Regular colored graphs of positive degree

Razvan Gurau and Gilles Schaeffer
Centre de Physique Théorique and Laboratoire d'Informatique de l'École Polytechnique, CNRS

Journée Cartes au LIPN, novembre 2013

Regular colored graphs, why?

One of the motivation for having des journées Cartes is that maps appear to be a valuable discrete model of quantum gravity in 2d.

Regular colored graphs, why?

One of the motivation for having des journées Cartes is that maps appear to be a valuable discrete model of quantum gravity in 2d.

What about higher dimensions? Several concurrent approaches... none of which is considered as completely satisfying

Regular colored graphs, why?

One of the motivation for having des journées Cartes is that maps appear to be a valuable discrete model of quantum gravity in 2d.

What about higher dimensions? Several concurrent approaches... none of which is considered as completely satisfying

Two " discrete \rightarrow continuum" approaches for $D=3$ (I know of):

- Lorenzian geometries, $D=2+1$: layers of triangulations?

Experimental results with random sampling, no exact results (?)

- Euclidean geometries, $D=3$: arbitrary pure simplicial complexes? Partial results following the Tensor Track (surveyⓇivasseau)

To learn more: workshop Quantum gravity in Paris-Orsay in march.

Regular colored graphs, why?

In general, maps with genus g can be obtained as
terms in the topological expansion of $\log \int f$ (hermician_matrices)

Regular colored graphs, why?

In general, maps with genus g can be obtained as terms in the topological expansion of $\log \int f$ (hermician_matrices)
$\frac{1}{N^{2}} \log \int f($ matrix of $\operatorname{dim} N) \quad "=" \quad \sum_{g} N^{-2 g} T_{g}$
The term T_{g} is a weighted sum over some ribbon graphs that encode some maps of genus g

Regular colored graphs, why?

In general, maps with genus g can be obtained as
terms in the topological expansion of $\log \int f$ (hermician_matrices)
$\frac{1}{N^{2}} \log \int f($ matrix of $\operatorname{dim} N) \quad "=" \quad \sum_{g} N^{-2 g} T_{g}$
The term T_{g} is a weighted sum over some ribbon graphs that encode some maps of genus g

"some" depends on $f \ldots$ many models!

Regular colored graphs, why?

In general, maps with genus g can be obtained as
terms in the topological expansion of $\log \int f$ (hermician_matrices)
$\frac{1}{N^{2}} \log \int f($ matrix of $\operatorname{dim} N) \quad "=" \quad \sum_{g} N^{-2 g} T_{g}$
The term T_{g} is a weighted sum over some ribbon graphs that encode some maps of genus g

"some" depends on $f \ldots$ many models!

Regular colored graphs, why?

In general, maps with genus g can be obtained as terms in the topological expansion of $\log \int f$ (hermician_matrices)
$\frac{1}{N^{2}} \log \int f($ matrix of $\operatorname{dim} N) \quad "=" \quad \sum_{g} N^{-2 g} T_{g}$
The term T_{g} is a weighted sum over some ribbon graphs that encode some maps of genus g
 "some" depends on $f \ldots$ many models!

The tensor track: replace matrices by tensors of order D and perform a topological expansion of $\log \int f$ (tensors) $\frac{1}{N^{D}} \log \int f(D$-tensor of $\operatorname{dim} N) \quad "=" \quad \sum_{\delta} N^{-\delta} G_{\delta}$

Regular colored graphs, why?

In general, maps with genus g can be obtained as terms in the topological expansion of $\log \int f$ (hermician_matrices)
$\frac{1}{N^{2}} \log \int f($ matrix of $\operatorname{dim} N) \quad "=" \quad \sum_{g} N^{-2 g} T_{g}$
The term T_{g} is a weighted sum over some ribbon graphs that encode some maps of genus g

The tensor track: replace matrices by tensors of order D and perform a topological expansion of $\log \int f$ (tensors)
$\frac{1}{N^{D}} \log \int f(D$-tensor of $\operatorname{dim} N) \quad "=" \quad \sum_{\delta} N^{-\delta} G_{\delta}$
The term G_{δ} is a weighted sum over some generalized ribbon graphs that encode some D-dimensional complexes

Regular colored graphs, why?

