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Let G be a finite group acting on a finite set S .

Let N be the
nonnegative integers and st : S → N be a statistic. If O ⊆ S then
we let

stO =
∑
x∈O

st x .

Call st homomesic if stO/#O is constant over all orbits O where
the hash tag is cardinality. In particular, st is c-mesic if, for all
orbits O,

stO
#O

= c .



Let G be a finite group acting on a finite set S . Let N be the
nonnegative integers and st : S → N be a statistic.

If O ⊆ S then
we let

stO =
∑
x∈O

st x .

Call st homomesic if stO/#O is constant over all orbits O where
the hash tag is cardinality. In particular, st is c-mesic if, for all
orbits O,

stO
#O

= c .



Let G be a finite group acting on a finite set S . Let N be the
nonnegative integers and st : S → N be a statistic. If O ⊆ S then
we let

stO =
∑
x∈O

st x .

Call st homomesic if stO/#O is constant over all orbits O where
the hash tag is cardinality. In particular, st is c-mesic if, for all
orbits O,

stO
#O

= c .



Let G be a finite group acting on a finite set S . Let N be the
nonnegative integers and st : S → N be a statistic. If O ⊆ S then
we let

stO =
∑
x∈O

st x .

Call st homomesic if stO/#O is constant over all orbits O where
the hash tag is cardinality.

In particular, st is c-mesic if, for all
orbits O,

stO
#O

= c .



Let G be a finite group acting on a finite set S . Let N be the
nonnegative integers and st : S → N be a statistic. If O ⊆ S then
we let

stO =
∑
x∈O

st x .

Call st homomesic if stO/#O is constant over all orbits O where
the hash tag is cardinality. In particular, st is c-mesic if, for all
orbits O,

stO
#O

= c .



Sn,k := {w1w2 . . .wn | wi ∈ {0, 1} for all i , and having k ones}

with rotation w1w2 . . .wn 7→ wnw1 . . .wn−1, and inversion statistic

invw1w2 . . .wn = #{(i , j) | i < j and wi > wj}.

Theorem (Propp-Roby)

The inversion statistic is k(n − k)/2-mesic for rotation on Sn,k .

Call st homometric if for any two orbits O1 and O2 we have

#O1 = #O2 =⇒ stO1 = stO2.

Note that homomesy implies homometry, but not conversely.
Ex. When n = 4 and k = 2 there are two orbits

w invw w invw

1100 4 1010 3
0110 2 0101 1
0011 0
1001 2

average = 8/4 = 2 average = 4/2 = 2
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Let (P,�) be a finite poset.

The sets of antichains, (lower) ideals,
and upper ideals of P are

A(P) = {A ⊆ P | no two elements of A are comparable},
I(P) = {I ⊆ P | x ∈ I and y ≤ x implies y ∈ I},
U(P) = {U ⊆ P | x ∈ U and y ≥ x implies y ∈ U}.

An antichain generates an ideal via ∆ : A(P) → I(P) where

∆(A) = {x ∈ P | x ≤ y for some y ∈ A}.

Antichains generate upper ideals via ∇ : A(P) → U(P) where

∇(A) = {x ∈ P | x ≥ y for some y ∈ A}.

Ideals produce upper ideals via c : I(P) → U(P) where

c(I ) = P − I .

Ex.

A = ∆7→ I =

Ex.

A = ∇7→ U =

Ex.

I = c7→ U =
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Rowmotion on antichains of poset P is ρ : A(P) → A(P) where

A
∆7→ I

c7→ U
∇−1

7→ ρ(A).

Rowmotion on antichains was first studied by Duchet (in a special
case) and independently by Brouwer and Schrijver. Rowmotion on
ideals of poset P is ρ̂ : I(P) → I(P) where

I
c7→ U

∇−1

7→ A
∆7→ ρ̂(I ).

We will study two statistics. For antichains A ∈ A(P) define

χ(A) = #A

where the hash symbol is cardinality. For ideals I ∈ I(P) define

χ̂(I ) = #I .

Ex.

A =
∆7→ c7→ ∇−1

7→ = ρ(A)
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A fence is a poset with elements F = {x1, x2, . . . , xn} and covers

x1 � x2 � . . .� xa � xa+1 � . . .� xb � xb+1 � · · ·

where a, b, . . . are positive integers.

Ex.

F =

x1

x2

x3

x4

x5

x6

x7

x8

x9

4 segments

shared
x3

x6

x8
unshared

x1

x2 x4

x5 x7 x9

F̆ (3, 3, 2, 2)

Fences have important connections with cluster algebras,
q-analogues, unimodality, and Young diagrams. The maximal
chains of F are called segments.

