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• Rooted planar map = map endowed with a marked oriented 
edge (represented by an arrow); 

• Size  = number of edges; 
• Corner (does not exist for graphs !) = space between an 

oriented edge and the next one for the trigonometric order.

|𝔪 |

2

Planar maps

Map = graph +  cyclic order on 
neighbours 

Planar map  = embedding on the sphere of a connected 
planar graph, considered up to homeomorphisms

𝔪

= ≠
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• Enumeration:  
[Tutte 1963, Drmota, Noy, Yu 2020]; 

• Distance between vertices:  [Chassaing, 

Schaeffer 2004]; 
• Scaling limit: Brownian sphere for arbitrary 

maps [Bettinelli, Jacob, Miermont 2014]; 
• Universality: 

• Same enumeration; 
• Same scaling limit, e.g. for 

quadrangulations [Miermont 2013], 
triangulations & 2q-angulations [Le Gall 
2013], simple quadrangulations [Addario-
Berry, Albenque 2017].

κρ−nn−5/2

n1/4

3

Universality results for planar maps
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Brownian tree 𝒯e

• Enumeration: ; 

• Distance between vertices:  
[Flajolet, Odlyzko 1982]; 

• Scaling limit: Brownian tree [Aldous 1993, 
Le Gall 2006]; 

• Universality: 
• Same enumeration, 
• Same scaling limit, even for some 

classes of maps; e.g. outerplanar 
maps [Caraceni 2016], maps with a 
boundary of size >>  [Bettinelli 

2015].

κρ−nn−3/2

n1/2

n1/2

4

Universality results for planar trees

Models with (very) constrained boundaries
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Motivation

Interpolating model?

5
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Cut vertex: vertex that when removed disconnects the map 
2-connected: no cut vertex (=to be able to disconnect, at 
least two vertices must be removed) 
Block = maximal (for inclusion) 2-connected submap 

6

2-connectivity
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Condensation phenomenon: a 
large block concentrates a 
macroscopic part of the mass 
[Banderier, Flajolet, Schaeffer, Soria 2001; 
Jonsson, Stefánsson 2011].

7

Motivation

Interpolating model?

Only small blocks.
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I. Approach 
II. Largest blocks 
III. Similar model: quadrangulations 
IV. Scaling limits 
V. Perspectives

8

Outline of the talk

A phase transition in block-weighted random maps
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I. Approach

9
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Model
Goal: parameter that affects the typical number of blocks.

We choose:  whereℙn,u(𝔪) =
u#blocks(𝔪)

Zn,u

, 

 = {maps of size }, 

, 

normalisation. 

u > 0
ℳn n
𝔪 ∈ ℳn

Zn,u =

• : uniform distribution on maps of size ; 

• : minimising the number of blocks (=2-connected maps); 

• : maximising the number of blocks (= trees!).

u = 1 n
u → 0
u → ∞

Given , asymptotic behaviour when ?u n → ∞

Inspired by [Bonzom 2016].

10
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Results
u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

Enumeration

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn
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Inspiration from [Tutte 1963]

12

Decomposition of a map into blocks
M(z, u) = ∑

𝔪∈ℳ

z|𝔪|u#blocks(𝔪)
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Inspiration from [Tutte 1963]
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Results
u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration
[Bonzom 2016]

Size of 
- the largest 

block 
- the second 

one

Scaling limit of 
Mn
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Decomposition of a map into blocks: properties

• Internal node (with  children) of   block of  of size ; 

•  is entirely determined by  and  where  is the 
block of  represented by  in .

k T𝔪 ↔ 𝔪 k/2
𝔪 T𝔪 (𝔟v, v ∈ T𝔪) 𝔟v

𝔪 v T𝔪

 gives the block sizes of a random map .TMn
Mn
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Galton-Watson trees for map blocks

-Galton-Watson tree : random tree where the number of 
children of each node is given by  independently, with  = 
probability law on .

μ
μ μ

ℕ
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Galton-Watson trees for map blocks

-Galton-Watson tree : random tree where the number of 
children of each node is given by  independently, with  = 
probability law on .

μ
μ μ

ℕ

Theorem 

If , then  has the law of a Galton-Watson tree 

of reproduction law  conditioned to be of size , with  

.

Mn ↪ ℙn,u TMn

μy,u 2n

μy,u({2k}) =
Bkyku1k≠0

uB(y) + 1 − u
u > 0

y ∈ (0,4/27]
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Galton-Watson trees for map blocks

-Galton-Watson tree : random tree where the number of 
children of each node is given by  independently, with  = 
probability law on .

μ
μ μ

ℕ

Theorem 

If , then  has the law of a Galton-Watson tree 

of reproduction law  conditioned to be of size , with  

.