In general, maps with genus g can be obtained as terms in the topological expansion of $\log \int f$ (hermician_matrices)
$\frac{1}{N^{2}} \log \int f($ matrix of $\operatorname{dim} N) \quad "=" \quad \sum_{g} N^{-2 g} T_{g}$
The term T_{g} is a weighted sum over some ribbon graphs that encode some maps of genus g

The tensor track: replace matrices by tensors of order D and perform a topological expansion of $\log \int f$ (tensors)
$\frac{1}{N^{D}} \log \int f(D$-tensor of $\operatorname{dim} N) \quad "=" \quad \sum_{\delta} N^{-\delta} G_{\delta}$
The term G_{δ} is a weighted sum over some generalized ribbon graphs that encode some D-dimensional complexes
\longrightarrow we concentrate on Regular colored bipartite graphs (next talk provides another example)

Regular colored graphs, why?

Definition: $(D+1)$-regular edge colored bipartite graphs:

- k white vertices, k black vertices
- $(D+1) k$ edges, k of which have color c, for all $0 \leq c \leq D$.
- each vertex is incident to one edge of each color

Examples:

As usual a graph is rooted if one edge is marked.

Regular colored graphs, why?

Definition: $(D+1)$-regular edge colored bipartite graphs:

- k white vertices, k black vertices
- $(D+1) k$ edges, k of which have color c, for all $0 \leq c \leq D$.
- each vertex is incident to one edge of each color

Examples:

As usual a graph is rooted if one edge is marked.
Equivalently, a graph is open, if one edge is broken into two half edges.

Regular colored graphs, why?

Definition: a face of color $\left(c, c^{\prime}\right)$ is a bicolored simple cycle made of edges of color c and c^{\prime}.

Example:

Regular colored graphs, why?

Definition: a face of color $\left(c, c^{\prime}\right)$ is a bicolored simple cycle made of edges of color c and c^{\prime}.

Example:

Let $F_{p}^{c, c^{\prime}}$ count faces of color $\left\{c, c^{\prime}\right\}$ and degree $2 p ; F_{p}=\sum_{\left\{c, c^{\prime}\right\}} F_{p}^{\left\{c, c^{\prime}\right\}}$ and $F=\sum_{p \geq 1} F_{p}$ is the total number of faces.

Regular colored graphs, why?

Definition: a face of color $\left(c, c^{\prime}\right)$ is a bicolored simple cycle made of edges of color c and c^{\prime}.

Example:

Let $F_{p}^{c, c^{\prime}}$ count faces of color $\left\{c, c^{\prime}\right\}$ and degree $2 p ; F_{p}=\sum_{\left\{c, c^{\prime}\right\}} F_{p}^{\left\{c, c^{\prime}\right\}}$ and $F=\sum_{p \geq 1} F_{p}$ is the total number of faces.
In the case $D=2$, there are 3 -colors, and faces are the faces of a canonical embedding of the graph as a map.

Regular colored graphs, why?

Lemma. The reduced degree $\delta=\binom{D}{2} k+D-F$ is a non-negative integer.
Proof one can show that δ is the average genus among all possible canonical embedding (jackets) obtained by fixing the cyclic arrangement of colors around vertices.

Regular colored graphs, why?

Lemma. The reduced degree $\delta=\binom{D}{2} k+D-F$ is a non-negative integer.
Proof one can show that δ is the average genus among all possible canonical embedding (jackets) obtained by fixing the cyclic arrangement of colors around vertices.

Lemma. By double counting: $D(D+1) k=2 \sum_{p \geq 1} p F_{p}$

Regular colored graphs, why?

