Aω(n; r)
using methods of Random Matrices, first for ω ≤ 4, and then,
together with P. Zinn-Justin, also for ω > 4 (where the
corresponding 6-Vertex Model is “antiferromagnetic”);

z-w F. Colomo and A.G. Pronko,

The arctic curve of the domain-wall six-vertex model, 2009
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The Colomo-Pronko formula

...but what is know theoretically?

...this was almost nothing up to recent times...
Then Colomo and Pronko came with a series of papers in which:

I they found explicitly the Arctic Curve for ω = 1 ASM;

I they found a formula for the Arctic Curve at generic ω, in
terms of the refined enumerations Aω(n; r);

I they found the necessary asymptotic properties of Aω(n; r)
using methods of Random Matrices, first for ω ≤ 4, and then,
together with P. Zinn-Justin, also for ω > 4 (where the
corresponding 6-Vertex Model is “antiferromagnetic”);

z-w F. Colomo, A.G. Pronko and P. Zinn-Justin, The arctic curve

of the domain-wall six-vertex model in its anti-ferroelectric regime, 2010
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The Colomo-Pronko formula: ω = 1

Picture and formula for ω = 1:

The South-West arc satisfies
x(1− x) + y(1− y) + xy = 1/4
x , y ∈ [0, 1/2]

(just a “+xy” modification
w.r.t. a circle)

Andrea Sportiello Around the Razumov-Stroganov correspondence



The Colomo-Pronko formula: ω = 1

Picture and formula for ω = 1:

The South-West arc satisfies
x(1− x) + y(1− y) + xy = 1/4
x , y ∈ [0, 1/2]

(just a “+xy” modification
w.r.t. a circle)

Andrea Sportiello Around the Razumov-Stroganov correspondence



The Colomo-Pronko formula: generic ω

For ω-weighted ASM on the square, the arctic curve C(x , y), in
parametric form x = x(z), y = y(z) on the interval z ∈ [1,+∞),
is the solution of the system of equations

F (z ; x , y) = 0 ;
∂

∂z
F (z ; x , y) = 0 .

The function F (z ; x , y), that depends on x and y linearly, is

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y

+ lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

C(x , y) is algebraic only at discrete special values of ω
(including 0, 1, 2, 3).
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Refined enumeration of ASM

We call Aω(n) the counting polynomial associated to ω-weighted
ASM of size n:

Aω(n) =
∑

A∈An

ω#{−1 in A}

Thus A1(n) =
∏

0≤j≤n−1
(3j+1)!
(n+j)! , the total number of size-n ASM

(after Zeilberger and Kuperberg...)

Call Aω(n, r) the counting polynomial
associated to ω-weighted ASM of size
n, such that the only +1 in the bottom
row is at the r -th column
(nice formula at ω = 1, proven again
by Zeilberger, in 1996...)

n = 10, r = 4

Andrea Sportiello Around the Razumov-Stroganov correspondence



How to derive this?

Call hn(z) =
∑n

r=1 Aω(n, r)z r−1 (to conform to integrabilists’)

Use fine techniques from Integrable Systems, in order to derive the
Emptiness Formation Probability, EFP(n; r , s): the probability that
in the top-left s × r rectangle of the n × n ASM there are no ±1
elements.

Clearly, A(n; r) = EFP(n; r − 1, 1)− EFP(n; r , 1).
But for s ≥ 2 we do not see any simple property...

...however, integrability (at spectral parameters turned on) shows
that also EFP(n; r , s) is related to hn(z),
through a determinantal formula.

For (r , s) crossing the Arctic Curve, EFP(n; r , s) shows a 0-1
threshold transition, that you can study through saddle-point
methods, helped by analogy with a Random Matrix Model.
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How to derive this?

....in a few words, something very complicated already for the
square.

And something relying deeply on “miracles” of integrability
methods, that have no guarantee to occur in other domains.

Furthermore, the curve is not C∞ at the tangence points on the
boundary of the domain, already for ω = 1, and is not even
piecewise algebraic at generic ω...

...how can we hope for an analogue of Kenyon-Okounkov Theory
on the whole YB-integrable line for ω?

Staying less ambitious, can we determine in ASM something like
the KO cardioid for the hexagon with a frozen corner?
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Emptiness Formation: typical configurations

...indeed, a typical configuration in the ensemble pertinent to
EFP(n; r , s), for (r , s) inside the arctic curve, shows the emergence
of a new cardioid-like arctic curve (just like in Kenyon-Okounkov)

here n = 200, (r , s) = (80, 90)
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A reminder on the basic theory of Plane Curves

z-w J. Dennis Lawrence, A catalog of special plane curves, Dover, New

York, 1972

A curve C will be represented either by the Cartesian equation
A(x , y) = 0, or the parametric equations x = f (t), y = g(t).
It is constituted by the concatenation of a finite number of arcs.
An arc is a portion of the curve for which a “smooth” parametric
presentation exists.

