Rowmotion on fences

Bruce Sagan
Michigan State University
www.math.msu.edu/~sagan
joint with Sergi Elizalde, Matthew Plante, and Tom Roby

January 25, 2022
Université Paris Nord

Rowmotion

Fences

Self-dual posets

Comments and open questions

Outline

Rowmotion

Fences

Self-dual posets

Comments and open questions

Let G be a finite group acting on a finite set S.

Let G be a finite group acting on a finite set S. Let \mathbb{N} be the nonnegative integers and st: $S \rightarrow \mathbb{N}$ be a statistic.

Let G be a finite group acting on a finite set S. Let \mathbb{N} be the nonnegative integers and st: $S \rightarrow \mathbb{N}$ be a statistic. If $\mathcal{O} \subseteq S$ then we let

$$
\operatorname{st} \mathcal{O}=\sum_{x \in \mathcal{O}} \operatorname{st} x .
$$

Let G be a finite group acting on a finite set S. Let \mathbb{N} be the nonnegative integers and st: $S \rightarrow \mathbb{N}$ be a statistic. If $\mathcal{O} \subseteq S$ then we let

$$
\operatorname{st} \mathcal{O}=\sum_{x \in \mathcal{O}} \operatorname{st} x .
$$

Call st homomesic if st $\mathcal{O} / \# \mathcal{O}$ is constant over all orbits \mathcal{O} where the hash tag is cardinality.

Let G be a finite group acting on a finite set S. Let \mathbb{N} be the nonnegative integers and st: $S \rightarrow \mathbb{N}$ be a statistic. If $\mathcal{O} \subseteq S$ then we let

$$
\operatorname{st} \mathcal{O}=\sum_{x \in \mathcal{O}} \operatorname{st} x .
$$

Call st homomesic if st $\mathcal{O} / \# \mathcal{O}$ is constant over all orbits \mathcal{O} where the hash tag is cardinality. In particular, st is c-mesic if, for all orbits \mathcal{O},

$$
\frac{\operatorname{st} \mathcal{O}}{\# \mathcal{O}}=c
$$

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$ with rotation $w_{1} w_{2} \ldots w_{n} \mapsto w_{n} w_{1} \ldots w_{n-1}$,

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$ with rotation $w_{1} w_{2} \ldots w_{n} \mapsto w_{n} w_{1} \ldots w_{n-1}$, and inversion statistic $\operatorname{inv} w_{1} w_{2} \ldots w_{n}=\#\left\{(i, j) \mid i<j\right.$ and $\left.w_{i}>w_{j}\right\}$.

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$

with rotation $w_{1} w_{2} \ldots w_{n} \mapsto w_{n} w_{1} \ldots w_{n-1}$, and inversion statistic

$$
\operatorname{inv} w_{1} w_{2} \ldots w_{n}=\#\left\{(i, j) \mid i<j \text { and } w_{i}>w_{j}\right\}
$$

Ex. When $n=4$ and $k=2$ there are two orbits

w	inv w	w	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$

with rotation $w_{1} w_{2} \ldots w_{n} \mapsto w_{n} w_{1} \ldots w_{n-1}$, and inversion statistic

$$
\operatorname{inv} w_{1} w_{2} \ldots w_{n}=\#\left\{(i, j) \mid i<j \text { and } w_{i}>w_{j}\right\}
$$

Ex. When $n=4$ and $k=2$ there are two orbits

w	inv w	w	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average $=8 / 4=2$			

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$

with rotation $w_{1} w_{2} \ldots w_{n} \mapsto w_{n} w_{1} \ldots w_{n-1}$, and inversion statistic

$$
\operatorname{inv} w_{1} w_{2} \ldots w_{n}=\#\left\{(i, j) \mid i<j \text { and } w_{i}>w_{j}\right\}
$$

Ex. When $n=4$ and $k=2$ there are two orbits

w	inv w	w	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average $=8 / 4=2$		average $=4 / 2=2$	

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$

with rotation $w_{1} w_{2} \ldots w_{n} \mapsto w_{n} w_{1} \ldots w_{n-1}$, and inversion statistic

$$
\operatorname{inv} w_{1} w_{2} \ldots w_{n}=\#\left\{(i, j) \mid i<j \text { and } w_{i}>w_{j}\right\}
$$

Theorem (Propp-Roby)
The inversion statistic is $k(n-k) / 2$-mesic for rotation on $S_{n, k}$.