Elements on two segments are
called shared . All other elements are unshared . If F has s
segments then we let F = F̆ (α1, α2, . . . , αs) where for all i

αi = (# of unshared elements on segment i) + 1.
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As an example of rowmotion on antichains in a fence, consider F
below and A = {x1, x4, x8} indicated by squares.

So ρ(A) = {x2}.
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Represent an antichain A ⊂ F using a column of 4 boxes, with the
box in row i from the top corresponding to the ith segment Si from
the left. We color the box for Si by black if Si ∩ A is an unshared
element, red if Si ∩ A is a shared element, or yellow if Si ∩ A = ∅.
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Pasting together such colored columns, we can model any orbit of
ρ on a fence F = F̆ (α1, . . . , αs) as a tiling of a cylinder Cs of boxes
having s rows.

One of the orbits in F̆ (4, 3, 4) has the following
tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If α = (α1, . . . , αs),
then an α-tiling is a tiling of Cs using yellow 1× 1 tiles, red 2× 1
tiles, and black 1× (αi − 1) tiles in row i , for 1 ≤ i ≤ s, such that
the following hold for all rows.

(a) If αi ≥ 2 and the red tiles are ignored, then the black and
yellow tiles alternate in row i .

(b) There is a red tile in a column covering rows i and i + 1 if and
only if either the next column contains two yellow tiles in
those two rows when i is odd, or the previous column contains
two yellow tiles in those two rows when i is even.



Pasting together such colored columns, we can model any orbit of
ρ on a fence F = F̆ (α1, . . . , αs) as a tiling of a cylinder Cs of boxes
having s rows. One of the orbits in F̆ (4, 3, 4) has the following
tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If α = (α1, . . . , αs),
then an α-tiling is a tiling of Cs using yellow 1× 1 tiles, red 2× 1
tiles, and black 1× (αi − 1) tiles in row i , for 1 ≤ i ≤ s, such that
the following hold for all rows.

(a) If αi ≥ 2 and the red tiles are ignored, then the black and
yellow tiles alternate in row i .

(b) There is a red tile in a column covering rows i and i + 1 if and
only if either the next column contains two yellow tiles in
those two rows when i is odd, or the previous column contains
two yellow tiles in those two rows when i is even.



Pasting together such colored columns, we can model any orbit of
ρ on a fence F = F̆ (α1, . . . , αs) as a tiling of a cylinder Cs of boxes
having s rows. One of the orbits in F̆ (4, 3, 4) has the following
tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows.

If α = (α1, . . . , αs),
then an α-tiling is a tiling of Cs using yellow 1× 1 tiles, red 2× 1
tiles, and black 1× (αi − 1) tiles in row i , for 1 ≤ i ≤ s, such that
the following hold for all rows.

(a) If αi ≥ 2 and the red tiles are ignored, then the black and
yellow tiles alternate in row i .

(b) There is a red tile in a column covering rows i and i + 1 if and
only if either the next column contains two yellow tiles in
those two rows when i is odd, or the previous column contains
two yellow tiles in those two rows when i is even.



Pasting together such colored columns, we can model any orbit of
ρ on a fence F = F̆ (α1, . . . , αs) as a tiling of a cylinder Cs of boxes
having s rows. One of the orbits in F̆ (4, 3, 4) has the following
tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If α = (α1, . . . , αs),
then an α-tiling is a tiling of Cs using yellow 1× 1 tiles, red 2× 1
tiles, and black 1× (αi − 1) tiles in row i , for 1 ≤ i ≤ s, such that
the following hold for all rows.

(a) If αi ≥ 2 and the red tiles are ignored, then the black and
yellow tiles alternate in row i .

(b) There is a red tile in a column covering rows i and i + 1 if and
only if either the next column contains two yellow tiles in
those two rows when i is odd, or the previous column contains
two yellow tiles in those two rows when i is even.



Pasting together such colored columns, we can model any orbit of
ρ on a fence F = F̆ (α1, . . . , αs) as a tiling of a cylinder Cs of boxes
having s rows. One of the orbits in F̆ (4, 3, 4) has the following
tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If α = (α1, . . . , αs),
then an α-tiling is a tiling of Cs using yellow 1× 1 tiles, red 2× 1
tiles, and black 1× (αi − 1) tiles in row i , for 1 ≤ i ≤ s, such that
the following hold for all rows.

(a) If αi ≥ 2 and the red tiles are ignored, then the black and
yellow tiles alternate in row i .

(b) There is a red tile in a column covering rows i and i + 1 if and
only if either the next column contains two yellow tiles in
those two rows when i is odd, or the previous column contains
two yellow tiles in those two rows when i is even.



