Truncations of unitary matrices and Brownian bridges

Alain Rouault
(Laboratoire de Mathématiques de Versailles)
joint work with C. Donati-Martin (Versailles) and V. Beffara (Grenoble)

22 may 2018

Paris 13 Seminar

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups
6. Random truncation

7 Main result

8 Subordination

Motivation : Computational biology

Aim : measure of the similarity between two genomic (long) sequences.
Let \mathfrak{S}_{n} be the set of permutations of $[n]$. If $\sigma, \tau \in \mathfrak{S}_{n}$, set

and compare them with the results of a random permutation.
G. Chapuy introduced the discrepancy process

Theorem (G. Chapuy 2007)
The sequence

converges in distribution to the bivariate tied down Brownian bridge, of covariance

Motivation : Computational biology

Aim : measure of the similarity between two genomic (long) sequences.
Let \mathfrak{S}_{n} be the set of permutations of $[\mathrm{n}]$. If $\sigma, \tau \in \mathfrak{S}_{n}$, set

$$
\mathrm{O}_{\mathrm{p}}(\sigma, \tau)=\#\left\{i \leqslant p: \sigma \circ \tau^{-1}(i) \leqslant p\right\}, p=1, \cdots, n
$$

and compare them with the results of a random permutation.
G. Chapuy introduced the discrepancy process

Theorem (G. Chapuy 2007)
The seauence

converges in distribution to the bivariate tied down Brownian bridge, of

Motivation : Computational biology

Aim : measure of the similarity between two genomic (long) sequences.
Let \mathfrak{S}_{n} be the set of permutations of $[n]$. If $\sigma, \tau \in \mathfrak{S}_{n}$, set

$$
\mathrm{O}_{\mathrm{p}}(\sigma, \tau)=\#\left\{i \leqslant p: \sigma \circ \tau^{-1}(i) \leqslant p\right\}, p=1, \cdots, n .
$$

and compare them with the results of a random permutation.

G. Chapuy introduced the discrepancy process

converges in distribution to the bivariate tied down Brownian bridge, of

Motivation : Computational biology

Aim : measure of the similarity between two genomic (long) sequences.
Let \mathfrak{S}_{n} be the set of permutations of $[n]$. If $\sigma, \tau \in \mathfrak{S}_{n}$, set

$$
\mathrm{O}_{\mathrm{p}}(\sigma, \tau)=\#\left\{i \leqslant p: \sigma \circ \tau^{-1}(i) \leqslant p\right\}, p=1, \cdots, n
$$

and compare them with the results of a random permutation.
G. Chapuy introduced the discrepancy process

$$
\mathrm{T}_{\lfloor\mathrm{ns}\rfloor,\lfloor n \mathrm{n}\rfloor}^{(n)}(\sigma)=\#\{i \leqslant\lfloor n s\rfloor: \sigma(\mathfrak{i}) \leqslant\lfloor n t\rfloor\}, s, t \in[0,1],
$$

The sequence
converges in distribution to the bivariate tied down Brownian bridge, of

Motivation : Computational biology

Aim : measure of the similarity between two genomic (long) sequences.
Let \mathfrak{S}_{n} be the set of permutations of $[n]$. If $\sigma, \tau \in \mathfrak{S}_{n}$, set

$$
\mathrm{O}_{\mathrm{p}}(\sigma, \tau)=\#\left\{i \leqslant p: \sigma \circ \tau^{-1}(i) \leqslant p\right\}, p=1, \cdots, n
$$

and compare them with the results of a random permutation.
G. Chapuy introduced the discrepancy process

$$
\mathrm{T}_{\lfloor\mathrm{ns}\rfloor,\lfloor n \mathrm{n}\rfloor}^{(n)}(\sigma)=\#\{i \leqslant\lfloor n s\rfloor: \sigma(\mathfrak{i}) \leqslant\lfloor n t\rfloor\}, s, t \in[0,1],
$$

Theorem (G. Chapuy 2007)

The sequence

$$
n^{-1 / 2}\left(T_{\lfloor n s\rfloor,\lfloor n t\rfloor}^{(n)}(\sigma)-s t n\right), s, t \in[0,1]
$$

converges in distribution to the bivariate tied down Brownian bridge, of covariance $\left(s \wedge s^{\prime}-s s^{\prime}\right)\left(t \wedge t^{\prime}-t^{\prime}\right)$.

Matrix representation

If σ is represented by the matrix $U(\sigma)$, the integer $T_{p, q}^{n}(\sigma)$ is the sum of all elements of the upper-left $p \times q$ submatrix of $U(\sigma)$, i.e.

$$
\mathrm{T}_{\mathrm{p}, \mathrm{q}}^{\mathrm{n}}(\sigma)=\operatorname{Tr}\left[\mathrm{D}_{\mathrm{p}} \mathrm{U}(\sigma) \mathrm{D}_{\mathrm{q}} \mathrm{U}(\sigma)^{*}\right]
$$

where $D_{k}=\operatorname{diag}(1, \cdots, 1,0, \cdots, 0)(k$ times 1$)$.
Instead of picking randomly σ in the group \mathfrak{S}_{n}, we propose to pick a random element U in the group $\mathbb{U}(n)(r e s p . ~ \mathbb{O}(n))$ and to study

Matrix representation

If σ is represented by the matrix $U(\sigma)$, the integer $T_{p, q}^{n}(\sigma)$ is the sum of all elements of the upper-left $p \times q$ submatrix of $U(\sigma)$, i.e.