A curve is algebraic if the defining Cartesian equation A(x , y) = 0
is algebraic, otherwise it is trascendental.

A double point s.t. the two arcs passing through P have the same
tangent is a cusp. A cusp is of the first kind if P is an endpoint of
both arcs, and there is an arc of C on each side of the tangent, and
of the second kind if P is an endpoint of both arcs, and the two
arcs lie on the same side of the tangent,
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A reminder on the basic theory of Plane Curves

The envelope E of a one-parameter family of curves {Cz}z∈I is the
curve, minimal under inclusion, that is tangent to every curve of
the family.

If the equation of the family {Cz} is given in Cartesian coordinates
by U(z ; x , y) = 0, the non-singular points (x , y) of the envelope E
are the solutions of the system of equations

U(z ; x , y) = 0 ;
d
dz

U(z ; x , y) = 0 .

We call geometric caustic the envelope of a family of straight lines.
In this case U is linear in x and y :

U(z ; x , y) = x A(z) + y B(z) + C (z)
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A reminder on the basic theory of Plane Curves

Caustics in optics are a special case of geometric caustics, in which
the family of straight lines can be interpreted as the family of
reflections of a beam of parallel rays from a curved mirror.
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A reminder on the basic theory of Plane Curves

Caustics in optics are a special case of geometric caustics, in which
the family of straight lines can be interpreted as the family of
reflections of a beam of parallel rays from a curved mirror.
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A reminder on the basic theory of Plane Curves

Caustics in optics are a special case of geometric caustics, in which
the family of straight lines can be interpreted as the family of
reflections of a beam of parallel rays from a curved mirror.
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The Colomo-Pronko formula at generic ω – reloaded

For ω-weighted ASM on the square, the arctic curve C(x , y), in
parametric form x = x(z), y = y(z) on the interval z ∈ [1,+∞),
is the solution of the system of equations

F (z ; x , y) = 0 ;
∂

∂z
F (z ; x , y) = 0 .

The function F (z ; x , y), that depends on x and y linearly, is

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y

+ lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

C(x , y) is algebraic only at discrete special values of ω
(including 0, 1, 2, 3).

But this has not been derived geometrically!
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The Colomo-Pronko formula at generic ω – reloaded

For ω-weighted ASM on the square, the arctic curve C(x , y) is the
geometric caustic of the family of lines, for z in the interval
z ∈ [1,+∞),

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y

+ lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

But this has not been derived geometrically!
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The Colomo-Pronko formula at generic ω – reloaded

For ω-weighted ASM on the square, the arctic curve C(x , y) is the
geometric caustic of the family of lines, for z in the interval
z ∈ [1,+∞),

F (z ; x , y) =
1

z
(x − 1) +

ω

(z − 1)(z − 1 + ω)
y

+ lim
n→∞

1

n

∂

∂z
ln

(
n∑

r=1

Aω(n, r)z r−1

)
.

But this has not been derived geometrically!
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, no frozen region
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (90, 80)
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (99, 88)
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (104, 92)
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (106, 93)
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A quest for a new strategy...

So we would like a more geo-
metric strategy for attacking
this sort of questions...

Hopefully, with some luck,
this could also be more gener-
ally applicable to domains of
different shape...

Let’s have a deeper look to
the domain with a frozen
rectangle...

n = 200, (r , s) = (106, 94)
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The structure of a typical refined ASM

...so this teaches us how does
it look like a typical large
ASM, of size n refined at r ...

It must be like a typical ASM,
plus a straight line connecting
(0, r) to the Arctic Curve, and
tangent to the Arctic Curve

Indeed, this is what you see in
a simulation...

n = 300, r = 250
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What about generic domains?

...our strategy has chances of working in general circumstances...

n = 300, (a, b, . . .) = (60, 50, 70, 60, 100, 70, 60, 50)
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What about generic domains?

...our strategy has chances of working in general circumstances...

a
b

c

d
e

f

g
h

n = 300, (a, b, . . .) = (60, 50, 70, 60, 100, 70, 60, 50)
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The strategy: trying a precise statement

κ2 `2

κ1

r

`1

Principle 1: Geometric Tangent Method

Call Λ the domain shape, and C the corresponding Arctic Curve.

In the large n limit, a typical refined ASM on Λ, for having a +1
at position r along `1, shows the Arctic Curve C of unrefined
ASM, plus a straight path from r to the tangent point on C.
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The strategy: trying a precise statement

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Call Λ the domain shape, and C the corresponding Arctic Curve.