Ex. When $n=4$ and $k=2$ there are two orbits

w	inv w	w	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average $=8 / 4=2$		average $=4 / 2=2$	

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$

with rotation $w_{1} w_{2} \ldots w_{n} \mapsto w_{n} w_{1} \ldots w_{n-1}$, and inversion statistic

$$
\operatorname{inv} w_{1} w_{2} \ldots w_{n}=\#\left\{(i, j) \mid i<j \text { and } w_{i}>w_{j}\right\}
$$

Theorem (Propp-Roby)
The inversion statistic is $k(n-k) / 2$-mesic for rotation on $S_{n, k}$.
Call st homometric if for any two orbits \mathcal{O}_{1} and \mathcal{O}_{2} we have

$$
\# \mathcal{O}_{1}=\# \mathcal{O}_{2} \Longrightarrow \text { st } \mathcal{O}_{1}=\operatorname{st} \mathcal{O}_{2}
$$

Ex. When $n=4$ and $k=2$ there are two orbits

w	inv w	w	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average $=8 / 4=2$		average $=4 / 2=2$	

$$
S_{n, k}:=\left\{w_{1} w_{2} \ldots w_{n} \mid w_{i} \in\{0,1\} \text { for all } i \text {, and having } k \text { ones }\right\}
$$

with rotation $w_{1} w_{2} \ldots w_{n} \mapsto w_{n} w_{1} \ldots w_{n-1}$, and inversion statistic

$$
\operatorname{inv} w_{1} w_{2} \ldots w_{n}=\#\left\{(i, j) \mid i<j \text { and } w_{i}>w_{j}\right\}
$$

Theorem (Propp-Roby)
The inversion statistic is $k(n-k) / 2$-mesic for rotation on $S_{n, k}$.
Call st homometric if for any two orbits \mathcal{O}_{1} and \mathcal{O}_{2} we have

$$
\# \mathcal{O}_{1}=\# \mathcal{O}_{2} \Longrightarrow \text { st } \mathcal{O}_{1}=\text { st } \mathcal{O}_{2}
$$

Note that homomesy implies homometry, but not conversely.
Ex. When $n=4$ and $k=2$ there are two orbits

w	inv w	w	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average $=8 / 4=2$		average $=4 / 2=2$	

Let (P, \unlhd) be a finite poset.

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\mathcal{A}(P)=\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\}
$$

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\begin{aligned}
& \mathcal{A}(P)=\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\}, \\
& \mathcal{I}(P)=\{I \subseteq P \mid x \in I \text { and } y \leq x \text { implies } y \in I\}
\end{aligned}
$$

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\begin{aligned}
\mathcal{A}(P) & =\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\} \\
\mathcal{I}(P) & =\{I \subseteq P \mid x \in I \text { and } y \leq x \text { implies } y \in I\} \\
\mathcal{U}(P) & =\{U \subseteq P \mid x \in U \text { and } y \geq x \text { implies } y \in U\}
\end{aligned}
$$

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\begin{aligned}
\mathcal{A}(P) & =\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\} \\
\mathcal{I}(P) & =\{I \subseteq P \mid x \in I \text { and } y \leq x \text { implies } y \in I\} \\
\mathcal{U}(P) & =\{U \subseteq P \mid x \in U \text { and } y \geq x \text { implies } y \in U\}
\end{aligned}
$$

An antichain generates an ideal via $\Delta: \mathcal{A}(P) \rightarrow \mathcal{I}(P)$ where

$$
\Delta(A)=\{x \in P \mid x \leq y \text { for some } y \in A\} .
$$

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\begin{aligned}
\mathcal{A}(P) & =\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\} \\
\mathcal{I}(P) & =\{I \subseteq P \mid x \in I \text { and } y \leq x \text { implies } y \in I\} \\
\mathcal{U}(P) & =\{U \subseteq P \mid x \in U \text { and } y \geq x \text { implies } y \in U\}
\end{aligned}
$$

An antichain generates an ideal via $\Delta: \mathcal{A}(P) \rightarrow \mathcal{I}(P)$ where

$$
\Delta(A)=\{x \in P \mid x \leq y \text { for some } y \in A\}
$$

Ex.
$A=$

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\begin{aligned}
\mathcal{A}(P) & =\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\} \\
\mathcal{I}(P) & =\{I \subseteq P \mid x \in I \text { and } y \leq x \text { implies } y \in I\} \\
\mathcal{U}(P) & =\{U \subseteq P \mid x \in U \text { and } y \geq x \text { implies } y \in U\}
\end{aligned}
$$

An antichain generates an ideal via $\Delta: \mathcal{A}(P) \rightarrow \mathcal{I}(P)$ where

$$
\Delta(A)=\{x \in P \mid x \leq y \text { for some } y \in A\}
$$

Antichains generate upper ideals via $\nabla: \mathcal{A}(P) \rightarrow \mathcal{U}(P)$ where

$$
\nabla(A)=\{x \in P \mid x \geq y \text { for some } y \in A\}
$$

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\begin{aligned}
& \mathcal{A}(P)=\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\} \\
& \mathcal{I}(P)=\{I \subseteq P \mid x \in I \text { and } y \leq x \text { implies } y \in I\} \\
& \mathcal{U}(P)=\{U \subseteq P \mid x \in U \text { and } y \geq x \text { implies } y \in U\}
\end{aligned}
$$