$$
\mathrm{T}_{\mathrm{p}, \mathrm{q}}^{\mathrm{n}}(\sigma)=\operatorname{Tr}\left[\mathrm{D}_{\mathrm{p}} \mathrm{U}(\sigma) \mathrm{D}_{\mathrm{q}} \mathrm{U}(\sigma)^{*}\right]
$$

where $D_{k}=\operatorname{diag}(1, \cdots, 1,0, \cdots, 0)(k$ times 1$)$.
Instead of picking randomly σ in the group $\mathfrak{S}_{\mathfrak{n}}$, we propose to pick a random element U in the group $\mathbb{U}(n)(r e s p . \mathbb{O}(n))$ and to study

The main statistic

$$
\mathrm{T}_{\mathrm{p}, \mathrm{q}}^{\mathrm{q}}=\operatorname{Tr}\left(\mathrm{D}_{1} \mathrm{uD}_{2} \mathrm{u}^{*}\right)=\sum_{i \leqslant \mathrm{p}, \mathrm{j} \leqslant \mathrm{q}}\left|\mathrm{u}_{\mathrm{ij}}\right|^{2}
$$

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups
6. Random truncation

7 Main result
\& Subordination

Main result

Theorem (CDM+AR, RMTA 2011)

The process

$$
W^{(n)}=\left\{T_{\lfloor n s\rfloor,\lfloor n t\rfloor}^{(n)}-\mathbb{E} T_{\lfloor n s\rfloor,\lfloor n t\rfloor}^{(n)}, s, t \in[0,1]\right\}
$$

converges in distribution in the Skorokhod space $\mathrm{D}\left([0,1]^{2}\right)$ to the bivariate tied-down Brownian bridge $\sqrt{\frac{2}{\beta}} W^{(\infty)}$ where $\mathrm{W}^{(\infty)}$ is a centered continuous Gaussian process on $[0,1]^{2}$ of covariance

$$
\mathbb{E}\left[W^{(\infty)}(s, t) W^{(\infty)}\left(s^{\prime}, t^{\prime}\right)\right]=\left(s \wedge s^{\prime}-s s^{\prime}\right)\left(t \wedge t^{\prime}-t t^{\prime}\right)
$$

$\beta=2$ in the unitary case and $\beta=1$ in the orthogonal case.

Normalizations

- No normalization here!
\Rightarrow If σ is Haar distributed in \mathscr{S}_{n}, then $\mathcal{U}_{i j}$ is Bernoulli of parameter $1 / n$ and

$$
\operatorname{Var}\left(\left|\mathrm{U}_{\mathrm{ij}}\right|^{2}\right) \sim \mathrm{n}^{-1}
$$

\rightarrow If U is Haar distributed in $\mathbb{U}(n)$, then the column vector $\left(U_{i, j}\right)_{i=1}^{n}$ is uniform on the (complex) sphere of $\operatorname{dim} n$, and $\left|U_{i j}\right|^{2}$ is Beta distributed with parameters $(1, n-1)$ and

$$
\operatorname{Var}\left(\left|U_{i j}\right|^{2}\right) \sim n^{-2}
$$

- If O is Haar distributed in $\mathbb{O}(n)$, then $\left|O_{i j}\right|^{2}$ is Beta distributed with parameters $(1 / 2,(n-1) / 2)$ and

$$
\operatorname{Var}\left(\left|O_{i j}\right|^{2}\right) \sim 2 n^{-2}
$$

Normalizations

- No normalization here!
- If σ is Haar distributed in $\mathfrak{S}_{\mathfrak{n}}$, then $\mathrm{U}_{\mathfrak{i j}}$ is Bernoulli of parameter $1 / n$ and

$$
\operatorname{Var}\left(\left|\mathrm{U}_{\mathfrak{i}}\right|^{2}\right) \sim \mathfrak{n}^{-1}
$$

If U is Haar distributed in $\mathbb{U}(n)$, then the column vector $\left(U_{i, j}\right)_{i=1}^{n}$ is uniform on the (complex) sphere of $\operatorname{dim} \mathrm{n}$, and $\left|\mathrm{U}_{\mathrm{ij}}\right|^{2}$ is Beta distributed with parameters ($1, \mathrm{n}-1$) and

- If O is Haar distributed in $\mathbb{O}(\mathrm{n})$, then $\left|\mathrm{O}_{\mathrm{ij}}\right|^{2}$ is Beta distributed with parameters $(1 / 2,(n-1) / 2)$ and

$$
\operatorname{Var}\left(\left|\mathrm{O}_{\mathrm{ij}}\right|^{2}\right) \sim 2 \mathrm{n}^{-2}
$$

Normalizations

- No normalization here!
- If σ is Haar distributed in $\mathfrak{S}_{\mathfrak{n}}$, then $\mathrm{U}_{\mathfrak{i j}}$ is Bernoulli of parameter $1 / n$ and

$$
\operatorname{Var}\left(\left|\mathrm{U}_{\mathrm{ij}}\right|^{2}\right) \sim \mathrm{n}^{-1}
$$

- If U is Haar distributed in $\mathbb{U}(n)$, then the column vector $\left(U_{i, j}\right)_{i=1}^{n}$ is uniform on the (complex) sphere of $\operatorname{dim} \mathrm{n}$, and $\left|\mathrm{U}_{\mathrm{ij}}\right|^{2}$ is Beta distributed with parameters $(1, n-1)$ and

$$
\operatorname{Var}\left(\left|\mathrm{U}_{\mathrm{ij}}\right|^{2}\right) \sim \mathrm{n}^{-2} .
$$

If O is Haar distributed in $\mathbb{O}(n)$, then $\left|O_{i j}\right|^{2}$ is Beta distributed with parameters $(1 / 2,(n-1) / 2)$ and

$$
\operatorname{Var}\left(\left|O_{i j}\right|^{2}\right) \sim 2 n^{-2}
$$

Normalizations

- No normalization here!
- If σ is Haar distributed in $\mathfrak{S}_{\mathfrak{n}}$, then $\mathrm{U}_{\mathfrak{i j}}$ is Bernoulli of parameter $1 / n$ and

$$
\operatorname{Var}\left(\left|\mathrm{U}_{\mathrm{ij}}\right|^{2}\right) \sim \mathrm{n}^{-1}
$$