Lemma. The reduced degree $\delta=\binom{D}{2} k+D-F$ is a non-negative integer.
Proof one can show that δ is the average genus among all possible canonical embedding (jackets) obtained by fixing the cyclic arrangement of colors around vertices.

Lemma. By double counting: $D(D+1) k=2 \sum_{p \geq 1} p F_{p}$
Corollary. $(D+1) \delta+2 F_{1}=D(D+1)+\sum_{p \geq 2}((D-1) p-D-1) F_{p}$

Regular colored graphs, why?

Lemma. The reduced degree $\delta=\binom{D}{2} k+D-F$ is a non-negative integer.
Proof one can show that δ is the average genus among all possible canonical embedding (jackets) obtained by fixing the cyclic arrangement of colors around vertices.

Lemma. By double counting: $D(D+1) k=2 \sum_{p \geq 1} p F_{p}$
Corollary. $(D+1) \delta+2 F_{1}=D(D+1)+\sum_{p \geq 2}((D-1) p-D-1) F_{p}$
First observations:
For $D=2$, coefficient of F_{2} negative
\Rightarrow the F_{i} can be large even if δ and F_{1} are fixed.

Regular colored graphs, why?

Lemma. The reduced degree $\delta=\binom{D}{2} k+D-F$ is a non-negative integer.
Proof one can show that δ is the average genus among all possible canonical embedding (jackets) obtained by fixing the cyclic arrangement of colors around vertices.

Lemma. By double counting: $D(D+1) k=2 \sum_{p \geq 1} p F_{p}$
Corollary. $(D+1) \delta+2 F_{1}=D(D+1)+\sum_{p \geq 2}((D-1) p-D-1) F_{p}$
First observations:
For $D=2$, coefficient of F_{2} negative
\Rightarrow the F_{i} can be large even if δ and F_{1} are fixed.
For $D \geq 4$, coefficient of F_{2} positive
\Rightarrow finitely many graphs if δ and F_{1} are fixed.
Same hold for $D=3$ but non trivial.

Summary of the first episode

Matrix integral expansions

3-regular colored maps
k black vertices, F faces

$$
2 g=k-F+2
$$

(colored triangulations)
D-tensor integral expansions
D-regular colored graphs
k black vertices, F "faces"

$$
\delta=\binom{D}{2} k-F+D
$$

(D-dimensional pure colored complexes)

Classification by degree:
degree is not a topological invariant of underlying D-manifold:
it depends on the colored complex used to triangulate it but it governs the expansion of the integral
Why this precise integral / family of graph?
More representative than simpler models: barycentric sub-division of any manifold complex is colored.
There are richer models for $D=3$, but this model works for any D.

Melons and the melon-free core

Plan: Study graphs via structural analysis of 2-edge-cuts

Melons and the melon-free core

Plan: Study graphs via structural analysis of 2-edge-cuts

Lemma. $\left\{e, e^{\prime}\right\}$ is 2-edge-cut iff any simple cycle visiting e visits e^{\prime}.

Melons and the melon-free core

Plan: Study graphs via structural analysis of 2-edge-cuts

Lemma. $\left\{e, e^{\prime}\right\}$ is 2-edge-cut iff any simple cycle visiting e visits e^{\prime}.
Lemma. 2-edge-cuts form disjoint cut-cycles where each cut-cycle is a maximal set of pairwise 2 -cuts.

Melons and the melon-free core

Plan: Study graphs via structural analysis of 2-edge-cuts

Lemma. $\left\{e, e^{\prime}\right\}$ is 2-edge-cut iff any simple cycle visiting e visits e^{\prime}.
Lemma. 2-edge-cuts form disjoint cut-cycles where each cut-cycle is a maximal set of pairwise 2-cuts.

