Rowmotion on fences

Bruce Sagan Michigan State University www.math.msu.edu/~sagan joint with Sergi Elizalde, Matthew Plante, and Tom Roby

> January 25, 2022 Université Paris Nord

Rowmotion

Fences

Self-dual posets

Comments and open questions

Outline

Rowmotion

Fences

Self-dual posets

Comments and open questions

Let G be a finite group acting on a finite set S.

Let G be a finite group acting on a finite set S. Let \mathbb{N} be the nonnegative integers and st : $S \to \mathbb{N}$ be a statistic.

Let G be a finite group acting on a finite set S. Let \mathbb{N} be the nonnegative integers and st : $S \to \mathbb{N}$ be a statistic. If $\mathcal{O} \subseteq S$ then we let

$$\mathsf{st}\,\mathcal{O} = \sum_{x\in\mathcal{O}}\mathsf{st}\,x.$$

Let G be a finite group acting on a finite set S. Let \mathbb{N} be the nonnegative integers and st : $S \to \mathbb{N}$ be a statistic. If $\mathcal{O} \subseteq S$ then we let

$$\mathsf{st}\,\mathcal{O}=\sum_{x\in\mathcal{O}}\mathsf{st}\,x.$$

Call st *homomesic* if st $\mathcal{O}/\#\mathcal{O}$ is constant over all orbits \mathcal{O} where the hash tag is cardinality.

Let G be a finite group acting on a finite set S. Let \mathbb{N} be the nonnegative integers and st : $S \to \mathbb{N}$ be a statistic. If $\mathcal{O} \subseteq S$ then we let

st
$$\mathcal{O} = \sum_{x \in \mathcal{O}} \operatorname{st} x.$$

Call st *homomesic* if st $\mathcal{O}/\#\mathcal{O}$ is constant over all orbits \mathcal{O} where the hash tag is cardinality. In particular, st is *c-mesic* if, for all orbits \mathcal{O} ,

$$\frac{\operatorname{st}\mathcal{O}}{\#\mathcal{O}}=c.$$

 $S_{n,k} := \{w_1 w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones} \}$

 $S_{n,k} := \{w_1 w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones} \}$ with rotation $w_1 w_2 \dots w_n \mapsto w_n w_1 \dots w_{n-1}$, $S_{n,k} := \{w_1 w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones}\}$ with rotation $w_1 w_2 \dots w_n \mapsto w_n w_1 \dots w_{n-1}$, and *inversion statistic* $\text{inv } w_1 w_2 \dots w_n = \#\{(i,j) \mid i < j \text{ and } w_i > w_i\}.$ $S_{n,k} := \{w_1 w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones} \}$ with rotation $w_1 w_2 \dots w_n \mapsto w_n w_1 \dots w_{n-1}$, and *inversion statistic* inv $w_1 w_2 \dots w_n = \#\{(i,j) \mid i < j \text{ and } w_i > w_i\}.$

Ex. When n = 4 and k = 2 there are two orbits

W	inv w	w	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		

 $S_{n,k} := \{w_1 w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones} \}$ with rotation $w_1 w_2 \dots w_n \mapsto w_n w_1 \dots w_{n-1}$, and *inversion statistic* inv $w_1 w_2 \dots w_n = \#\{(i,j) \mid i < j \text{ and } w_i > w_i\}.$

Ex. When n = 4 and k = 2 there are two orbits

W	inv w	W	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average = $8/4 = 2$			

 $S_{n,k} := \{w_1 w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones}\}$ with rotation $w_1 w_2 \dots w_n \mapsto w_n w_1 \dots w_{n-1}$, and *inversion statistic* inv $w_1 w_2 \dots w_n = \#\{(i,j) \mid i < j \text{ and } w_i > w_i\}.$

Ex. When n = 4 and k = 2 there are two orbits

W	inv w	w	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
averag	e = 8/4 = 2	average	e = 4/2 = 2

 $S_{n,k} := \{w_1 w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones}\}$ with rotation $w_1 w_2 \dots w_n \mapsto w_n w_1 \dots w_{n-1}$, and *inversion statistic* inv $w_1 w_2 \dots w_n = \#\{(i,j) \mid i < j \text{ and } w_i > w_i\}.$

Theorem (Propp-Roby)

The inversion statistic is k(n-k)/2-mesic for rotation on $S_{n,k}$.