- If U is Haar distributed in $\mathbb{U}(n)$, then the column vector $\left(U_{i, j}\right)_{i=1}^{n}$ is uniform on the (complex) sphere of dim n , and $\left|\mathrm{U}_{\mathrm{ij}}\right|^{2}$ is Beta distributed with parameters ($1, \mathrm{n}-1$) and

$$
\operatorname{Var}\left(\left|\mathrm{U}_{\mathrm{ij}}\right|^{2}\right) \sim \mathrm{n}^{-2} .
$$

- If O is Haar distributed in $\mathbb{O}(n)$, then $\left|\mathrm{O}_{\mathfrak{i} j}\right|^{2}$ is Beta distributed with parameters $(1 / 2,(n-1) / 2)$ and

$$
\operatorname{Var}\left(\left|\mathrm{O}_{i j}\right|^{2}\right) \sim 2 \mathrm{n}^{-2}
$$

Previous related results

- If q is fixed, Silverstein (1981) proved that the process

$$
n^{1 / 2}\left(\sum_{i=1}^{\lfloor n s\rfloor}\left|u_{i q}\right|^{2}-s\right), s \in[0,1]
$$

converges in distribution to the (univariate) Brownian bridge, continuous gaussian process of covariance $s(1-s)$.
In multivariate (real) analysis of variance, $T_{p, q}$ is known as the
Bartlett-Nanda-Pillai statistics, used to test equalities of covariances
matrices from Gaussian populations.

Previous related results

- If q is fixed, Silverstein (1981) proved that the process

$$
n^{1 / 2}\left(\sum_{i=1}^{\lfloor n s\rfloor}\left|U_{i q}\right|^{2}-s\right), s \in[0,1]
$$

converges in distribution to the (univariate) Brownian bridge, continuous gaussian process of covariance $s(1-s)$.

- In multivariate (real) analysis of variance, $\mathrm{T}_{\mathrm{p}, \mathrm{q}}$ is known as the Bartlett-Nanda-Pillai statistics, used to test equalities of covariances matrices from Gaussian populations.

Asymptotic studies :

1) p, q fixed, $n \rightarrow \infty$ (large sample framework),
2) q fixed, $\mathrm{n}, \mathrm{p} \rightarrow \infty$ and $\mathrm{p} / \mathrm{n} \rightarrow \mathrm{s}<1$ fixed (high-dimensional framework, see Fujikoshi et al. 2008).
3) $\mathrm{p} / \mathrm{n} \rightarrow \mathrm{s}, \mathrm{q} / \mathrm{n} \rightarrow \mathrm{t}$ with s, t fixed. This case is considered in the Bai and Silverstein's book, and a CLT for $T_{p, q}$ was proved by Bai et al. (2009).

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups
6. Random truncation

7 Main result

8 Subordination

Asymptotics of the 1-marginals (i.e. s, t fixed)

Set $p=\lfloor n s\rfloor, q=\lfloor n t\rfloor$ and

$$
A_{p, q}=D_{p} U D_{q} U^{*}=V_{p, q} V_{p, q}^{*}
$$

where $V_{\mathrm{p}, \mathrm{q}}=\mathrm{D}_{\mathrm{p}} \mathrm{UD}_{\mathrm{q}}$ is the upper-left submatrix of U . As proved by Collins (2005) $A_{p, q}$ belongs to the Jacobi unitary ensemble (JUE) and

$$
\mathrm{T}_{\mathrm{p}, \mathrm{q}}^{(\mathfrak{n})}=\operatorname{Tr} A_{\mathrm{p}, \mathrm{q}}=p \int x \mathrm{~d} \mu^{(\mathfrak{p}, \boldsymbol{q})}(x),
$$

where $\mu^{(\mathfrak{p}, \boldsymbol{q})}$ is the empirical spectral distribution

$$
\mu^{(p, q)}=\frac{1}{p} \sum_{k=1}^{p} \delta_{\lambda_{k}^{(p)}},
$$

and the $\lambda_{k}^{(p)}$'s are the eigenvalues of $A_{p, q}$.

For the JUE, the equilibrium measure is the Kesten-McKay distribution. If $s \leqslant \min (t, 1-t)$ it has the density

$$
\begin{equation*}
\pi_{\mathbf{u}_{-}, \mathbf{u}_{+}}(x):=\mathrm{C}_{\mathbf{u}_{-}, \mathbf{u}_{+}} \frac{\sqrt{\left(x-\mathbf{u}_{-}\right)\left(\mathbf{u}_{+}-x\right)}}{2 \pi x(1-x)} \boldsymbol{1}_{\left(\mathbf{u}_{-}, \mathbf{u}_{+}\right)}(x) \tag{1}
\end{equation*}
$$

where $0 \leqslant u_{-}<u_{+} \leqslant 1\left(u_{ \pm}\right.$depending on $\left.s, t\right)$.
LLN

$$
\lim _{n} \frac{1}{n} T_{\lfloor n s\rfloor,\lfloor n t\rfloor}^{(n)}=s \int x \pi_{u_{-}, u_{+}}(x) d x=s t
$$

CLT

$$
\mathrm{T}_{\lfloor n s\rfloor,\lfloor n t\rfloor}^{(n)}-\mathbb{E} \mathrm{T}_{\lfloor n \mathrm{n}\rfloor,\lfloor n t\rfloor}^{(n)} \Rightarrow \mathcal{N}(0, s(1-\mathrm{s}) \mathrm{t}(1-\mathrm{t}))
$$