Decomposition along a cut-cycle:

Melons and the melon-free core

Lemma. Colored regular graphs with $\delta=0$ are melonic graphs, i.e. graphs that can be completely decomposed along cut-cycles

Melons and the melon-free core

Lemma. Colored regular graphs with $\delta=0$ are melonic graphs, i.e. graphs that can be completely decomposed along cut-cycles

Inductive definition of rooted melonic graphs:
$\mathcal{T}=\{$ rooted melonic graphs $\}$

$\mathcal{T}^{*}=\{$ rooted prime melonic graphs $\}$

$$
T^{*}(z)=z T(z)^{D}
$$

Melons and the melon-free core

Lemma. Colored regular graphs with $\delta=0$ are melonic graphs, i.e. graphs that can be completely decomposed along cut-cycles Inductive definition of rooted melonic graphs:
$\mathcal{T}=\{$ rooted melonic graphs $\}$

$\mathcal{T}^{*}=\{$ rooted prime melonic graphs $\}$

$$
T^{*}(z)=z T(z)^{D}
$$

Melonic graphs are arborescent structures (branched polymers).

Melons and the melon-free core

Lemma. Colored regular graphs with $\delta=0$ are melonic graphs, i.e. graphs that can be completely decomposed along cut-cycles

Inductive definition of rooted melonic graphs:
$\mathcal{T}=\{$ rooted melonic graphs $\}$

$$
T(z)=\sum_{i \geq 0}\left(T^{*}(z)\right)^{i}=\frac{1}{1-T^{*}(z)}
$$

$$
T^{*}(z)=z T(z)^{D}
$$

Melonic graphs are arborescent structures (branched polymers).
The gf of rooted melonic graphs has a square root dominant singularity.

$$
T(z)=a-b \sqrt{1-z / z_{0}}+O\left(1-z / z_{0}\right) \quad \text { where } z_{0}=\frac{D^{D}}{(D+1)^{(D+1)}}
$$

For future ref we observe that: $z_{0} T\left(z_{0}\right)^{D+1}=\frac{1}{D}$

Melons and the melon-free core

Lemma. Colored regular graphs with $\delta=0$ are melonic graphs, i.e. graphs that can be completely decomposed along cut-cycles

Inductive definition of rooted melonic graphs:
$\mathcal{T}=\{$ rooted melonic graphs $\}$

$$
T(z)=\sum_{i \geq 0}\left(T^{*}(z)\right)^{i}=\frac{1}{1-T^{*}(z)}
$$

$$
T^{*}(z)=z T(z)^{D}
$$

Melonic graphs have degree 0: direct proof by induction.
Graphs with degree 0 are melonic: two step proof...

- a graph is melonic iff it can be decomposed by deleting melons
- any graph of degree 0 contains a melon.

Melons and the melon-free core

Lemma. The union of two non-disjoint open melonic subgraphs of an open regular colored graph is a melonic subgraph.

Proof: In view of the degree constraint, the boundary of an open melonic subgraph consists of its two open edges.

Therefore the open edges of the two components belong to a same open cut-cycle of the union, which is melonic by induction.

Melons and the melon-free core

Lemma. The union of two non-disjoint open melonic subgraphs of an open regular colored graph is a melonic subgraph.

Corollary Maximal open melonic subgraphs are disjoint.

Melons and the melon-free core

Proposition. Core decomposition is a size preserving bijection between - pairs $\left(C ;\left(M_{0}, \ldots, M_{(D+1) p}\right)\right)$ with C a rooted melon-free graphs with $(D+1) p$ edges and $M_{0}, \ldots, M_{(D+1) p}$ melonic graphs, - and rooted regular colored graphs.

The melon-free core is obtained by replacing each maximal open melonic subgraph by an edge.

Melons and the melon-free core

Proposition. Core decomposition is a size preserving bijection between - pairs $\left(C ;\left(M_{0}, \ldots, M_{(D+1) p}\right)\right)$ with C a rooted melon-free graphs with $(D+1) p$ edges and $M_{0}, \ldots, M_{(D+1) p}$ rooted melonic graphs,

- and rooted regular colored graphs.

Proposition. The degree of a graph equals the degree of its core.