An antichain generates an ideal via $\Delta: \mathcal{A}(P) \rightarrow \mathcal{I}(P)$ where

$$
\Delta(A)=\{x \in P \mid x \leq y \text { for some } y \in A\}
$$

Antichains generate upper ideals via $\nabla: \mathcal{A}(P) \rightarrow \mathcal{U}(P)$ where

$$
\nabla(A)=\{x \in P \mid x \geq y \text { for some } y \in A\}
$$

Ex.
$A=$

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\begin{aligned}
& \mathcal{A}(P)=\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\} \\
& \mathcal{I}(P)=\{I \subseteq P \mid x \in I \text { and } y \leq x \text { implies } y \in I\} \\
& \mathcal{U}(P)=\{U \subseteq P \mid x \in U \text { and } y \geq x \text { implies } y \in U\}
\end{aligned}
$$

An antichain generates an ideal via $\Delta: \mathcal{A}(P) \rightarrow \mathcal{I}(P)$ where

$$
\Delta(A)=\{x \in P \mid x \leq y \text { for some } y \in A\}
$$

Antichains generate upper ideals via $\nabla: \mathcal{A}(P) \rightarrow \mathcal{U}(P)$ where

$$
\nabla(A)=\{x \in P \mid x \geq y \text { for some } y \in A\}
$$

Ideals produce upper ideals via $c: \mathcal{I}(P) \rightarrow \mathcal{U}(P)$ where

$$
c(I)=P-I .
$$

Let (P, \unlhd) be a finite poset. The sets of antichains, (lower) ideals, and upper ideals of P are

$$
\begin{aligned}
\mathcal{A}(P) & =\{A \subseteq P \mid \text { no two elements of } A \text { are comparable }\} \\
\mathcal{I}(P) & =\{I \subseteq P \mid x \in I \text { and } y \leq x \text { implies } y \in I\} \\
\mathcal{U}(P) & =\{U \subseteq P \mid x \in U \text { and } y \geq x \text { implies } y \in U\}
\end{aligned}
$$

An antichain generates an ideal via $\Delta: \mathcal{A}(P) \rightarrow \mathcal{I}(P)$ where

$$
\Delta(A)=\{x \in P \mid x \leq y \text { for some } y \in A\}
$$

Antichains generate upper ideals via $\nabla: \mathcal{A}(P) \rightarrow \mathcal{U}(P)$ where

$$
\nabla(A)=\{x \in P \mid x \geq y \text { for some } y \in A\}
$$

Ideals produce upper ideals via $c: \mathcal{I}(P) \rightarrow \mathcal{U}(P)$ where

$$
c(I)=P-I .
$$

Ex.
$I=$

Rowmotion on antichains of poset P is $\rho: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ where

$$
A \quad \mapsto \quad 1 \stackrel{C}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} \rho(A) .
$$

Rowmotion on antichains of poset P is $\rho: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ where

$$
A \stackrel{\Delta}{\mapsto} \quad I \quad \stackrel{c}{\mapsto} \quad U \stackrel{\nabla^{-1}}{\mapsto} \rho(A) .
$$

Rowmotion on antichains of poset P is $\rho: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ where

$$
A \stackrel{A}{\mapsto} \quad \mid \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} \rho(A) .
$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver.

Rowmotion on antichains of poset P is $\rho: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ where

$$
A \stackrel{A}{\mapsto} \quad \mid \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} \rho(A) .
$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. Rowmotion on ideals of poset P is $\hat{\rho}: \mathcal{I}(P) \rightarrow \mathcal{I}(P)$ where

$$
I \stackrel{c}{\mapsto} U \stackrel{\nabla-1}{\mapsto} \quad A \quad \stackrel{\Delta}{\mapsto} \quad \hat{\rho}(I) .
$$

Rowmotion on antichains of poset P is $\rho: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ where

$$
A \stackrel{A}{\mapsto} \quad \mid \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} \rho(A) .
$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. Rowmotion on ideals of poset P is $\hat{\rho}: \mathcal{I}(P) \rightarrow \mathcal{I}(P)$ where

$$
1 \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} A \stackrel{\Delta}{\mapsto} \hat{\rho}(I) .
$$

We will study two statistics.

Rowmotion on antichains of poset P is $\rho: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ where

$$
A \stackrel{\Delta}{\mapsto} \quad I \quad \stackrel{c}{\mapsto} \quad U \quad \stackrel{\nabla^{-1}}{\mapsto} \rho(A) .
$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. Rowmotion on ideals of poset P is $\hat{\rho}: \mathcal{I}(P) \rightarrow \mathcal{I}(P)$ where

$$
I \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} A \stackrel{\Delta}{\mapsto} \quad \hat{\rho}(I) .
$$

We will study two statistics. For antichains $A \in \mathcal{A}(P)$ define

$$
\chi(A)=\# A
$$

where the hash symbol is cardinality.

Rowmotion on antichains of poset P is $\rho: \mathcal{A}(P) \rightarrow \mathcal{A}(P)$ where

$$
A \stackrel{\Delta}{\mapsto} \quad I \quad \stackrel{c}{\mapsto} \quad U \quad \stackrel{\nabla^{-1}}{\mapsto} \rho(A) .
$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. Rowmotion on ideals of poset P is $\hat{\rho}: \mathcal{I}(P) \rightarrow \mathcal{I}(P)$ where

$$
I \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} A \stackrel{\Delta}{\mapsto} \quad \hat{\rho}(I) .
$$

We will study two statistics. For antichains $A \in \mathcal{A}(P)$ define

$$
\chi(A)=\# A
$$

where the hash symbol is cardinality. For ideals $I \in \mathcal{I}(P)$ define

$$
\hat{\chi}(I)=\# I .
$$

Ex.