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups
6. Random truncation

7 Main result
\& Subordination

Fidi convergence and tightness

To prove the fidi convergence, it is enough to prove that for any $\left(a_{i}\right)_{i \leqslant k} \in \mathbb{R}$ and $\left(s_{i}, t_{i}\right)_{i \leqslant k} \in[0,1]^{2}, p_{i}=\left\lfloor n s_{i}\right\rfloor, q_{i}=\left\lfloor n t_{i}\right\rfloor$ the random variable

$$
\mathrm{X}^{(n)}=\sum_{i=1}^{k} \mathrm{a}_{i}\left[\operatorname{Tr}\left(\mathrm{D}_{\mathrm{p}_{i}} \mathrm{UD}_{\mathrm{q}_{i}} \mathrm{U}^{\star}\right)-\mathbb{E}\left(\operatorname{Tr}\left(\mathrm{D}_{\mathrm{p}_{i}} \mathrm{UD}_{\mathrm{q}_{i}} \mathrm{U}^{\star}\right)\right)\right]
$$

where $\mathrm{D}_{\mathrm{p}_{\mathrm{i}}}=\mathrm{I}_{\mathfrak{p}_{\mathrm{i}}}, \mathrm{D}_{\mathrm{q}_{\mathrm{i}}}=\mathrm{I}_{\mathrm{q}_{\mathrm{i}}}$, converges in distribution to the normal distribution with the good variance.
We use the method of cumulants.
To prove tightness, we will take benefit of the structure of $T_{\lfloor n s\rfloor,\lfloor n t\rfloor}^{(n)}$ as a sum with stationary increments. A sufficient condition (via the Bickel-Wichura criterion) is

$$
\begin{equation*}
\mathbb{E}\left(\operatorname{Tr}\left(D_{p} U D_{q} U^{\star}\right)-\mathbb{E} \operatorname{Tr}\left(D_{p} U D_{q} U^{\star}\right)\right)^{4}=O\left(p^{2} q^{2} n^{-4}\right) . \tag{2}
\end{equation*}
$$

Fidi convergence and tightness

To prove the fidi convergence, it is enough to prove that for any $\left(a_{i}\right)_{i \leqslant k} \in \mathbb{R}$ and $\left(s_{i}, t_{i}\right)_{i \leqslant k} \in[0,1]^{2}, p_{i}=\left\lfloor n s_{i}\right\rfloor, q_{i}=\left\lfloor n t_{i}\right\rfloor$ the random variable

Fidi convergence and tightness

To prove the fidi convergence, it is enough to prove that for any $\left(a_{i}\right)_{i \leqslant k} \in \mathbb{R}$ and $\left(s_{i}, t_{i}\right)_{i \leqslant k} \in[0,1]^{2}, p_{i}=\left\lfloor n s_{i}\right\rfloor, q_{i}=\left\lfloor n t_{i}\right\rfloor$ the random variable

$$
X^{(n)}=\sum_{i=1}^{k} a_{i}\left[\operatorname{Tr}\left(D_{\mathfrak{p}_{i}} U_{D_{q_{i}}} U^{\star}\right)-\mathbb{E}\left(\operatorname{Tr}\left(D_{\mathfrak{p}_{i}} U_{\mathcal{q}_{i}} U^{\star}\right)\right)\right]
$$

where $\mathrm{D}_{\mathfrak{p}_{\mathrm{i}}}=\mathrm{I}_{\mathfrak{p}_{i}}, \mathrm{D}_{\mathrm{q}_{\mathrm{i}}}=\mathrm{I}_{\mathrm{q}_{\mathrm{i}}}$, converges in distribution to the normal distribution with the good variance.
We use the method of cumulants.
To prove tightness, we will take benefit of the structure of $T_{\mid n s}^{(n)}$
sum with stationary increments. A sufficient condition (via the Bickel-Wichura criterion) is

Fidi convergence and tightness

To prove the fidi convergence, it is enough to prove that for any $\left(a_{i}\right)_{i \leqslant k} \in \mathbb{R}$ and $\left(s_{i}, t_{i}\right)_{i \leqslant k} \in[0,1]^{2}, p_{i}=\left\lfloor n s_{i}\right\rfloor, q_{i}=\left\lfloor n t_{i}\right\rfloor$ the random variable

$$
X^{(n)}=\sum_{i=1}^{k} a_{i}\left[\operatorname{Tr}\left(D_{\mathfrak{p}_{i}} U_{D_{q_{i}}} U^{\star}\right)-\mathbb{E}\left(\operatorname{Tr}\left(D_{\mathfrak{p}_{i}} U_{\mathcal{q}_{i}} U^{\star}\right)\right)\right]
$$

where $\mathrm{D}_{\mathfrak{p}_{i}}=\mathrm{I}_{\mathfrak{p}_{i}}, \mathrm{D}_{\mathrm{q}_{i}}=\mathrm{I}_{\mathfrak{q}_{i}}$, converges in distribution to the normal distribution with the good variance.
We use the method of cumulants.
To prove tightness, we will take benefit of the structure of $T_{1}^{(r}$
sum with stationary increments. A sufficient condition (via the
Bickel-Wichura criterion) is