Mn ↪ ℙn,u TMn

μy,u 2n

μy,u({2k}) =
Bkyku1k≠0

uB(y) + 1 − u
u > 0

y ∈ (0,4/27]

=> Choice of y?
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When is  critical? (= ?) μy,u 𝔼(μ) = 1

16

Phase transition 

covers  when  covers .[9/5, + ∞) y (0,ρB = 4/27]

𝔼(μy,u) = 1 ⇔ u =
1

2yB′ (y) − B(y) + 1

Theorem 

• If , then . The mean is maximal for 
 and then ; 

• If  and , then  and 
; 

• If  and  is well chosen, then  and 
.

u < 9/5 𝔼(μy,u) < 1
y = 4/27 μy,u(2k) ∼ cuk−5/2

u = 9/5 y = 4/27 𝔼(μy,u) = 1
μy,u(2k) ∼ cuk−5/2

u > 9/5 y 𝔼(μy,u) = 1
μy,u(2k) ∼ cuπk

uk−5/2



/4717

Phase transition 

u

y

“Map regime” “Tree regime”
9/5

4/27

Critical GWSubcritical 
GW

y = 4/27 y s.t. u =
1

2yB′ (y) − B(y) + 1

uC = 9/5
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II. Largest blocks

18
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Variance

Galton-
Watson tree subcritical critical

19

Properties of TMn

Tool: [Janson 2012] = extensive study of the degrees in Galton-
Watson trees

Properties on trees give properties of maps.

u < 9/5 u = 9/5 u > 9/5

∼ cuk−5/2μy(u),u({2k}) ∼ cuπk
uk−5/2

∞ < ∞
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u = 9/5

20

Size  of the -th largest blockLn,k k

u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)Ln,2

Ln,1
[Stufler 2020]

Size of the linear block × n−1

[Stufler 2020]
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Rough intuition

u < 9/5 u = 9/5 u > 9/5

∼ cuk−5/2
μy(u),u({2k}) ∼ cuπk

uk−5/2

Galton-
Watson tree

subcritical critical

Dichotomy between situations: 
• Subcritical: condensation, cf [Jonsson Stefánsson 2011]; 
• Supercritical: behaves as maximum of independent 

variables.
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Results

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016]

Scaling limit of 
Mn
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III. Similar model: 
quadrangulations

23
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Def: map with all faces of degree 4.

24

Quadrangulations

Size  = number of faces. |𝔮 |

, .|V(𝔮) | = |𝔮 | + 2 |E(𝔮) | = 2 |𝔮 |

Simple quadrangulation = no multiple edges.
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Construction of a quadrangulation from a simple core
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Construction of a quadrangulation from a simple core
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Block tree for a quadrangulation

 With a weight  on blocks: u Q(z, u) = uS(zQ2(z, u)) + 1 − u

 Remember: M(z, u) = uB(zM2(z, u)) + 1 − u
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Tutte’s bijection

Map Quadrangulation

[Tutte 1963]
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Tutte’s bijection for 2-connected maps

Cut vertex => multiple edge

2-connected maps <=> simple quadrangulations 

[Brown 1965]
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Block trees under Tutte’s bijection
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Implications on results

We choose:  whereℙn,u(𝔮) =
u#blocks(𝔮)

Zn,u
, 

 = {quadrangulations of size }, 

, 

normalisation. 

u > 0
𝒬n n
𝔮 ∈ 𝒬n

Zn,u =

Results on the size of (2-connected) blocks can be transferred 
immediately for quadrangulations and their simple blocks.
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Results

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)
[Stufler 2020]

[Bonzom 2016] for 2-c case

Scaling limit of 
Mn
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IV. Scaling limits

32
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Convergence of the whole object considered as a metric 
space (with the graph distance), after renormalisation.

33

Scaling limits

u

v

d(u, v) = 4
Mn ↪ ℙn,u

What is the limit of the sequence of metric spaces  ?((Mn, d/n?))n∈ℕ

(Convergence for Gromov-Hausdorff metric)
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Stable tree of index 3/2 𝒯3/2
Brownian tree  (Aldous’s CRT)𝒯e

34

Scaling limits of Galton-Watson trees
Theorem For , 

• If , . 

• If , .

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2

TMn
→ 𝒯e

u = 9/5
c2

n1/3
TMn

→ 𝒯3/2
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Scaling limits of Galton-Watson trees

Proof 
• Scaling limit of critical Galton-Watson trees with finite 

variance [Aldous 1993, Le Gall 2006]; 
• Scaling limit of critical Galton-Watson with infinite variance 

and nice tails [Duquesne 2003].

Theorem For , 

• If , . 

• If , .

Mn ↪ ℙn,u

u > 9/5
c3(u)
n1/2

TMn
→ 𝒯e

u = 9/5
c2

n1/3
TMn

→ 𝒯3/2
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Scaling limit of supercritical and critical maps

Theorem For , 

• If , 

. 

• If , 

.