Outline

Rowmotion

Fences

Self-dual posets

Comments and open questions

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.
$F=$

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams.

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called segments.

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called segments.

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called segments. Elements on two segments are called shared.

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called segments. Elements on two segments are called shared.

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called segments. Elements on two segments are called shared. All other elements are unshared.

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called segments. Elements on two segments are called shared. All other elements are unshared.

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called segments. Elements on two segments are called shared. All other elements are unshared. If F has s segments then we let $F=\breve{F}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ where for all i

$$
\alpha_{i}=(\# \text { of unshared elements on segment } i)+1
$$

A fence is a poset with elements $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and covers

$$
x_{1} \triangleleft x_{2} \triangleleft \ldots \triangleleft x_{a} \triangleright x_{a+1} \triangleright \ldots \triangleright x_{b} \triangleleft x_{b+1} \triangleleft \cdots
$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called segments. Elements on two segments are called shared. All other elements are unshared. If F has s segments then we let $F=\breve{F}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ where for all i

$$
\alpha_{i}=(\# \text { of unshared elements on segment } i)+1
$$

As an example of rowmotion on antichains in a fence, consider F below and $A=\left\{x_{1}, x_{4}, x_{8}\right\}$ indicated by squares.

As an example of rowmotion on antichains in a fence, consider F below and $A=\left\{x_{1}, x_{4}, x_{8}\right\}$ indicated by squares.

As an example of rowmotion on antichains in a fence, consider F below and $A=\left\{x_{1}, x_{4}, x_{8}\right\}$ indicated by squares. So $\rho(A)=\left\{x_{2}\right\}$.

As an example of rowmotion on antichains in a fence, consider F below and $A=\left\{x_{1}, x_{4}, x_{8}\right\}$ indicated by squares. So $\rho(A)=\left\{x_{2}\right\}$.

Represent an antichain $A \subset F$ using a column of 4 boxes, with the box in row i from the top corresponding to the i th segment S_{i} from the left.

As an example of rowmotion on antichains in a fence, consider F below and $A=\left\{x_{1}, x_{4}, x_{8}\right\}$ indicated by squares. So $\rho(A)=\left\{x_{2}\right\}$.

Represent an antichain $A \subset F$ using a column of 4 boxes, with the box in row i from the top corresponding to the i th segment S_{i} from the left. We color the box for S_{i} by black if $S_{i} \cap A$ is an unshared element, red if $S_{i} \cap A$ is a shared element, or yellow if $S_{i} \cap A=\emptyset$.

As an example of rowmotion on antichains in a fence, consider F below and $A=\left\{x_{1}, x_{4}, x_{8}\right\}$ indicated by squares. So $\rho(A)=\left\{x_{2}\right\}$.

Represent an antichain $A \subset F$ using a column of 4 boxes, with the box in row i from the top corresponding to the i th segment S_{i} from the left. We color the box for S_{i} by black if $S_{i} \cap A$ is an unshared element, red if $S_{i} \cap A$ is a shared element, or yellow if $S_{i} \cap A=\emptyset$.

Pasting together such colored columns, we can model any orbit of ρ on a fence $F=\breve{F}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ as a tiling of a cylinder C_{s} of boxes having s rows.

Pasting together such colored columns, we can model any orbit of ρ on a fence $F=\breve{F}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ as a tiling of a cylinder C_{s} of boxes having s rows. One of the orbits in $\breve{F}(4,3,4)$ has the following tiling where the left and right ends of the rectangle are identified.

Pasting together such colored columns, we can model any orbit of ρ on a fence $F=\breve{F}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ as a tiling of a cylinder C_{s} of boxes having s rows. One of the orbits in $\breve{F}(4,3,4)$ has the following tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows.

Pasting together such colored columns, we can model any orbit of ρ on a fence $F=\breve{F}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ as a tiling of a cylinder C_{s} of boxes having s rows. One of the orbits in $\breve{F}(4,3,4)$ has the following tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$, then an α-tiling is a tiling of C_{s} using yellow 1×1 tiles, red 2×1 tiles, and black $1 \times\left(\alpha_{i}-1\right)$ tiles in row i, for $1 \leq i \leq s$, such that the following hold for all rows.

Pasting together such colored columns, we can model any orbit of ρ on a fence $F=\breve{F}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ as a tiling of a cylinder C_{s} of boxes having s rows. One of the orbits in $\breve{F}(4,3,4)$ has the following tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$, then an α-tiling is a tiling of C_{s} using yellow 1×1 tiles, red 2×1 tiles, and black $1 \times\left(\alpha_{i}-1\right)$ tiles in row i, for $1 \leq i \leq s$, such that the following hold for all rows.
(a) If $\alpha_{i} \geq 2$ and the red tiles are ignored, then the black and yellow tiles alternate in row i.