Fidi convergence and tightness

To prove the fidi convergence, it is enough to prove that for any $\left(a_{i}\right)_{i \leqslant k} \in \mathbb{R}$ and $\left(s_{i}, t_{i}\right)_{i \leqslant k} \in[0,1]^{2}, p_{i}=\left\lfloor n s_{i}\right\rfloor, q_{i}=\left\lfloor n t_{i}\right\rfloor$ the random variable

$$
X^{(n)}=\sum_{i=1}^{k} a_{i}\left[\operatorname{Tr}\left(D_{\mathfrak{p}_{i}} U_{D_{q_{i}}} U^{\star}\right)-\mathbb{E}\left(\operatorname{Tr}\left(D_{\mathfrak{p}_{i}} U_{\mathcal{q}_{i}} U^{\star}\right)\right)\right]
$$

where $\mathrm{D}_{\mathfrak{p}_{i}}=\mathrm{I}_{\mathfrak{p}_{i}}, \mathrm{D}_{\mathrm{q}_{i}}=\mathrm{I}_{\mathfrak{q}_{i}}$, converges in distribution to the normal distribution with the good variance.
We use the method of cumulants.
To prove tightness,
sum with stationary increments. A sufficient condition (via the
Bickel-Wichura criterion) is

Fidi convergence and tightness

To prove the fidi convergence, it is enough to prove that for any $\left(a_{i}\right)_{i \leqslant k} \in \mathbb{R}$ and $\left(s_{i}, t_{i}\right)_{i \leqslant k} \in[0,1]^{2}, p_{i}=\left\lfloor n s_{i}\right\rfloor, q_{i}=\left\lfloor n t_{i}\right\rfloor$ the random variable

$$
X^{(n)}=\sum_{i=1}^{k} a_{i}\left[\operatorname{Tr}\left(D_{\mathfrak{p}_{i}} U_{D_{q_{i}}} U^{\star}\right)-\mathbb{E}\left(\operatorname{Tr}\left(D_{\mathfrak{p}_{i}} U_{\mathcal{q}_{i}} U^{\star}\right)\right)\right]
$$

where $\mathrm{D}_{\mathfrak{p}_{i}}=\mathrm{I}_{\mathfrak{p}_{i}}, \mathrm{D}_{\mathrm{q}_{\mathrm{i}}}=\mathrm{I}_{\mathrm{q}_{\mathrm{i}}}$, converges in distribution to the normal distribution with the good variance.
We use the method of cumulants.
To prove tightness, we will take benefit of the structure of $T_{\lfloor n s\rfloor,\lfloor n t\rfloor}^{(n)}$ as a sum with stationary increments. A sufficient condition (via the Bickel-Wichura criterion) is

Fidi convergence and tightness

To prove the fidi convergence, it is enough to prove that for any $\left(a_{i}\right)_{i \leqslant k} \in \mathbb{R}$ and $\left(s_{i}, t_{i}\right)_{i \leqslant k} \in[0,1]^{2}, p_{i}=\left\lfloor n s_{i}\right\rfloor, q_{i}=\left\lfloor n t_{i}\right\rfloor$ the random variable

$$
X^{(n)}=\sum_{i=1}^{k} a_{i}\left[\operatorname{Tr}\left(\mathrm{D}_{\mathfrak{p}_{i}} \mathrm{UD}_{\mathrm{q}_{\mathrm{i}}} \mathrm{U}^{\star}\right)-\mathbb{E}\left(\operatorname{Tr}\left(\mathrm{D}_{\mathfrak{p}_{i}} \mathrm{UD}_{\mathrm{q}_{\mathrm{i}}} \mathrm{U}^{\star}\right)\right)\right]
$$

where $\mathrm{D}_{\mathfrak{p}_{\mathrm{i}}}=\mathrm{I}_{\mathfrak{p}_{i}}, \mathrm{D}_{\mathrm{q}_{\mathrm{i}}}=\mathrm{I}_{\mathrm{q}_{\mathrm{i}}}$, converges in distribution to the normal distribution with the good variance.
We use the method of cumulants.
To prove tightness, we will take benefit of the structure of $T_{\lfloor n s\rfloor,\lfloor n t\rfloor}^{(n)}$ as a sum with stationary increments. A sufficient condition (via the Bickel-Wichura criterion) is

$$
\begin{equation*}
\mathbb{E}\left(\operatorname{Tr}\left(\mathrm{D}_{\mathrm{p}} \mathrm{UD}_{\mathrm{q}} \mathrm{U}^{\star}\right)-\mathbb{E} \operatorname{Tr}\left(\mathrm{D}_{\mathrm{p}} \mathrm{UD}_{\mathrm{q}} \mathrm{U}^{\star}\right)\right)^{4}=\mathrm{O}\left(\mathrm{p}^{2} \mathrm{q}^{2} \mathrm{n}^{-4}\right) \tag{2}
\end{equation*}
$$

The first calculations give

$$
\begin{gathered}
\mathbb{E}\left|U_{i j}\right|^{2 k}=\frac{(n-1)!k!}{(n-1+k)!} \\
\mathbb{E}\left(\left|U_{i, j}\right|^{2}\left|U_{i, k}\right|^{2}\right)=\frac{1}{n(n+1)}, \mathbb{E}\left(\left|U_{i, j}\right|^{2}\left|U_{k, \ell}\right|^{2}\right)=\frac{1}{n^{2}-1} .
\end{gathered}
$$

but for the fidi and tightness, we need mixed moments of higher order. In fact, we gave a complete proof (fidi convergence + tightness) using a formula for the cumulants of variables of the form

$$
X=\operatorname{Tr}\left(A \cup B U^{*}\right)
$$

for deterministic matrices A, B of size n.

The first calculations give

$$
\mathbb{E}\left|\mathrm{u}_{i j}\right|^{2 k}=\frac{(n-1)!k!}{(n-1+k)!}
$$

$$
\mathbb{E}\left(\left|\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right|^{2}\left|\mathrm{u}_{\mathrm{i}, \mathrm{k}}\right|^{2}\right)=\frac{1}{\mathrm{n}(\mathrm{n}+1)}, \mathbb{E}\left(\left|\mathrm{u}_{\mathrm{i}, \mathrm{j}}\right|^{2}\left|\mathrm{u}_{\mathrm{k}, \ell}\right|^{2}\right)=\frac{1}{\mathrm{n}^{2}-1} .
$$

but for the fidi and tightness, we need mixed moments of higher order. In fact, we gave a complete proof (fidi convergence + tightness) using a formula for the cumulants of variables of the form

for deterministic matrices A, B of size n.