Mn ↪ ℙn,u

u > 9/5
C3(u)
n1/2

Mn → 𝒯e

u = 9/5
C2

n1/3
Mn → 𝒯3/2 [Stufler 2020]
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Difficult part = show that distances in  behave like distances 
in . We show 

. 

𝔪
T𝔪

∀e1, e2 ∈ E(Mn), dMn
(e1, e2) ≃ κdTMn

(e1, e2)

37

Supercritical and critical cases (1)

e1

e2
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Supercritical and critical cases (2)

e1

e2

Let . By a “law of large 
numbers”-type argument

κ = 𝔼("diameter" bipointed block)

dMn
(e1, e2) ≃ κdTMn

(e1, e2) .
Difficult for the 

critical case => use 
diameter estimates
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Theorem If , for  a quadrangulation, 

. 

Moreover,  and its simple core converge jointly to the 
same Brownian sphere.

u < 9/5 Mn ↪ ℙn,u
C1(u)
n1/4

Mn → 𝒮e

Mn

39

Scaling limits of subcritical maps

See [Addario-Berry, Wen 2019] for a similar result and method 

We expect the same scaling 
limits for maps but the 
scaling limit of 2-connected 
maps is not yet proved.
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Subcritical case (1)

Large block of size 
Θ(n)

Decorations = groups of smaller blocks

Diameter of a decoration ≤ number of blocks  max diameter of blocks ×
≤ diam(TMn

) × (O(n2/3))1/4+δ = diam(TMn
) × O(n1/6+δ)

 is a subcritical 
Galton-Watson tree
TMn = O(n1/6+2δ) = o(n1/4) .

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case (1)

Diameters of decorations = .o(n1/4)

Large block of size 
Θ(n)

Decorations = groups of smaller blocks

Diameter of a decoration ≤ number of blocks  max diameter of blocks ×
≤ diam(TMn

) × (O(n2/3))1/4+δ = diam(TMn
) × O(n1/6+δ)

 is a subcritical 
Galton-Watson tree
TMn = O(n1/6+2δ) = o(n1/4) .

[Chapuy Fusy Giménez Noy 2015]
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Subcritical case (2)

The scaling limit of 
 (rescaled by ) 

is the scaling limit of 
uniform blocks!

Mn n1/4

Scaling limit of uniform ~ (rescaled by ) 
• 2-connected maps = brownian sphere (assumed); 
• Simple quadrangulations = Brownian sphere [Addario-Berry 

Albenque 2017].

n1/4

Large block of size 
Θ(n)

Decorations = groups of smaller blocks
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Results

C2

n1/3
Mn → 𝒯3/2

C3(u)
n1/2

Mn → 𝒯e
C1(u)
n1/4

Mn → 𝒮e

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

Assuming the convergence of 2-
connected maps towards the 

brownian sphere

u < 9/5 u = 9/5 u > 9/5

ρ(u)−nn−5/2 ρ(u)−nn−5/3

For Mn ↪ ℙn,u

ρ(u)−nn−3/2Enumeration

Size of 
- the largest 

block 
- the second 

one

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)

Scaling limit of 
Mn

[Stufler 2020]

[Stufler 2020]

Bonzom 2016 for 2-c case
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V. Perspectives

43
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Extension to other models

[Banderier, Flajolet, Schaeffer, Soria 2001]:

16/7 64/37
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Critical window?

Is there a critical window? If so, what is its width?

• Block size results still hold if , ; 

• For , conjecture  

when  (analogous to [Bollobás 1984]’s result for 
Erdős-Rényi graphs!); 

• Results exist for scaling limits in ER graphs [Addario-Berry, 

Broutin, Goldschmidt 2010], open question in our case.

un = 9/5 − ε(n) ε3n → ∞

un = 9/5 + ε(n) Ln,1 ∼ 2.7648 ε−2 ln(ε3n)
ε3n → ∞

Phase transition very sharp => what if ?u = 9/5 ± ε(n)
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Scaling limit 
of 

stable tree ?

46

Perspectives

C2

n1/3
Mn → 𝒯3/2

C3(u)
n1/2

Mn → 𝒯e
C1(u)
n1/4

Mn → 𝒮e
C4

n(1−α)/4
Mn → 𝒮e

Pink = work in progress

Admitting the convergence of 2-connected 
maps towards the brownian map

u < 9/5 u = 9/5 u > 9/5For Mn ↪ ℙn,u

ln(n)

2 ln ( 4
27y )

−
5 ln(ln(n))

4 ln ( 4
27y )

+ O(1)

∼ (1 − 𝔼(μ4/27,u))n
Θ(n2/3)

Θ(n2/3)Ln,2

Ln,1

un = 9/5 − ε(n) un = 9/5 + ε(n)
ε3n → ∞ ε3n → ∞

∼ 2.7648 ε−2 ln(ε3n)

Mn

ε(n) = n−α
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Thank you!

47