Ex. When n = 4 and k = 2 there are two orbits

W	inv w	W	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average = $8/4 = 2$		average	e = 4/2 = 2

 $S_{n,k} := \{w_1 w_2 \dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones} \}$ with rotation $w_1 w_2 \dots w_n \mapsto w_n w_1 \dots w_{n-1}$, and *inversion statistic*

inv
$$w_1 w_2 \dots w_n = \#\{(i,j) \mid i < j \text{ and } w_i > w_j\}.$$

Theorem (Propp-Roby)

The inversion statistic is k(n-k)/2-mesic for rotation on $S_{n,k}$. Call st homometric if for any two orbits \mathcal{O}_1 and \mathcal{O}_2 we have

$$\#\mathcal{O}_1 = \#\mathcal{O}_2 \implies \operatorname{st} \mathcal{O}_1 = \operatorname{st} \mathcal{O}_2.$$

Ex. When n = 4 and k = 2 there are two orbits

W	inv w	W	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average = $8/4 = 2$		average	e = 4/2 = 2

 $S_{n,k} := \{w_1w_2\dots w_n \mid w_i \in \{0,1\} \text{ for all } i, \text{ and having } k \text{ ones}\}$

with rotation $w_1 w_2 \dots w_n \mapsto w_n w_1 \dots w_{n-1}$, and *inversion statistic*

inv
$$w_1 w_2 \dots w_n = \#\{(i, j) \mid i < j \text{ and } w_i > w_j\}.$$

Theorem (Propp-Roby)

The inversion statistic is k(n-k)/2-mesic for rotation on $S_{n,k}$. Call st homometric if for any two orbits \mathcal{O}_1 and \mathcal{O}_2 we have

$$\#\mathcal{O}_1 = \#\mathcal{O}_2 \implies \operatorname{st} \mathcal{O}_1 = \operatorname{st} \mathcal{O}_2.$$

Note that homomesy implies homometry, but not conversely. **Ex.** When n = 4 and k = 2 there are two orbits

W	inv w	W	inv w
1100	4	1010	3
0110	2	0101	1
0011	0		
1001	2		
average = $8/4 = 2$		average	e = 4/2 = 2

Let (P, \trianglelefteq) be a finite poset.

 $\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},\$

 $\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},\$ $\mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},\$

 $\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},$ $\mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},$ $\mathcal{U}(P) = \{U \subseteq P \mid x \in U \text{ and } y \geq x \text{ implies } y \in U\}.$

$$\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},\$$

$$\mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},\$$

$$\mathcal{U}(P) = \{U \subseteq P \mid x \in U \text{ and } y \geq x \text{ implies } y \in U\}.$$

An antichain generates an ideal via $\Delta : \mathcal{A}(P) \rightarrow \mathcal{I}(P)$ where

$$\Delta(A) = \{ x \in P \mid x \le y \text{ for some } y \in A \}.$$

$$\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},\\ \mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},\\ \mathcal{U}(P) = \{U \subseteq P \mid x \in U \text{ and } y \geq x \text{ implies } y \in U\}.$$

An antichain generates an ideal via $\Delta : \mathcal{A}(P)
ightarrow \mathcal{I}(P)$ where

$$\Delta(A) = \{ x \in P \mid x \le y \text{ for some } y \in A \}.$$

$$\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},$$

$$\mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},$$

$$\mathcal{U}(P) = \{U \subseteq P \mid x \in U \text{ and } y \geq x \text{ implies } y \in U\}.$$

An antichain generates an ideal via $\Delta : \mathcal{A}(P)
ightarrow \mathcal{I}(P)$ where

$$\Delta(A) = \{x \in P \mid x \leq y \text{ for some } y \in A\}.$$

Antichains generate upper ideals via $\nabla : \mathcal{A}(P) \rightarrow \mathcal{U}(P)$ where

$$abla(A) = \{x \in P \mid x \ge y \text{ for some } y \in A\}.$$

$$\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},$$

$$\mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},$$

$$\mathcal{U}(P) = \{U \subseteq P \mid x \in U \text{ and } y \geq x \text{ implies } y \in U\}.$$