The first calculations give

$$
\begin{gathered}
\mathbb{E}\left|\mathrm{u}_{i j}\right|^{2 \mathrm{k}}=\frac{(n-1)!k!}{(n-1+k)!} \\
\mathbb{E}\left(\left|\mathrm{u}_{i, j}\right|^{2}\left|\mathrm{u}_{i, k}\right|^{2}\right)=\frac{1}{n(n+1)}, \mathbb{E}\left(\left|\mathrm{u}_{i, j}\right|^{2}\left|\mathrm{u}_{k, \ell}\right|^{2}\right)=\frac{1}{n^{2}-1} .
\end{gathered}
$$

but for the fidi and tightness, we need mixed moments of higher order.
In fact, we gave a complete proof (fidi convergence + tightness) using a formula for the cumulants of variables of the form

$$
X=\operatorname{Tr}\left(\text { AUBU }^{*}\right)
$$

for deterministic matrices A, B of size n.

The first calculations give

$$
\begin{gathered}
\mathbb{E}\left|\mathrm{u}_{\mathrm{ij}}\right|^{2 k}=\frac{(n-1)!k!}{(n-1+k)!} \\
\mathbb{E}\left(\left|\mathrm{u}_{i, j}\right|^{2}\left|\mathrm{u}_{i, k}\right|^{2}\right)=\frac{1}{\mathrm{n}(\mathrm{n}+1)}, \mathbb{E}\left(\left|\mathrm{u}_{i, j}\right|^{2}\left|\mathrm{u}_{k, \ell}\right|^{2}\right)=\frac{1}{n^{2}-1} .
\end{gathered}
$$

but for the fidi and tightness, we need mixed moments of higher order. In fact, we gave a complete proof (fidi convergence + tightness) using a formula for the cumulants of variables of the form

$$
X=\operatorname{Tr}\left(\text { AUBU }^{*}\right)
$$

for deterministic matrices A, B of size n.

Recall : the multivariate cumulants are defined by

$$
\kappa_{r}\left(a_{1}, \cdots, a_{r}\right):=(-i)^{r} \frac{\partial^{r}}{\partial \xi_{1} \cdots \partial \xi_{r}} \log \mathbb{E} \exp i \sum \xi_{k} a_{k}
$$

They are related with moments by

where

- $\mathcal{P}(r)$ is the set of partitions of $[r]$
- If $C=\left\{C_{1}, \cdots, C_{k}\right\}$ is the decomposition of C in blocks, then

Recall : the multivariate cumulants are defined by

$$
\kappa_{r}\left(a_{1}, \cdots, a_{r}\right):=(-i)^{r} \frac{\partial^{r}}{\partial \xi_{1} \cdots \partial \xi_{r}} \log \mathbb{E} \operatorname{expi} \sum \xi_{k} a_{k} .
$$

They are related with moments by

$$
\kappa_{r}\left(a_{1}, \cdots, a_{r}\right)=\sum_{C \in \mathcal{P}(r)} \operatorname{Möb}\left(C, 1_{r}\right) \mathbb{E}_{C}\left(a_{1}, \cdots, a_{r}\right)
$$

where

- $\mathcal{P}(r)$ is the set of partitions of $[r]$
- If $C=\left\{C_{1}, \cdots, C_{k}\right\}$ is the decomposition of C in blocks, then

$$
\operatorname{Möb}\left(C, 1_{r}\right)=(-1)^{k-1}(k-1)!, \mathbb{E}_{C}\left(a_{1}, \ldots, a_{r}\right)=\prod_{i=1}^{k} \mathbb{E}\left(\prod_{j \in C_{i}} a_{j}\right)
$$

Proposition (Particular case of Mingo, Sniady, Speicher)

Let U be Haar distributed on $\mathbb{U}(\mathrm{n})$. Let $\mathrm{D}=\left(\mathrm{D}_{1}, \ldots \mathrm{D}_{\mathrm{k}}\right)$ and $\overline{\mathrm{D}}=\left(\mathrm{D}_{\overline{1}}, \ldots \mathrm{D}_{\overline{\mathrm{k}}}\right)$ be two families of deterministic matrices of size n . We set, for $1 \leqslant i \leqslant r, X_{i}=\operatorname{Tr}\left(D_{i} U D_{\bar{i}} U^{\star}\right)$. Then,

$$
\begin{equation*}
\kappa_{r}\left(X_{1}, \ldots, X_{r}\right)=\sum_{\alpha, \beta \in \mathcal{S}_{r}} \sum_{A} C_{\beta \alpha^{-1}, A} \operatorname{Tr}_{\alpha}(\overline{\mathrm{D}}) \operatorname{Tr}_{\beta^{-1}}(\mathrm{D}) \tag{3}
\end{equation*}
$$

where in the second sum $A \in \mathcal{P}(r)$ is such that $\beta \alpha^{-1} \leqslant A$ and $A \vee \beta \vee \alpha=1_{r}$, and $C_{\sigma, A}$ are the "relative cumulants" of the unitary Weingarten function. Moreover, if the sequence $\{\mathrm{D}, \overline{\mathrm{D}}\}_{\mathrm{n}}$ has a limit distribution, then for $r \geqslant 3$,

$$
\lim _{n \rightarrow \infty} k_{r}\left(X_{1}, \ldots, X_{r}\right)=0
$$

The needed formula relies on the notion of second order freeness introduced by Mingo, Sniady and Speicher (06-07).
Roughly speaking, whereas the freeness, introduced by Voiculescu, provides the asymptotic behavior of expectation of traces of random matrices, the second order freeness describes the leading order of the fluctuations of these traces.
To reach these cumulants, we use the Möbius formula and estimate the moments.
Finally, moments, which are expectations of products of entries of U can be described by the Weingarten function defined as follows (Collins Sniady).