Pasting together such colored columns, we can model any orbit of ρ on a fence $F=\breve{F}\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ as a tiling of a cylinder C_{s} of boxes having s rows. One of the orbits in $\breve{F}(4,3,4)$ has the following tiling where the left and right ends of the rectangle are identified.

We can characterize these tilings as follows. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$, then an α-tiling is a tiling of C_{s} using yellow 1×1 tiles, red 2×1 tiles, and black $1 \times\left(\alpha_{i}-1\right)$ tiles in row i, for $1 \leq i \leq s$, such that the following hold for all rows.
(a) If $\alpha_{i} \geq 2$ and the red tiles are ignored, then the black and yellow tiles alternate in row i.
(b) There is a red tile in a column covering rows i and $i+1$ if and only if either the next column contains two yellow tiles in those two rows when i is odd, or the previous column contains two yellow tiles in those two rows when i is even.
$b_{i}:=$ the number of black tiles in row i of a tiling,
$b_{i}:=$ the number of black tiles in row i of a tiling, $r_{i}:=$ the number of red tiles with top box in row i of a tiling,
$b_{i}:=$ the number of black tiles in row i of a tiling, $r_{i}:=$ the number of red tiles with top box in row i of a tiling, $\chi(\mathcal{O}):=$ the number of antichain elements in orbit \mathcal{O}.
$b_{i}:=$ the number of black tiles in row i of a tiling,
$r_{i}:=$ the number of red tiles with top box in row i of a tiling, $\chi(\mathcal{O}):=$ the number of antichain elements in orbit \mathcal{O}.
Lemma (EPRS)
Given an orbit \mathcal{O} in fence $\breve{F}(\alpha)$ with corresponding α-tiling

$$
\chi(\mathcal{O})=\sum_{i=1}^{s}\left(b_{i} \alpha_{i}-b_{i}+r_{i}\right)
$$

$b_{i}:=$ the number of black tiles in row i of a tiling,
$r_{i}:=$ the number of red tiles with top box in row i of a tiling, $\chi(\mathcal{O}):=$ the number of antichain elements in orbit \mathcal{O}.
Lemma (EPRS)
Given an orbit \mathcal{O} in fence $\breve{F}(\alpha)$ with corresponding α-tiling

$$
\chi(\mathcal{O})=\sum_{i=1}^{s}\left(b_{i} \alpha_{i}-b_{i}+r_{i}\right)
$$

One can also compute χ_{x}, the number of times a given element x appears in an orbit, and derive corresponding results for ideals.
$b_{i}:=$ the number of black tiles in row i of a tiling,
$r_{i}:=$ the number of red tiles with top box in row i of a tiling,
$\chi(\mathcal{O}):=$ the number of antichain elements in orbit \mathcal{O}.
Lemma (EPRS)
Given an orbit \mathcal{O} in fence $\breve{F}(\alpha)$ with corresponding α-tiling

$$
\chi(\mathcal{O})=\sum_{i=1}^{s}\left(b_{i} \alpha_{i}-b_{i}+r_{i}\right)
$$

One can also compute χ_{x}, the number of times a given element x appears in an orbit, and derive corresponding results for ideals.
Theorem (EPRS)

1. If x is unshared and y, z are the shared elements on the same segment S_{i} then $\alpha_{i} \chi_{x}+\chi_{y}+\chi_{z}$ is 1-mesic.
$b_{i}:=$ the number of black tiles in row i of a tiling,
$r_{i}:=$ the number of red tiles with top box in row i of a tiling,
$\chi(\mathcal{O}):=$ the number of antichain elements in orbit \mathcal{O}.
Lemma (EPRS)
Given an orbit \mathcal{O} in fence $\breve{F}(\alpha)$ with corresponding α-tiling

$$
\chi(\mathcal{O})=\sum_{i=1}^{s}\left(b_{i} \alpha_{i}-b_{i}+r_{i}\right)
$$

One can also compute χ_{x}, the number of times a given element x appears in an orbit, and derive corresponding results for ideals.
Theorem (EPRS)

1. If x is unshared and y, z are the shared elements on the same segment S_{i} then $\alpha_{i} \chi_{x}+\chi_{y}+\chi_{z}$ is 1-mesic.
2. For $\breve{F}(a, b)$ all orbits \mathcal{O} have size $\ell=\operatorname{lcm}(a, b)$ except one \mathcal{O}^{\prime} of size $\ell+1$.
$b_{i}:=$ the number of black tiles in row i of a tiling,
$r_{i}:=$ the number of red tiles with top box in row i of a tiling,
$\chi(\mathcal{O}):=$ the number of antichain elements in orbit \mathcal{O}.