Pasting together such colored columns, we can model any orbit of
ρ on a fence F = F̆ (α1, . . . , αs) as a tiling of a cylinder Cs of boxes
having s rows. One of the orbits in F̆ (4, 3, 4) has the following
tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If α = (α1, . . . , αs),
then an α-tiling is a tiling of Cs using yellow 1× 1 tiles, red 2× 1
tiles, and black 1× (αi − 1) tiles in row i , for 1 ≤ i ≤ s, such that
the following hold for all rows.

(a) If αi ≥ 2 and the red tiles are ignored, then the black and
yellow tiles alternate in row i .

(b) There is a red tile in a column covering rows i and i + 1 if and
only if either the next column contains two yellow tiles in
those two rows when i is odd, or the previous column contains
two yellow tiles in those two rows when i is even.



bi := the number of black tiles in row i of a tiling,

ri := the number of red tiles with top box in row i of a tiling,

χ(O) := the number of antichain elements in orbit O.

Lemma (EPRS)

Given an orbit O in fence F̆ (α) with corresponding α-tiling

χ(O) =
s∑

i=1

(biαi − bi + ri ).

One can also compute χx , the number of times a given element x
appears in an orbit, and derive corresponding results for ideals.

Theorem (EPRS)

1. If x is unshared and y , z are the shared elements on the same
segment Si then αiχx + χy + χz is 1-mesic.

2. For F̆ (a, b) all orbits O have size ℓ = lcm(a, b) except one O′

of size ℓ+ 1. For the orbits of size ℓ we have
χ(O) = 2ab−a−b

gcd(a,b) := m. For the other orbit χ(O′) = m + 1.
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Let P∗ be the dual of poset P.

Suppose P is self dual so that
P ∼= P∗. Thus there exists and order-reversing bijection
κ : P → P. Define the ideal complement of I ∈ I(P) as

I = c ◦ κ(I )

where c(S) = P − S for any S ⊆ P. Note that #I +#I = #P.

Ex.
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Let

χ̂(O) = the number of ideal elements in an orbit O of ρ̂.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing
bijection κ : P → P. Let I ∈ I(P).
1. If I , I ∈ O for some orbit O, then

χ̂(O)

#O
=

n

2
.

2. If I ∈ O and I ∈ O for some orbits O and O with O ≠ O,
then #O = #O and

χ̂(O ⊎O)

#(O ⊎O)
=

n

2
.

Consider the group generated by the action of ρ̂ and the map
I 7→ I . The orbits of this action will be called superorbits.

Corollary (EPRS)

If P is self-dual with n = #P then χ̂ is (n/2)-mesic on superorbits.



Let

χ̂(O) = the number of ideal elements in an orbit O of ρ̂.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing
bijection κ : P → P. Let I ∈ I(P).

1. If I , I ∈ O for some orbit O, then
χ̂(O)

#O
=

n

2
.

2. If I ∈ O and I ∈ O for some orbits O and O with O ≠ O,
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Constant α.

Let α = (as) = (a, . . . , a︸ ︷︷ ︸
s

).

Conjecture

Let F = F̆ (as) and consider rowmotion on F .

1. The statistic χ is homometric.

2. If s is odd then the statistic χ̂ is n/2-mesic where n = #F .

When a = 2, it turns out that χ is actually homomesic. Sam
Hopkins pointed out that this follows from results in our paper and
also from work of Chan, Haddadan, Hopkins, and Moci on
balanced Young diagrams. The case a ≥ 3 is still open and χ is
not homomesic in this case.

For χ̂ one can not use our results on self-dual posets since I and I
are not always in the same orbit.
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Palindromic α.

Sequence a0, a1, . . . , an is palindromic if ak = an−k for all
0 ≤ k ≤ n. Write χk = χxk and χ̂k = χ̂xk .

Proposition (EPRS)

Let α = (α1, α2, . . . , αs) where αi ≥ 2 for all i . Also let F = F̆ (α)
and n = #F . Let α, the black tile sequence b1, b2, . . . , bs , and the
red tile sequence r1, r2, . . . , rs−1 be all palindromic for all orbits.

(a) For all k the statistic χk − χn−k+1 is 0-mesic.

(b) If s is odd, then for all k the statistic χ̂k + χ̂n−k+1 is 1-mesic.

Question
Let F = F̆ (α) with α palindromic. Find necessary and/or sufficient
conditions on α for the black or the red tile sequences to be
palindromic for all rowmotion orbits.



Palindromic α.

Sequence a0, a1, . . . , an is palindromic if ak = an−k for all
0 ≤ k ≤ n.

Write χk = χxk and χ̂k = χ̂xk .

Proposition (EPRS)

Let α = (α1, α2, . . . , αs) where αi ≥ 2 for all i . Also let F = F̆ (α)
and n = #F . Let α, the black tile sequence b1, b2, . . . , bs , and the
red tile sequence r1, r2, . . . , rs−1 be all palindromic for all orbits.