The needed formula relies on the notion of second order freeness introduced by Mingo, Sniady and Speicher (06-07).
Roughly speaking, whereas the freeness, introduced by Voiculescu, provides the asymptotic behavior of expectation of traces of random matrices, the second order freeness describes the leading order of the fluctuations of these traces.
To reach these cumulants, we use the Möbius formula and estimate the
moments.
Finally, moments, which are expectations of products of entries of UL can be described by the Weingarten function defined as follows (Collins Sniady).

The needed formula relies on the notion of second order freeness introduced by Mingo, Sniady and Speicher (06-07).
Roughly speaking, whereas the freeness, introduced by Voiculescu, provides the asymptotic behavior of expectation of traces of random matrices, the second order freeness describes the leading order of the fluctuations of these traces.
To reach these cumulants, we use the Möbius formula and estimate the moments.
Finally, moments, which are expectations of products of entries of UL can be described by the Weingarten function defined as follows (Collins Sniady).

The needed formula relies on the notion of second order freeness introduced by Mingo, Sniady and Speicher (06-07).
Roughly speaking, whereas the freeness, introduced by Voiculescu, provides the asymptotic behavior of expectation of traces of random matrices, the second order freeness describes the leading order of the fluctuations of these traces.
To reach these cumulants, we use the Möbius formula and estimate the moments.
Finally, moments, which are expectations of products of entries of U can be described by the Weingarten function defined as follows (Collins Sniady).

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups
6. Random truncation

7 Main result
\& Subordination

Combinatorics of the unitary and orthogonal groups

- Let $\mathcal{M}_{2 k}$ be the set of pairings of [2k], i.e. of partitions where each block consists of exactly two elements. It is then convenient to encode the set [2k] by

$$
[2 \mathrm{k}] \cong\{1, \ldots, \mathrm{k}, \overline{1}, \ldots, \overline{\mathrm{k}}\} .
$$

Given two pairings p_{1}, p_{2}, we define the graph $\Gamma\left(p_{1}, p_{2}\right)$ as follows. The vertex set is [2k] and the edge set consists of the pairs of p_{1} and p_{2}. Let loop $\left(p_{1}, p_{2}\right)$ the number of connected components of $\Gamma\left(p_{1}, p_{2}\right)$.

- Let $\mathcal{M}_{2 \mathrm{k}}^{\mathrm{U}}$ denote the set of pairings of [2k], pairing each element of [k] with an element of $[\bar{k}]$.

Let $\mathrm{G}^{\mathbb{U}(\mathfrak{n})}$ be the Gram matrix

$$
G^{\mathbb{U}(\mathfrak{n})}=\left(G^{\mathbb{U}(\mathfrak{n})}\left(\mathfrak{p}_{1}, \mathfrak{p}_{2}\right)\right)_{\mathfrak{p}_{1}, \mathfrak{p}_{2} \in \mathcal{M}_{2 k}^{u}}:=\left(\mathfrak{n}^{\operatorname{loop}\left(\mathfrak{p}_{1}, \mathfrak{p}_{2}\right)}\right)_{\mathfrak{p}_{1}, \mathfrak{p}_{2} \in \mathcal{M}_{2 k}^{u}} .
$$

The unitary Weingarten matrix $\mathrm{Wg}^{\mathbb{U}(n)}$ is defined as the pseudo-inverse of $\mathrm{G}^{\mathbb{U}(n)}$, i.e. such that GWG $=W$ and $W G W=G$.
Let $\mathrm{G}^{\mathbb{O}(n)}$ be the Gram matrix
$G^{\mathbb{O}(n)}=\left(G^{\mathbb{O}(n)}\left(p_{1}, p_{2}\right)\right)_{p_{1}, p_{2} \in \mathcal{N}_{2 k}}:=\left(n^{\operatorname{loop}\left(p_{1}, p_{2}\right)}\right)_{p_{1}, p_{2} \in \mathcal{N}_{2 k}}$
The unitary Weingarten matrix $\mathrm{Wg}^{\mathscr{O}(n)}$ is defined as the-pseudo inverse of $G^{\mathbb{O}(n)}$
Owing to some isomorphisms, these functions of two arguments may be reduced to functions of one argument only. In particular in the unitary case, each p_{i} is associated with a permutation α_{i} and

$$
\mathrm{G}^{\mathbb{U}(\mathrm{n})}\left(\mathrm{p}_{1}, p_{2}\right)=: \mathrm{G}\left(\alpha_{2}^{-1} \alpha_{1}\right)=\mathrm{n}^{\# \text { cycles of } \alpha_{2}^{-1} \alpha_{1}}
$$

Let $\mathrm{G}^{\mathbb{U}(\mathfrak{n})}$ be the Gram matrix

$$
G^{\mathbb{U}(n)}=\left(G^{\mathbb{U}(n)}\left(p_{1}, p_{2}\right)\right)_{p_{1}, p_{2} \in \mathcal{M}_{2 k}^{U}}:=\left(n^{\operatorname{loop}\left(p_{1}, p_{2}\right)}\right)_{p_{1}, p_{2} \in \mathcal{M}_{2 k}^{u}}
$$

The unitary Weingarten matrix $\mathrm{Wg}^{\mathbb{U}(n)}$ is defined as the pseudo-inverse of $G^{\mathbb{U}(n)}$, i.e. such that $G W G=W$ and $W G W=G$.