An antichain generates an ideal via $\Delta : \mathcal{A}(P)
ightarrow \mathcal{I}(P)$ where

$$\Delta(A) = \{x \in P \mid x \leq y \text{ for some } y \in A\}.$$

Antichains generate upper ideals via $\nabla : \mathcal{A}(P) \rightarrow \mathcal{U}(P)$ where

$$abla(A) = \{x \in P \mid x \ge y \text{ for some } y \in A\}.$$

$$\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},$$

$$\mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},$$

$$\mathcal{U}(P) = \{U \subseteq P \mid x \in U \text{ and } y \geq x \text{ implies } y \in U\}.$$

An antichain generates an ideal via $\Delta: \mathcal{A}(P)
ightarrow \mathcal{I}(P)$ where

$$\Delta(A) = \{x \in P \mid x \leq y \text{ for some } y \in A\}.$$

Antichains generate upper ideals via $abla : \mathcal{A}(P)
ightarrow \mathcal{U}(P)$ where

$$\nabla(A) = \{x \in P \mid x \ge y \text{ for some } y \in A\}.$$

Ideals produce upper ideals via $c : \mathcal{I}(P) \rightarrow \mathcal{U}(P)$ where

$$c(I)=P-I.$$

$$\mathcal{A}(P) = \{A \subseteq P \mid \text{no two elements of } A \text{ are comparable}\},$$

$$\mathcal{I}(P) = \{I \subseteq P \mid x \in I \text{ and } y \leq x \text{ implies } y \in I\},$$

$$\mathcal{U}(P) = \{U \subseteq P \mid x \in U \text{ and } y \geq x \text{ implies } y \in U\}.$$

An antichain generates an ideal via $\Delta: \mathcal{A}(P)
ightarrow \mathcal{I}(P)$ where

$$\Delta(A) = \{x \in P \mid x \leq y \text{ for some } y \in A\}.$$

Antichains generate upper ideals via $\nabla : \mathcal{A}(P) \rightarrow \mathcal{U}(P)$ where

$$abla(A) = \{x \in P \mid x \ge y \text{ for some } y \in A\}.$$

Ideals produce upper ideals via $c : \mathcal{I}(P) \rightarrow \mathcal{U}(P)$ where

$$c(I)=P-I$$

$$A \xrightarrow{\Delta} I \xrightarrow{c} U \xrightarrow{\nabla^{-1}} \rho(A).$$

$$A \xrightarrow{\Delta} I \xrightarrow{c} U \xrightarrow{\nabla^{-1}} \rho(A).$$

$$A \xrightarrow{\Delta} I \xrightarrow{c} U \xrightarrow{\nabla^{-1}} \rho(A).$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver.

$$A \stackrel{\Delta}{\mapsto} I \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} \rho(A).$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. *Rowmotion on ideals* of poset P is $\hat{\rho} : \mathcal{I}(P) \to \mathcal{I}(P)$ where

$$I \xrightarrow{c} U \xrightarrow{\nabla^{-1}} A \xrightarrow{\Delta} \hat{\rho}(I).$$

$$A \stackrel{\Delta}{\mapsto} I \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} \rho(A).$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. *Rowmotion on ideals* of poset P is $\hat{\rho} : \mathcal{I}(P) \to \mathcal{I}(P)$ where

$$I \xrightarrow{c} U \xrightarrow{\nabla^{-1}} A \xrightarrow{\Delta} \hat{\rho}(I).$$

We will study two statistics.

$$A \stackrel{\Delta}{\mapsto} I \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} \rho(A).$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. *Rowmotion on ideals* of poset P is $\hat{\rho} : \mathcal{I}(P) \to \mathcal{I}(P)$ where

$$I \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} A \stackrel{\Delta}{\mapsto} \hat{\rho}(I).$$

We will study two statistics. For antichains $A \in \mathcal{A}(P)$ define

 $\chi(A) = \#A$

where the hash symbol is cardinality.