(a) For all k the statistic χk − χn−k+1 is 0-mesic.

(b) If s is odd, then for all k the statistic χ̂k + χ̂n−k+1 is 1-mesic.

Question
Let F = F̆ (α) with α palindromic. Find necessary and/or sufficient
conditions on α for the black or the red tile sequences to be
palindromic for all rowmotion orbits.



Palindromic α.

Sequence a0, a1, . . . , an is palindromic if ak = an−k for all
0 ≤ k ≤ n. Write χk = χxk and χ̂k = χ̂xk .

Proposition (EPRS)

Let α = (α1, α2, . . . , αs) where αi ≥ 2 for all i . Also let F = F̆ (α)
and n = #F . Let α, the black tile sequence b1, b2, . . . , bs , and the
red tile sequence r1, r2, . . . , rs−1 be all palindromic for all orbits.

(a) For all k the statistic χk − χn−k+1 is 0-mesic.

(b) If s is odd, then for all k the statistic χ̂k + χ̂n−k+1 is 1-mesic.

Question
Let F = F̆ (α) with α palindromic. Find necessary and/or sufficient
conditions on α for the black or the red tile sequences to be
palindromic for all rowmotion orbits.



Palindromic α.

Sequence a0, a1, . . . , an is palindromic if ak = an−k for all
0 ≤ k ≤ n. Write χk = χxk and χ̂k = χ̂xk .

Proposition (EPRS)

Let α = (α1, α2, . . . , αs) where αi ≥ 2 for all i . Also let F = F̆ (α)
and n = #F . Let α, the black tile sequence b1, b2, . . . , bs , and the
red tile sequence r1, r2, . . . , rs−1 be all palindromic for all orbits.

(a) For all k the statistic χk − χn−k+1 is 0-mesic.

(b) If s is odd, then for all k the statistic χ̂k + χ̂n−k+1 is 1-mesic.

Question
Let F = F̆ (α) with α palindromic. Find necessary and/or sufficient
conditions on α for the black or the red tile sequences to be
palindromic for all rowmotion orbits.



Palindromic α.

Sequence a0, a1, . . . , an is palindromic if ak = an−k for all
0 ≤ k ≤ n. Write χk = χxk and χ̂k = χ̂xk .

Proposition (EPRS)

Let α = (α1, α2, . . . , αs) where αi ≥ 2 for all i . Also let F = F̆ (α)
and n = #F . Let α, the black tile sequence b1, b2, . . . , bs , and the
red tile sequence r1, r2, . . . , rs−1 be all palindromic for all orbits.

(a) For all k the statistic χk − χn−k+1 is 0-mesic.

(b) If s is odd, then for all k the statistic χ̂k + χ̂n−k+1 is 1-mesic.

Question
Let F = F̆ (α) with α palindromic. Find necessary and/or sufficient
conditions on α for the black or the red tile sequences to be
palindromic for all rowmotion orbits.



Palindromic α.

Sequence a0, a1, . . . , an is palindromic if ak = an−k for all
0 ≤ k ≤ n. Write χk = χxk and χ̂k = χ̂xk .

Proposition (EPRS)

Let α = (α1, α2, . . . , αs) where αi ≥ 2 for all i . Also let F = F̆ (α)
and n = #F . Let α, the black tile sequence b1, b2, . . . , bs , and the
red tile sequence r1, r2, . . . , rs−1 be all palindromic for all orbits.

(a) For all k the statistic χk − χn−k+1 is 0-mesic.

(b) If s is odd, then for all k the statistic χ̂k + χ̂n−k+1 is 1-mesic.

Question
Let F = F̆ (α) with α palindromic. Find necessary and/or sufficient
conditions on α for the black or the red tile sequences to be
palindromic for all rowmotion orbits.



Palindromic α.

Sequence a0, a1, . . . , an is palindromic if ak = an−k for all
0 ≤ k ≤ n. Write χk = χxk and χ̂k = χ̂xk .

Proposition (EPRS)

Let α = (α1, α2, . . . , αs) where αi ≥ 2 for all i . Also let F = F̆ (α)
and n = #F . Let α, the black tile sequence b1, b2, . . . , bs , and the
red tile sequence r1, r2, . . . , rs−1 be all palindromic for all orbits.

(a) For all k the statistic χk − χn−k+1 is 0-mesic.

(b) If s is odd, then for all k the statistic χ̂k + χ̂n−k+1 is 1-mesic.

Question
Let F = F̆ (α) with α palindromic. Find necessary and/or sufficient
conditions on α for the black or the red tile sequences to be
palindromic for all rowmotion orbits.



MERCI POUR

VOTRE (HOMOMÉSIQUE?)

ATTENTION!
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