Melons and the melon-free core

Proposition. Core decomposition is a size preserving bijection between - pairs $\left(C ;\left(M_{0}, \ldots, M_{(D+1) p}\right)\right)$ with C a rooted melon-free graphs with $(D+1) p$ edges and $M_{0}, \ldots, M_{(D+1) p}$ rooted melonic graphs, - and rooted regular colored graphs.

Proposition. The degree of a graph equals the degree of its core.

Proposition. For any rooted melon-free graph C with $(D+1) p$ edges, the gf of rooted regular colored graphs with core C is

$$
F_{C}(z)=z^{p} T(z)^{(D+1) p+1}
$$

Melons and the melon-free core

Proposition. Core decomposition is a size preserving bijection between - pairs $\left(C ;\left(M_{0}, \ldots, M_{(D+1) p}\right)\right)$ with C a rooted melon-free graphs with $(D+1) p$ edges and $M_{0}, \ldots, M_{(D+1) p}$ rooted melonic graphs, - and rooted regular colored graphs.

Proposition. The degree of a graph equals the degree of its core.

Proposition. For any rooted melon-free graph C with $(D+1) p$ edges, the gf of rooted regular colored graphs with core C is

$$
F_{C}(z)=z^{p} T(z)^{(D+1) p+1}
$$

\Rightarrow The gf of rooted regular colored graphs of degree δ can be written as

$$
F_{\delta}(z)=T(z) \sum_{C \in \mathcal{C}_{\delta}}\left(z T(z)^{(D+1)}\right)^{|C|}
$$

Melons and the melon-free core

Proposition. Core decomposition is a size preserving bijection between - pairs $\left(C ;\left(M_{0}, \ldots, M_{(D+1) p}\right)\right)$ with C a rooted melon-free graphs with $(D+1) p$ edges and $M_{0}, \ldots, M_{(D+1) p}$ rooted melonic graphs, - and rooted regular colored graphs.

Proposition. The degree of a graph equals the degree of its core.

Proposition. For any rooted melon-free graph C with $(D+1) p$ edges, the gf of rooted regular colored graphs with core C is

$$
F_{C}(z)=z^{p} T(z)^{(D+1) p+1}
$$

\Rightarrow The gf of rooted regular colored graphs of degree δ can be written as

$$
F_{\delta}(z)=T(z) \sum_{C \in \mathcal{C}_{\delta}}\left(z T(z)^{(D+1)}\right)^{|C|}
$$

Problem. For each $\delta>0$, there exists an infinite number of melon-free graphs of degree δ : the above expression is not very useful...

Summary of the first two episodes

Colored regular graphs

Melon-free cores + Melons

The scheme

Problem. For each $\delta>0$, there exists an infinite number of melon-free graphs of degree δ.
Some configurations can be repeated without increasing δ. In particular, chains of ($D-1$)-dipoles:

($D-1$)-dipole

odd chain

even chain

A chain is proper if it contains at least two ($D-1$)-dipoles.
Lemma. Maximal proper sub-chains are disjoints.

The scheme

Maximal chain replacement: chain-vertices

But not all chains are equivalent for the cycle structure:

parallel edges in chain have same labels

The scheme

Maximal chain replacement: chain-vertices

But not all chains are equivalent for the cycle structure:

parallel edges in chain have same labels
At most one type of cycle can traverse the whole chain:

broken chains

The scheme

Maximal chain replacement: chain-vertices

The scheme of a melon-free graph: do all replacements.

By construction, 2 graphs with same scheme have the same degree.
\Rightarrow this common degree is the degree of the scheme.

The scheme

Proposition. The scheme decomposition is a size and degree preserving bijection between pairs $\left(S ;\left(C_{0}, \ldots, C_{n}\right)\right)$ where S is a scheme with n chain-vertices and C_{0}, \ldots, C_{n} are chains, and melon-free graphs.