$$A \stackrel{\Delta}{\mapsto} I \stackrel{c}{\mapsto} U \stackrel{\nabla^{-1}}{\mapsto} \rho(A).$$

Rowmotion on antichains was first studied by Duchet (in a special case) and independently by Brouwer and Schrijver. *Rowmotion on ideals* of poset P is $\hat{\rho} : \mathcal{I}(P) \to \mathcal{I}(P)$ where

$$I \xrightarrow{c} U \xrightarrow{\nabla^{-1}} A \xrightarrow{\Delta} \hat{\rho}(I).$$

We will study two statistics. For antichains $A \in \mathcal{A}(P)$ define

 $\chi(A) = \#A$

where the hash symbol is cardinality. For ideals $I \in \mathcal{I}(P)$ define

 $\hat{\chi}(I) = \#I.$

Outline

Rowmotion

Fences

Self-dual posets

Comments and open questions

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, *q*-analogues, unimodality, and Young diagrams.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called *segments*.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called *segments*.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called *segments*. Elements on two segments are called *shared*.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called *segments*. Elements on two segments are called *shared*.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, *q*-analogues, unimodality, and Young diagrams. The maximal chains of *F* are called *segments*. Elements on two segments are called *shared*. All other elements are *unshared*.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, *q*-analogues, unimodality, and Young diagrams. The maximal chains of *F* are called *segments*. Elements on two segments are called *shared*. All other elements are *unshared*.

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called *segments*. Elements on two segments are called *shared*. All other elements are *unshared*. If F has s segments then we let $F = \breve{F}(\alpha_1, \alpha_2, ..., \alpha_s)$ where for all i

 $\alpha_i = (\# \text{ of unshared elements on segment } i) + 1.$

$$x_1 \lhd x_2 \lhd \ldots \lhd x_a \triangleright x_{a+1} \triangleright \ldots \triangleright x_b \lhd x_{b+1} \lhd \cdots$$

where a, b, \ldots are positive integers.

Fences have important connections with cluster algebras, q-analogues, unimodality, and Young diagrams. The maximal chains of F are called *segments*. Elements on two segments are called *shared*. All other elements are *unshared*. If F has s segments then we let $F = \breve{F}(\alpha_1, \alpha_2, ..., \alpha_s)$ where for all i

 $\alpha_i = (\# \text{ of unshared elements on segment } i) + 1.$

Represent an antichain $A \subset F$ using a column of 4 boxes, with the box in row *i* from the top corresponding to the *i*th segment S_i from the left.

Represent an antichain $A \subset F$ using a column of 4 boxes, with the box in row *i* from the top corresponding to the *i*th segment S_i from the left. We color the box for S_i by black if $S_i \cap A$ is an unshared element, red if $S_i \cap A$ is a shared element, or yellow if $S_i \cap A = \emptyset$.

Represent an antichain $A \subset F$ using a column of 4 boxes, with the box in row *i* from the top corresponding to the *i*th segment S_i from the left. We color the box for S_i by black if $S_i \cap A$ is an unshared element, red if $S_i \cap A$ is a shared element, or yellow if $S_i \cap A = \emptyset$.

Pasting together such colored columns, we can model any orbit of ρ on a fence $F = \breve{F}(\alpha_1, \ldots, \alpha_s)$ as a tiling of a cylinder C_s of boxes having *s* rows.

We can characterize these tilings as follows.

We can characterize these tilings as follows. If $\alpha = (\alpha_1, \ldots, \alpha_s)$, then an α -tiling is a tiling of C_s using yellow 1×1 tiles, red 2×1 tiles, and black $1 \times (\alpha_i - 1)$ tiles in row *i*, for $1 \le i \le s$, such that the following hold for all rows.

We can characterize these tilings as follows. If $\alpha = (\alpha_1, \ldots, \alpha_s)$, then an α -tiling is a tiling of C_s using yellow 1×1 tiles, red 2×1 tiles, and black $1 \times (\alpha_i - 1)$ tiles in row *i*, for $1 \le i \le s$, such that the following hold for all rows.

(a) If $\alpha_i \ge 2$ and the red tiles are ignored, then the black and yellow tiles alternate in row *i*.