Lemma (EPRS)

Given an orbit \mathcal{O} in fence $\breve{F}(\alpha)$ with corresponding α-tiling

$$
\chi(\mathcal{O})=\sum_{i=1}^{s}\left(b_{i} \alpha_{i}-b_{i}+r_{i}\right)
$$

One can also compute χ_{x}, the number of times a given element x appears in an orbit, and derive corresponding results for ideals.
Theorem (EPRS)

1. If x is unshared and y, z are the shared elements on the same segment S_{i} then $\alpha_{i} \chi_{x}+\chi_{y}+\chi_{z}$ is 1-mesic.
2. For $\breve{F}(a, b)$ all orbits \mathcal{O} have size $\ell=\operatorname{lcm}(a, b)$ except one \mathcal{O}^{\prime} of size $\ell+1$. For the orbits of size ℓ we have $\chi(\mathcal{O})=\frac{2 a b-a-b}{\operatorname{gcd}(a, b)}:=m$. For the other orbit $\chi\left(\mathcal{O}^{\prime}\right)=m+1$.

Outline

Rowmotion

Fences

Self-dual posets

Comments and open questions

Let P^{*} be the dual of poset P.

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$.

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$.

Ex.

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$. Thus there exists and order-reversing bijection $\kappa: P \rightarrow P$.

Ex.

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$. Thus there exists and order-reversing bijection $\kappa: P \rightarrow P$.

Ex. $\quad \kappa\left(x_{i}\right)=x_{9-i}$

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$. Thus there exists and order-reversing bijection $\kappa: P \rightarrow P$. Define the ideal complement of $I \in \mathcal{I}(P)$ as

$$
\bar{I}=c \circ \kappa(I)
$$

where $c(S)=P-S$ for any $S \subseteq P$.
Ex. $\quad \kappa\left(x_{i}\right)=x_{9-i}$

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$. Thus there exists and order-reversing bijection $\kappa: P \rightarrow P$. Define the ideal complement of $I \in \mathcal{I}(P)$ as

$$
\bar{I}=c \circ \kappa(I)
$$

where $c(S)=P-S$ for any $S \subseteq P$.
Ex. $\quad \kappa\left(x_{i}\right)=x_{9-i}$

$$
I=\left\{x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}
$$

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$. Thus there exists and order-reversing bijection $\kappa: P \rightarrow P$. Define the ideal complement of $I \in \mathcal{I}(P)$ as

$$
\bar{I}=c \circ \kappa(I)
$$

where $c(S)=P-S$ for any $S \subseteq P$.
Ex. $\quad \kappa\left(x_{i}\right)=x_{9-i}$

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$. Thus there exists and order-reversing bijection $\kappa: P \rightarrow P$. Define the ideal complement of $I \in \mathcal{I}(P)$ as

$$
\bar{I}=c \circ \kappa(I)
$$

where $c(S)=P-S$ for any $S \subseteq P$.
Ex. $\quad \kappa\left(x_{i}\right)=x_{9-i}$

Let P^{*} be the dual of poset P. Suppose P is self dual so that $P \cong P^{*}$. Thus there exists and order-reversing bijection $\kappa: P \rightarrow P$. Define the ideal complement of $I \in \mathcal{I}(P)$ as

$$
\bar{I}=c \circ \kappa(I)
$$

where $c(S)=P-S$ for any $S \subseteq P$. Note that $\# I+\# \bar{I}=\# P$.
Ex. $\quad \kappa\left(x_{i}\right)=x_{9-i}$

$\hat{\chi}(\mathcal{O})=$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

$$
\hat{\chi}(\mathcal{O})=\text { the number of ideal elements in an orbit } \mathcal{O} \text { of } \hat{\rho} .
$$

Theorem (EPRS)
Let P be self-dual with $n=\# P$, and fix an order-reversing bijection $\kappa: P \rightarrow P$. Let $I \in \mathcal{I}(P)$.

$$
\hat{\chi}(\mathcal{O})=\text { the number of ideal elements in an orbit } \mathcal{O} \text { of } \hat{\rho} .
$$

Theorem (EPRS)
Let P be self-dual with $n=\# P$, and fix an order-reversing bijection $\kappa: P \rightarrow P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \bar{I} \in \mathcal{O}$ for some orbit \mathcal{O}, then

$$
\frac{\hat{\chi}(\mathcal{O})}{\# \mathcal{O}}=\frac{n}{2}
$$

$\hat{\chi}(\mathcal{O})=$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.
Theorem (EPRS)
Let P be self-dual with $n=\# P$, and fix an order-reversing bijection $\kappa: P \rightarrow P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \bar{I} \in \mathcal{O}$ for some orbit \mathcal{O}, then

$$
\frac{\hat{\chi}(\mathcal{O})}{\# \mathcal{O}}=\frac{n}{2}
$$

2. If $I \in \mathcal{O}$ and $\bar{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\# \mathcal{O}=\# \overline{\mathcal{O}}$ and

$$
\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})}=\frac{n}{2} .
$$

$$
\hat{\chi}(\mathcal{O})=\text { the number of ideal elements in an orbit } \mathcal{O} \text { of } \hat{\rho} .
$$