The scheme

Proposition. The scheme decomposition is a size and degree preserving bijection between pairs $\left(S ;\left(C_{0}, \ldots, C_{n}\right)\right)$ where S is a scheme with n chain-vertices and C_{0}, \ldots, C_{n} are chains, and melon-free graphs.
Proposition. Let S be a scheme with $b_{\neq}, b_{=}, c_{\neq}, c_{=}$chain-vertices of each type. The gf of melon-free graphs with scheme S is

$$
G_{S}(u)=\frac{u^{p} D^{b}=(D-1)^{b} u^{b=+c_{\neq}+2 b+2 c}}{(1-D u)^{b}\left(1-u^{2}\right)^{b+c}} \quad \begin{array}{ll}
b=b_{1}=+b_{\neq} \\
c=c=+c \neq
\end{array}
$$

The scheme

Theorem. The number of schemes with degree δ is finite.

Lemma. The number of chain-vertices, ($D-1$)-dipoles and, for $D \geq 4$, ($D-2$)-dipoles in a scheme of degree δ is bounded by 5δ.

Idea: The deletion of a dipole in a melon-free graph has in general the effect of decreasing the genus or disconnecting the graph in parts that all have positive genus. Actual proof is a bit technical.

Lemma. For $D=3$ the number of graphs with a fixed number of 2-dipoles is finite. For $D \geq 4$, the number of graphs with fixed numbers of ($D-1$)-dipoles and ($D-2$)-dipoles is finite.

Idea: For $D=3$, ad-hoc argument.
For $D \geq 4$, refine the counting argument of earlier slides.

Summary of the first three episodes

Colored regular graphs

$$
\mathbb{\imath}
$$

Melon-free cores + Melons

Schemes + Chains + Melons

Exact formulas

Theorem. Let $\delta \geq 1$. The gf of rooted colored graphs of degree δ w.r.t. black vertices is
$F_{\delta}(z)=T(z) \sum_{s \in S_{\delta}} G_{S}\left(z T(z)^{D+1}\right) \quad$ where $G_{s}(u)=\frac{u^{p} D^{b}=(D-1)^{b} u^{b=+c \neq+2 b+2 c}}{(1-D u)^{b}\left(1-u^{2}\right)^{b+c}}$

$$
\text { and } T(z)=1+z T(z)^{D}
$$

Corollary (Kaminski, Oriti, Ryan). For $\delta=D-2$,

$$
F_{D-2}(z)=\binom{D}{2} \frac{z^{2} T(z)^{2 D+3}}{1-z^{2} T(z)^{2 D+2}} \frac{1}{1-D z T(z)^{D+1}}
$$

Explicit next term, for $\delta=D$, is already a mess...

Asymptotic formulas and dominant terms

Theorem. Let $\delta \geq 1$. The gf of rooted colored graphs of degree δ w.r.t. black vertices has the asymptotic development

$$
F_{\delta}(z)=\sum_{s \in S_{\delta}} f_{p, b, D}^{c \neq, c}\left(1-z / z_{0}\right)^{-b / 2}+O\left(1-z / z_{0}\right)
$$

where $f_{p, b}^{c \neq, c}(D)$ is a simple rational fraction in $D: f_{p, b, D}^{c \neq, c}=\frac{D^{3 b / 2-p-c \not \mathcal{F}^{-1}}}{2^{b / 2}(D-1)^{c}(D+1)^{c+b / 2}}$
In this finite sum the dominant terms are the one that maximize b, the number of broken chains in the scheme.

Asymptotic formulas and dominant terms

Proposition. The maximum number of broken chains in a scheme of degree δ is the maximum of the following linear program:

$$
b_{\max }=\max (2 x+3 y-1 \mid(D-2) x+D y=\delta ; x, y \in \mathbb{N})
$$

Moreover the corresponding dominant schemes consists of:

- $b_{\text {max }}$ broken chain-vertices ($2 x+y-1$ spanning, $2 y$ surplus).
- x connected chain-vertices each forming a loop at a $(D-2)$-dipole,
$-x+y-1$ connecting ($D-2$)-dipoles, and one root-melon.