We can characterize these tilings as follows. If $\alpha = (\alpha_1, \ldots, \alpha_s)$, then an α -tiling is a tiling of C_s using yellow 1×1 tiles, red 2×1 tiles, and black $1 \times (\alpha_i - 1)$ tiles in row *i*, for $1 \le i \le s$, such that the following hold for all rows.

- (a) If $\alpha_i \ge 2$ and the red tiles are ignored, then the black and yellow tiles alternate in row *i*.
- (b) There is a red tile in a column covering rows i and i + 1 if and only if either the next column contains two yellow tiles in those two rows when i is odd, or the previous column contains two yellow tiles in those two rows when i is even.

 $b_i :=$ the number of black tiles in row *i* of a tiling, $r_i :=$ the number of red tiles with top box in row *i* of a tiling,

 $r_i :=$ the number of red tiles with top box in row *i* of a tiling, $\chi(\mathcal{O}) :=$ the number of antichain elements in orbit \mathcal{O} .

 $r_i :=$ the number of red tiles with top box in row *i* of a tiling, $\chi(\mathcal{O}) :=$ the number of antichain elements in orbit \mathcal{O} . Lemma (EPRS)

Given an orbit \mathcal{O} in fence $\breve{F}(\alpha)$ with corresponding α -tiling $\chi(\mathcal{O}) = \sum_{i=1}^{s} (b_i \alpha_i - b_i + r_i).$

 $r_i :=$ the number of red tiles with top box in row i of a tiling, $\chi(\mathcal{O}) :=$ the number of antichain elements in orbit \mathcal{O} . Lemma (EPRS)

Given an orbit \mathcal{O} in fence $\check{F}(\alpha)$ with corresponding α -tiling $\chi(\mathcal{O}) = \sum_{i=1}^{s} (b_i \alpha_i - b_i + r_i).$

One can also compute χ_x , the number of times a given element x appears in an orbit, and derive corresponding results for ideals.

$$\begin{split} r_i &:= \text{the number of red tiles with top box in row } i \text{ of a tiling,} \\ \chi(\mathcal{O}) &:= \text{the number of antichain elements in orbit } \mathcal{O}. \\ \text{Lemma (EPRS)} \end{split}$$

Given an orbit \mathcal{O} in fence $\check{F}(\alpha)$ with corresponding α -tiling $\chi(\mathcal{O}) = \sum_{i=1}^{s} (b_i \alpha_i - b_i + r_i).$

One can also compute χ_x , the number of times a given element x appears in an orbit, and derive corresponding results for ideals. Theorem (EPRS)

1. If x is unshared and y, z are the shared elements on the same segment S_i then $\alpha_i \chi_x + \chi_y + \chi_z$ is 1-mesic.

$$\begin{split} r_i &:= \text{the number of red tiles with top box in row } i \text{ of a tiling,} \\ \chi(\mathcal{O}) &:= \text{the number of antichain elements in orbit } \mathcal{O}. \\ \text{Lemma (EPRS)} \end{split}$$

Given an orbit \mathcal{O} in fence $\breve{F}(\alpha)$ with corresponding α -tiling $\chi(\mathcal{O}) = \sum_{i=1}^{s} (b_i \alpha_i - b_i + r_i).$

One can also compute χ_x , the number of times a given element x appears in an orbit, and derive corresponding results for ideals. Theorem (EPRS)

- 1. If x is unshared and y, z are the shared elements on the same segment S_i then $\alpha_i \chi_x + \chi_y + \chi_z$ is 1-mesic.
- For F̃(a, b) all orbits O have size ℓ = lcm(a, b) except one O' of size ℓ + 1.

 $r_i :=$ the number of red tiles with top box in row i of a tiling, $\chi(\mathcal{O}) :=$ the number of antichain elements in orbit \mathcal{O} . Lemma (EPRS)

Given an orbit \mathcal{O} in fence $\breve{F}(\alpha)$ with corresponding α -tiling $\chi(\mathcal{O}) = \sum_{i=1}^{s} (b_i \alpha_i - b_i + r_i).$

One can also compute χ_x , the number of times a given element x appears in an orbit, and derive corresponding results for ideals. Theorem (EPRS)

- 1. If x is unshared and y, z are the shared elements on the same segment S_i then $\alpha_i \chi_x + \chi_y + \chi_z$ is 1-mesic.
- For F̃(a, b) all orbits O have size ℓ = lcm(a, b) except one O' of size ℓ + 1. For the orbits of size ℓ we have χ(O) = ^{2ab-a-b}/_{gcd(a,b)} := m. For the other orbit χ(O') = m + 1.