Call Λ′ the domain Λ minus one row/column along the sides
containing κ1 and κ2
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The strategy: trying a precise statement

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Call A(Λ) the number of ASM in Λ, and A(1,2)(Λ, r) the refined
ASM enumerations along `1,2.

Say X (n) ∼ Y (n) if limn→∞
1
n ln Y

X ∼ ln n.
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The strategy: trying a precise statement

κ2 `2

κ1

r

`1

Principle 2: Entropic Tangent Method

Then

A(1)(Λ, r)A(2)(Λ, s) ∼ A(Λ)A(Λ′)

(
r + s

r

)
If and only if the line

(
(0, r), (s, 0)

)
is tangent to C.
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Does this really work?

¶ Yes, both methods, for the Arctic Circle in lozenge tilings of
the regular hexagon
(hint: use the formula for Semi-strict Gelfand Patterns to de-
duce all the refined enumerations you may need)
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Does this really work?

¶ Yes, both methods, for the Arctic Circle in lozenge tilings of
the regular hexagon
(hint: use the formula for Semi-strict Gelfand Patterns to de-
duce all the refined enumerations you may need)

· Yes, both methods, for the Colomo-Pronko ω = 1 Arctic
Curve
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Does this really work?

¶ Yes, both methods, for the Arctic Circle in lozenge tilings of
the regular hexagon
(hint: use the formula for Semi-strict Gelfand Patterns to de-
duce all the refined enumerations you may need)

· Yes, both methods, for the Colomo-Pronko ω = 1 Arctic
Curve

¸ Yes, the “geometric method”, for deriving the Colomo-
Pronko “caustic theorem” at generic ω (as it is harder, I did
not try the entropic method)
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Well ok... what about some new result?

The severe bottleneck for obtaining arctic curves in new geometries
is the absence of exact formulas for the refined enumerations...
...but we have a nice candidate, our favourite triangoloid domain!

b c

a

b

22 21 20 19 18
17

16

15

14

a

c

b

a

23
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25

26

1

2

3

4

c

b

c

a

5
6

7
8

9

13

12

11

10

Recall from yesterday:
Aa,b,c = Aa+b+cMa,b,c

...but more is true!
Call n = a + b + c,
A([a, b, c], r) =

∑
r ′ A(n, r − r ′)Ma,b,c(r ′)
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The arctic curve for the triangoloid

Very easy to find the position of tangence points κi .
Then, finding the arc between two of these points is harder but
feasible (through the entropic method)... finally you get a
parametric expression (here a = 1− b − c , p ∈ [0, 1], q = 1− p)

x(b, c , p) =
3− c

2
− 2− p

2
√

1− pq

− (1− c)(1− (pb + qc))− 2pbc

2
√

(pb − qc)2 − 2(pb + qc) + 1
;

y(b, c , p) = x(c , b, 1− p) .
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Analytic continuation

The surprises are not over...
Just like the arc of the Colomo-Pronko Arctic Curve can be
completed to a certain ellipse...

x(1− x) + y(1− y) + xy = 1/4

...we can try to continue an-
alytically our curve. We get
a closed curve composed of
6 arcs, for the intervals p ∈
(−∞, 0], [0, 1], [1,+∞), and a
±-choice for square roots.

This curve is framed into a
hexagonal box, with side-slopes
0, 1,∞ and nice rational tan-
gence points.
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Analytic continuation

The surprises are not over...
Just like the arc of the Colomo-Pronko Arctic Curve can be
completed to a certain ellipse...

...we can try to continue an-
alytically our curve. We get
a closed curve composed of
6 arcs, for the intervals p ∈
(−∞, 0], [0, 1], [1,+∞), and a
±-choice for square roots.

This curve is framed into a
hexagonal box, with side-slopes
0, 1,∞ and nice rational tan-
gence points.
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The shear phenomenon

Fact:
Consider a given arc of the triangoloid arctic curve C
(the one “near vertex A”)

The two other arcs of C (the ones “near vertices B and C ”)
do coincide with the 45-degree shear of the neighbouring arcs in
the boxed analytic continuation of the first arc.

This fact is of course true also in Colomo-Pronko ellipse, but here
it sounds much more striking: we have two free parameters
(b/a and c/a), and the single arcs do not have a polynomial
Cartesian representation

It is believable that this points towards the universality of the shear
phenomenon, for any tangent point of the arctic curve C on its
boxing domain Λ, for ω = 1 ASM.
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The shear phenomenon

x(b, c, p) =
3− c

2
− 2− p

2
√

1− pq
− (1− c)(1− (pb + qc))− 2pbc

2
√

(pb − qc)2 − 2(pb + qc) + 1
;

y(b, c, p) = x(c , b, 1− p) .
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THIS SHOULD BE THE END OF THE THIRD LECTURE...
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