Theorem (EPRS)
Let P be self-dual with $n=\# P$, and fix an order-reversing bijection $\kappa: P \rightarrow P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \bar{I} \in \mathcal{O}$ for some orbit \mathcal{O}, then

$$
\frac{\hat{\chi}(\mathcal{O})}{\# \mathcal{O}}=\frac{n}{2}
$$

2. If $I \in \mathcal{O}$ and $\bar{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\# \mathcal{O}=\# \overline{\mathcal{O}}$ and

$$
\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})}=\frac{n}{2} .
$$

Consider the group generated by the action of $\hat{\rho}$ and the map $l \mapsto \bar{l}$.

$$
\hat{\chi}(\mathcal{O})=\text { the number of ideal elements in an orbit } \mathcal{O} \text { of } \hat{\rho} .
$$

Theorem (EPRS)
Let P be self-dual with $n=\# P$, and fix an order-reversing bijection $\kappa: P \rightarrow P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \bar{I} \in \mathcal{O}$ for some orbit \mathcal{O}, then

$$
\frac{\hat{\chi}(\mathcal{O})}{\# \mathcal{O}}=\frac{n}{2}
$$

2. If $I \in \mathcal{O}$ and $\bar{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\# \mathcal{O}=\# \overline{\mathcal{O}}$ and

$$
\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})}=\frac{n}{2} .
$$

Consider the group generated by the action of $\hat{\rho}$ and the map $I \mapsto \bar{I}$. The orbits of this action will be called superorbits.
$\hat{\chi}(\mathcal{O})=$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.
Theorem (EPRS)
Let P be self-dual with $n=\# P$, and fix an order-reversing bijection $\kappa: P \rightarrow P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \bar{I} \in \mathcal{O}$ for some orbit \mathcal{O}, then

$$
\frac{\hat{\chi}(\mathcal{O})}{\# \mathcal{O}}=\frac{n}{2}
$$

2. If $I \in \mathcal{O}$ and $\bar{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\# \mathcal{O}=\# \overline{\mathcal{O}}$ and

$$
\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})}=\frac{n}{2} .
$$

Consider the group generated by the action of $\hat{\rho}$ and the map $I \mapsto \bar{I}$. The orbits of this action will be called superorbits.
Corollary (EPRS)
If P is self-dual with $n=\# P$ then $\hat{\chi}$ is (n/2)-mesic on superorbits.

Outline

Rowmotion

Fences

Self-dual posets

Comments and open questions

Constant α.

Constant α.

Let $\alpha=\left(a^{s}\right)=(\underbrace{a, \ldots, a}_{s})$.

Constant α.

Let $\alpha=\left(a^{s}\right)=(\underbrace{a, \ldots, a}_{s})$.
Conjecture
Let $F=\breve{F}\left(a^{s}\right)$ and consider rowmotion on F.

Constant α.

Let $\alpha=\left(a^{s}\right)=(\underbrace{a, \ldots, a}_{s})$.
Conjecture
Let $F=\breve{F}\left(a^{s}\right)$ and consider rowmotion on F.

1. The statistic χ is homometric.

Constant α.

Let $\alpha=\left(a^{s}\right)=(\underbrace{a, \ldots, a}_{s})$.
Conjecture
Let $F=\breve{F}\left(a^{s}\right)$ and consider rowmotion on F.

1. The statistic χ is homometric.
2. If s is odd then the statistic $\hat{\chi}$ is $n / 2$-mesic where $n=\# F$.

Constant α.

$$
\text { Let } \alpha=\left(a^{s}\right)=(\underbrace{a, \ldots, a}_{s}) \text {. }
$$

Conjecture

Let $F=\breve{F}\left(a^{s}\right)$ and consider rowmotion on F.

1. The statistic χ is homometric.
2. If s is odd then the statistic $\hat{\chi}$ is $n / 2$-mesic where $n=\# F$.

When $a=2$, it turns out that χ is actually homomesic.

Constant α.

$$
\text { Let } \alpha=\left(a^{s}\right)=(\underbrace{a, \ldots, a}_{s}) \text {. }
$$

Conjecture

Let $F=\breve{F}\left(a^{s}\right)$ and consider rowmotion on F.

1. The statistic χ is homometric.
2. If s is odd then the statistic $\hat{\chi}$ is $n / 2$-mesic where $n=\# F$.

When $a=2$, it turns out that χ is actually homomesic. Sam Hopkins pointed out that this follows from results in our paper and also from work of Chan, Haddadan, Hopkins, and Moci on balanced Young diagrams.

Constant α.

$$
\text { Let } \alpha=\left(a^{s}\right)=(\underbrace{a, \ldots, a}_{s}) \text {. }
$$

Conjecture

Let $F=\breve{F}\left(a^{s}\right)$ and consider rowmotion on F.

1. The statistic χ is homometric.
2. If s is odd then the statistic $\hat{\chi}$ is $n / 2$-mesic where $n=\# F$.

When $a=2$, it turns out that χ is actually homomesic. Sam Hopkins pointed out that this follows from results in our paper and also from work of Chan, Haddadan, Hopkins, and Moci on balanced Young diagrams. The case $a \geq 3$ is still open and χ is not homomesic in this case.