Outline

Rowmotion

Fences

Self-dual posets

Comments and open questions

Let P^* be the dual of poset P.

Let P^* be the dual of poset P. Suppose P is self dual so that $P \cong P^*$.

Let P^* be the dual of poset P. Suppose P is self dual so that $P \cong P^*$.

Let P^* be the dual of poset P. Suppose P is self dual so that $P \cong P^*$. Thus there exists and order-reversing bijection $\kappa : P \to P$.

Let P^* be the dual of poset P. Suppose P is self dual so that $P \cong P^*$. Thus there exists and order-reversing bijection $\kappa : P \to P$.

$$\overline{I} = c \circ \kappa(I)$$

where c(S) = P - S for any $S \subseteq P$.

Ex. $\kappa(x_i) = x_{9-i}$

$$\overline{I} = c \circ \kappa(I)$$

where c(S) = P - S for any $S \subseteq P$.

Ex. $\kappa(x_i) = x_{9-i}$

$$\overline{I} = c \circ \kappa(I)$$

where c(S) = P - S for any $S \subseteq P$.

$$\overline{I} = c \circ \kappa(I)$$

where c(S) = P - S for any $S \subseteq P$.

Ex. $\kappa(x_i) = x_{9-i}$

 $\overline{I} = c \circ \kappa(I)$

where c(S) = P - S for any $S \subseteq P$. Note that $\#I + \#\overline{I} = \#P$. **Ex.** $\kappa(x_i) = x_{9-i}$

 $\hat{\chi}(\mathcal{O}) =$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

 $\hat{\chi}(\mathcal{O})$ = the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing bijection $\kappa : P \to P$. Let $I \in \mathcal{I}(P)$.

 $\hat{\chi}(\mathcal{O}) =$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing bijection $\kappa : P \to P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \overline{I} \in \mathcal{O}$ for some orbit \mathcal{O} , then

$$\frac{\hat{\chi}(\mathcal{O})}{\#\mathcal{O}} = \frac{n}{2}$$

 $\hat{\chi}(\mathcal{O}) =$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing bijection $\kappa : P \to P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \overline{I} \in \mathcal{O}$ for some orbit \mathcal{O} , then

$$\frac{\hat{\chi}(\mathcal{O})}{\#\mathcal{O}}=\frac{n}{2}.$$

2. If $I \in \mathcal{O}$ and $\overline{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\#\mathcal{O} = \#\overline{\mathcal{O}}$ and

$$\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})} = \frac{n}{2}.$$

 $\hat{\chi}(\mathcal{O}) =$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing bijection $\kappa : P \to P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \overline{I} \in \mathcal{O}$ for some orbit \mathcal{O} , then $\hat{\chi}(\mathcal{O})$

$$\frac{\hat{\chi}(\mathcal{O})}{\#\mathcal{O}} = \frac{n}{2}.$$

2. If $I \in \mathcal{O}$ and $\overline{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\#\mathcal{O} = \#\overline{\mathcal{O}}$ and

$$\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})} = \frac{n}{2}.$$

Consider the group generated by the action of $\hat{\rho}$ and the map $I\mapsto \overline{I}.$

 $\hat{\chi}(\mathcal{O}) =$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing bijection $\kappa : P \to P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \overline{I} \in \mathcal{O}$ for some orbit \mathcal{O} , then $\frac{\hat{\chi}(\mathcal{O})}{\#\mathcal{O}} = \frac{n}{2}.$

2. If
$$I \in \mathcal{O}$$
 and $\overline{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\#\mathcal{O} = \#\overline{\mathcal{O}}$ and

$$\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})} = \frac{n}{2}.$$

Consider the group generated by the action of $\hat{\rho}$ and the map $I \mapsto \overline{I}$. The orbits of this action will be called *superorbits*.