Asymptotic formulas and dominant terms

Proposition. The maximum number of broken chains in a scheme of degree δ is the maximum of the following linear program:

$$
b_{\max }=\max (2 x+3 y-1 \mid(D-2) x+D y=\delta ; x, y \in \mathbb{N})
$$

Moreover the corresponding dominant schemes consists of:

- $b_{\text {max }}$ broken chain-vertices ($2 x+y-1$ spanning, $2 y$ surplus).
- x connected chain-vertices each forming a loop at a $(D-2)$-dipole,
$-x+y-1$ connecting ($D-2$)-dipoles, and one root-melon.
For $3 \leq D \leq 5$. The maximum is obtained for $y=0: \delta=(D-2) \cdot x$. \Rightarrow "binary trees" with $2 x-1$ chains, $x+1$ end-dipoles (the root and x wheels), $x-1$ inner dipoles.

Asymptotic formulas and dominant terms

Proposition. The maximum number of broken chains in a scheme of degree δ is the maximum of the following linear program:

$$
b_{\max }=\max (2 x+3 y-1 \mid(D-2) x+D y=\delta ; x, y \in \mathbb{N})
$$

Moreover the corresponding dominant schemes consists of:

- $b_{\text {max }}$ broken chain-vertices ($2 x+y-1$ spanning, $2 y$ surplus).
- x connected chain-vertices each forming a loop at a $(D-2)$-dipole,
$-x+y-1$ connecting ($D-2$)-dipoles, and one root-melon.
For $3 \leq D \leq 5$. The maximum is obtained for $y=0: \delta=(D-2) \cdot x$. \Rightarrow "binary trees" with $2 x-1$ chains, $x+1$ end-dipoles (the root and x wheels), $x-1$ inner dipoles.
For $D \geq 7$. The maximum is obtained for $x=0: \delta=D \cdot y$ \Rightarrow "ternary graphs" with $3 y-1$ chains, x inner dipoles, one root melon.

Conclusions

Fixed degree regular colored graphs
$=$ scheme \circ chains \circ melons

Conclusions

Fixed degree regular colored graphs
$=$ scheme \circ chains \circ melons
finite number $\downarrow_{\text {rational gf }}{ }_{\text {algebraic gf }} \Rightarrow$ Exact counting
Dominant schemes:
for $3 \leq D \leq 5$: for $\delta=d \cdot(D-2)$, rooted binary trees with d leaves
for $D \geq 7$: for $\delta=d \cdot D$, rooted 3-regular graphs with $3 d-1$ vertices

Conclusions

Fixed degree regular colored graphs
$=$ scheme \circ chains \circ melons

Dominant schemes:
for $3 \leq D \leq 5$: for $\delta=d \cdot(D-2)$, rooted binary trees with d leaves
for $D \geq 7$: for $\delta=d \cdot D$, rooted 3-regular graphs with $3 d-1$ vertices
Similar results were obtained by Dartois, Gurau and Rivasseau for a simpler model, they obtain the same rich asymptotic behavior.

Extend the $D=3$ results to uncolored models? (cf next talk)

Conclusions

Scaling limits: δ fixed, size n going to infinity
Melonic graphs rescaled by $n^{-1 / 2}$ cv to CRT (cf Ryan's talk) For $\delta \geq 1$, expect something similar to Addario-Berry, Broutin, Goldschmidt's critical random graphs (work in progress with Albenque)

Double scaling limits: compute $\sum_{\delta} N^{-\delta} \operatorname{domin}\left(F_{\delta}(z)\right)$ Upon sending $N \rightarrow \infty$ with $N\left(1-z / z_{0}\right)=c t e$, limit exists for $D \leq 5$

- resum lower order terms and look for a triple scaling limit?
- for $D \geq 6$, is it possible to say something about the divergent series?

These computations should probabibly be done first for the simpler model of Dartois, Gurau, Rivasseau.