Constant α.

$$
\text { Let } \alpha=\left(a^{s}\right)=(\underbrace{a, \ldots, a}_{s}) \text {. }
$$

Conjecture

Let $F=\breve{F}\left(a^{s}\right)$ and consider rowmotion on F.

1. The statistic χ is homometric.
2. If s is odd then the statistic $\hat{\chi}$ is $n / 2$-mesic where $n=\# F$.

When $a=2$, it turns out that χ is actually homomesic. Sam Hopkins pointed out that this follows from results in our paper and also from work of Chan, Haddadan, Hopkins, and Moci on balanced Young diagrams. The case $a \geq 3$ is still open and χ is not homomesic in this case.

For $\hat{\chi}$ one can not use our results on self-dual posets since I and \bar{I} are not always in the same orbit.

Palindromic α.

Palindromic α.

Sequence $a_{0}, a_{1}, \ldots, a_{n}$ is palindromic if $a_{k}=a_{n-k}$ for all $0 \leq k \leq n$.

Palindromic α.

Sequence $a_{0}, a_{1}, \ldots, a_{n}$ is palindromic if $a_{k}=a_{n-k}$ for all $0 \leq k \leq n$. Write $\chi_{k}=\chi_{x_{k}}$ and $\hat{\chi}_{k}=\hat{\chi}_{x_{k}}$.

Palindromic α.

Sequence $a_{0}, a_{1}, \ldots, a_{n}$ is palindromic if $a_{k}=a_{n-k}$ for all $0 \leq k \leq n$. Write $\chi_{k}=\chi_{x_{k}}$ and $\hat{\chi}_{k}=\hat{\chi}_{x_{k}}$.
Proposition (EPRS)
Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ where $\alpha_{i} \geq 2$ for all i. Also let $F=\breve{F}(\alpha)$ and $n=\# F$. Let α, the black tile sequence $b_{1}, b_{2}, \ldots, b_{s}$, and the red tile sequence $r_{1}, r_{2}, \ldots, r_{s-1}$ be all palindromic for all orbits.

Palindromic α.

Sequence $a_{0}, a_{1}, \ldots, a_{n}$ is palindromic if $a_{k}=a_{n-k}$ for all $0 \leq k \leq n$. Write $\chi_{k}=\chi_{x_{k}}$ and $\hat{\chi}_{k}=\hat{\chi}_{x_{k}}$.

Proposition (EPRS)
Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ where $\alpha_{i} \geq 2$ for all i. Also let $F=\breve{F}(\alpha)$ and $n=\# F$. Let α, the black tile sequence $b_{1}, b_{2}, \ldots, b_{s}$, and the red tile sequence $r_{1}, r_{2}, \ldots, r_{s-1}$ be all palindromic for all orbits.
(a) For all k the statistic $\chi_{k}-\chi_{n-k+1}$ is 0 -mesic.

Palindromic α.

Sequence $a_{0}, a_{1}, \ldots, a_{n}$ is palindromic if $a_{k}=a_{n-k}$ for all $0 \leq k \leq n$. Write $\chi_{k}=\chi_{x_{k}}$ and $\hat{\chi}_{k}=\hat{\chi}_{x_{k}}$.
Proposition (EPRS)
Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ where $\alpha_{i} \geq 2$ for all i. Also let $F=\breve{F}(\alpha)$ and $n=\# F$. Let α, the black tile sequence $b_{1}, b_{2}, \ldots, b_{s}$, and the red tile sequence $r_{1}, r_{2}, \ldots, r_{s-1}$ be all palindromic for all orbits.
(a) For all k the statistic $\chi_{k}-\chi_{n-k+1}$ is $0-m e s i c$.
(b) If s is odd, then for all k the statistic $\hat{\chi}_{k}+\hat{\chi}_{n-k+1}$ is 1-mesic.

Palindromic α.

Sequence $a_{0}, a_{1}, \ldots, a_{n}$ is palindromic if $a_{k}=a_{n-k}$ for all $0 \leq k \leq n$. Write $\chi_{k}=\chi_{x_{k}}$ and $\hat{\chi}_{k}=\hat{\chi}_{x_{k}}$.
Proposition (EPRS)
Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$ where $\alpha_{i} \geq 2$ for all i. Also let $F=\breve{F}(\alpha)$ and $n=\# F$. Let α, the black tile sequence $b_{1}, b_{2}, \ldots, b_{s}$, and the red tile sequence $r_{1}, r_{2}, \ldots, r_{s-1}$ be all palindromic for all orbits.
(a) For all k the statistic $\chi_{k}-\chi_{n-k+1}$ is $0-m e s i c$.
(b) If s is odd, then for all k the statistic $\hat{\chi}_{k}+\hat{\chi}_{n-k+1}$ is 1-mesic.

Question
Let $F=\breve{F}(\alpha)$ with α palindromic. Find necessary and/or sufficient conditions on α for the black or the red tile sequences to be palindromic for all rowmotion orbits.

MERCI POUR VOTRE (HOMOMÉSIQUE?) ATTENTION!