 $\hat{\chi}(\mathcal{O}) =$ the number of ideal elements in an orbit \mathcal{O} of $\hat{\rho}$.

Theorem (EPRS)

Let P be self-dual with n = #P, and fix an order-reversing bijection $\kappa : P \to P$. Let $I \in \mathcal{I}(P)$.

1. If $I, \overline{I} \in \mathcal{O}$ for some orbit \mathcal{O} , then $\frac{\hat{\chi}(\mathcal{O})}{\#\mathcal{O}} = \frac{n}{2}.$

2. If
$$I \in \mathcal{O}$$
 and $\overline{I} \in \overline{\mathcal{O}}$ for some orbits \mathcal{O} and $\overline{\mathcal{O}}$ with $\mathcal{O} \neq \overline{\mathcal{O}}$, then $\#\mathcal{O} = \#\overline{\mathcal{O}}$ and

$$\frac{\hat{\chi}(\mathcal{O} \uplus \overline{\mathcal{O}})}{\#(\mathcal{O} \uplus \overline{\mathcal{O}})} = \frac{n}{2}.$$

Consider the group generated by the action of $\hat{\rho}$ and the map $I \mapsto \overline{I}$. The orbits of this action will be called *superorbits*. Corollary (EPRS) If P is self-dual with n = #P then $\hat{\chi}$ is (n/2)-mesic on superorbits. Outline

Rowmotion

Fences

Self-dual posets

Comments and open questions

Let
$$\alpha = (a^s) = (\underbrace{a, \ldots, a}_{s}).$$

Let
$$\alpha = (a^s) = (\underbrace{a, \ldots, a}_{s}).$$

Conjecture Let $F = \check{F}(a^s)$ and consider rowmotion on F.

Let
$$\alpha = (a^s) = (\underbrace{a, \ldots, a}_{s}).$$

Conjecture Let $F = \breve{F}(a^s)$ and consider rowmotion on F.

1. The statistic χ is homometric.

Let
$$\alpha = (a^s) = (\underbrace{a, \ldots, a}_{s}).$$

Conjecture

Let $F = \breve{F}(a^s)$ and consider rowmotion on F.

- 1. The statistic χ is homometric.
- 2. If s is odd then the statistic $\hat{\chi}$ is n/2-mesic where n = #F.

Let
$$\alpha = (a^s) = (\underbrace{a, \ldots, a}_{s}).$$

Conjecture

Let $F = \breve{F}(a^s)$ and consider rowmotion on F.

1. The statistic χ is homometric.

2. If s is odd then the statistic $\hat{\chi}$ is n/2-mesic where n = #F.

When a = 2, it turns out that χ is actually homomesic.

Let
$$\alpha = (a^s) = (\underbrace{a, \ldots, a}_{s}).$$

Conjecture

Let $F = \breve{F}(a^s)$ and consider rowmotion on F.

- 1. The statistic χ is homometric.
- 2. If s is odd then the statistic $\hat{\chi}$ is n/2-mesic where n = #F.

When a = 2, it turns out that χ is actually homomesic. Sam Hopkins pointed out that this follows from results in our paper and also from work of Chan, Haddadan, Hopkins, and Moci on balanced Young diagrams.

Let
$$\alpha = (a^s) = (\underbrace{a, \ldots, a}_{s}).$$

Conjecture

Let $F = \breve{F}(a^s)$ and consider rowmotion on F.

- 1. The statistic χ is homometric.
- 2. If s is odd then the statistic $\hat{\chi}$ is n/2-mesic where n = #F.

When a = 2, it turns out that χ is actually homomesic. Sam Hopkins pointed out that this follows from results in our paper and also from work of Chan, Haddadan, Hopkins, and Moci on balanced Young diagrams. The case $a \ge 3$ is still open and χ is not homomesic in this case.

Let
$$\alpha = (a^s) = (\underbrace{a, \ldots, a}_{s}).$$

Conjecture

Let $F = \breve{F}(a^s)$ and consider rowmotion on F.

- 1. The statistic χ is homometric.
- 2. If s is odd then the statistic $\hat{\chi}$ is n/2-mesic where n = #F.

When a = 2, it turns out that χ is actually homomesic. Sam Hopkins pointed out that this follows from results in our paper and also from work of Chan, Haddadan, Hopkins, and Moci on balanced Young diagrams. The case $a \ge 3$ is still open and χ is not homomesic in this case.

For $\hat{\chi}$ one can not use our results on self-dual posets since I and \overline{I} are not always in the same orbit.

Sequence a_0, a_1, \ldots, a_n is *palindromic* if $a_k = a_{n-k}$ for all $0 \le k \le n$.

Sequence a_0, a_1, \ldots, a_n is *palindromic* if $a_k = a_{n-k}$ for all $0 \le k \le n$. Write $\chi_k = \chi_{x_k}$ and $\hat{\chi}_k = \hat{\chi}_{x_k}$.

Sequence a_0, a_1, \ldots, a_n is *palindromic* if $a_k = a_{n-k}$ for all $0 \le k \le n$. Write $\chi_k = \chi_{x_k}$ and $\hat{\chi}_k = \hat{\chi}_{x_k}$.

Proposition (EPRS)

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_s)$ where $\alpha_i \ge 2$ for all *i*. Also let $F = \breve{F}(\alpha)$ and n = #F. Let α , the black tile sequence $b_1, b_2, ..., b_s$, and the red tile sequence $r_1, r_2, ..., r_{s-1}$ be all palindromic for all orbits.

Sequence a_0, a_1, \ldots, a_n is *palindromic* if $a_k = a_{n-k}$ for all $0 \le k \le n$. Write $\chi_k = \chi_{x_k}$ and $\hat{\chi}_k = \hat{\chi}_{x_k}$.

Proposition (EPRS)

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_s)$ where $\alpha_i \ge 2$ for all *i*. Also let $F = \breve{F}(\alpha)$ and n = #F. Let α , the black tile sequence $b_1, b_2, ..., b_s$, and the red tile sequence $r_1, r_2, ..., r_{s-1}$ be all palindromic for all orbits. (a) For all k the statistic $\chi_k - \chi_{n-k+1}$ is 0-mesic.

Sequence a_0, a_1, \ldots, a_n is *palindromic* if $a_k = a_{n-k}$ for all $0 \le k \le n$. Write $\chi_k = \chi_{x_k}$ and $\hat{\chi}_k = \hat{\chi}_{x_k}$.

Proposition (EPRS)

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_s)$ where $\alpha_i \ge 2$ for all *i*. Also let $F = \breve{F}(\alpha)$ and n = #F. Let α , the black tile sequence $b_1, b_2, ..., b_s$, and the red tile sequence $r_1, r_2, ..., r_{s-1}$ be all palindromic for all orbits. (a) For all k the statistic $\chi_k - \chi_{n-k+1}$ is 0-mesic.

(b) If s is odd, then for all k the statistic $\hat{\chi}_k + \hat{\chi}_{n-k+1}$ is 1-mesic.

Sequence a_0, a_1, \ldots, a_n is *palindromic* if $a_k = a_{n-k}$ for all $0 \le k \le n$. Write $\chi_k = \chi_{x_k}$ and $\hat{\chi}_k = \hat{\chi}_{x_k}$.

Proposition (EPRS)

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_s)$ where $\alpha_i \ge 2$ for all *i*. Also let $F = \breve{F}(\alpha)$ and n = #F. Let α , the black tile sequence $b_1, b_2, ..., b_s$, and the red tile sequence $r_1, r_2, ..., r_{s-1}$ be all palindromic for all orbits. (a) For all *k* the statistic $\chi_k - \chi_{n-k+1}$ is 0-mesic.

(b) If s is odd, then for all k the statistic $\hat{\chi}_k + \hat{\chi}_{n-k+1}$ is 1-mesic.

Question

Let $F = \breve{F}(\alpha)$ with α palindromic. Find necessary and/or sufficient conditions on α for the black or the red tile sequences to be palindromic for all rowmotion orbits.

MERCI POUR VOTRE (HOMOMÉSIQUE?) ATTENTION!