The unitary Weingarten matrix $\mathrm{Wg}^{(\mathcal{O})}$ is defined as the-pseudo inverse
Owing to some isomorphisms, these functions of two arguments may be reduced to functions of one argument only. In particular in the unitary case, each p_{i} is associated with a permutation α_{i} and

Let $\mathrm{G}^{\mathbb{U}(n)}$ be the Gram matrix

$$
G^{\mathbb{U}(n)}=\left(G^{\mathbb{U}(n)}\left(p_{1}, p_{2}\right)\right)_{p_{1}, p_{2} \in \mathcal{M}_{2 k}^{U}}:=\left(n^{\operatorname{loop}\left(p_{1}, p_{2}\right)}\right)_{p_{1}, p_{2} \in \mathcal{M}_{2 k}^{u}}
$$

The unitary Weingarten matrix $\mathrm{Wg}^{\mathbb{U}(\mathfrak{n})}$ is defined as the pseudo-inverse of $G^{\mathbb{U}(n)}$, i.e. such that $G W G=W$ and $W G W=G$. Let $G^{\mathscr{O}(n)}$ be the Gram matrix

$$
G^{\mathbb{O}(n)}=\left(G^{\mathbb{O}(n)}\left(p_{1}, p_{2}\right)\right)_{p_{1}, p_{2} \in \mathcal{M}_{2 k}}:=\left(n^{\operatorname{loop}\left(p_{1}, p_{2}\right)}\right)_{p_{1}, p_{2} \in \mathcal{M}_{2 k}}
$$

The unitary Weingarten matrix $\mathrm{Wg}^{(1)(n)}$ is defined as the-pseudo inverse

Owing to some isomorphisms, these functions of two arguments may be reduced to functions of one argument only. In particular in the unitary case, each p_{i} is associated with a permutation α_{i} and

Let $\mathrm{G}^{\mathbb{U}(n)}$ be the Gram matrix

$$
G^{\mathbb{U}(n)}=\left(G^{\mathbb{U}(\mathfrak{n})}\left(\mathfrak{p}_{1}, p_{2}\right)\right)_{\mathfrak{p}_{1}, \mathfrak{p}_{2} \in \mathcal{M}_{2 k}^{u}}:=\left(n^{\operatorname{loop}\left(\mathfrak{p}_{1}, \mathfrak{p}_{2}\right)}\right)_{\mathfrak{p}_{1}, \mathfrak{p}_{2} \in \mathcal{M}_{2 k}^{\mathrm{L}}} .
$$

The unitary Weingarten matrix $\mathrm{Wg}^{\mathbb{U}(\mathfrak{n})}$ is defined as the pseudo-inverse of $G^{\mathbb{U}(n)}$, i.e. such that $G W G=W$ and $W G W=G$. Let $G^{\mathscr{O}(n)}$ be the Gram matrix

$$
G^{\mathbb{O}(n)}=\left(G^{\mathscr{O}(n)}\left(\mathfrak{p}_{1}, p_{2}\right)\right)_{\mathfrak{p}_{1}, p_{2} \in \mathcal{M}_{2 k}}:=\left(\mathfrak{n}^{\operatorname{loop}\left(p_{1}, p_{2}\right)}\right)_{\mathfrak{p}_{1}, \mathfrak{p}_{2} \in \mathcal{M}_{2 k}} .
$$

The unitary Weingarten matrix $\mathrm{Wg}^{\mathbb{Q}(n)}$ is defined as the-pseudo inverse of $\mathrm{G}^{\mathscr{O}(\mathfrak{n})}$.
Owing to some isomorphisms, these functions of two arguments may be reduced to functions of one argument only. In particular in the unitary case, each p_{i} is associated with a permutation α_{i} and

Let $\mathrm{G}^{\mathbb{U}(\mathfrak{n})}$ be the Gram matrix

$$
G^{\mathbb{U}(n)}=\left(G^{\mathbb{U}(n)}\left(p_{1}, p_{2}\right)\right)_{p_{1}, p_{2} \in \mathcal{M}_{2 k}^{U}}:=\left(n^{\operatorname{loop}\left(\mathfrak{p}_{1}, p_{2}\right)}\right)_{p_{1}, p_{2} \in \mathcal{M}_{2 k}^{U}} .
$$

The unitary Weingarten matrix $\mathrm{Wg}^{\mathbb{U}(n)}$ is defined as the pseudo-inverse of $G^{\mathbb{U}(n)}$, i.e. such that GWG $=W$ and $W G W=G$. Let $G^{\mathscr{O}(n)}$ be the Gram matrix

$$
G^{\mathbb{O}(\mathrm{n})}=\left(\mathrm{G}^{\mathbb{O}(n)}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)\right)_{\mathfrak{p}_{1}, \mathrm{p}_{2} \in \mathcal{M}_{2 \mathrm{k}}}:=\left(\mathrm{n}^{\operatorname{loop}\left(\mathfrak{p}_{1}, p_{2}\right)}\right)_{\mathfrak{p}_{1}, \mathfrak{p}_{2} \in \mathcal{M}_{2 \mathrm{k}}} .
$$

The unitary Weingarten matrix $\mathrm{Wg}^{\mathscr{O}(n)}$ is defined as the-pseudo inverse of $G^{\mathbb{O}(n)}$.
Owing to some isomorphisms, these functions of two arguments may be reduced to functions of one argument only. In particular in the unitary case, each p_{i} is associated with a permutation α_{i} and

$$
\mathrm{G}^{\mathbb{U}(\mathrm{n})}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=: \mathrm{G}\left(\alpha_{2}^{-1} \alpha_{1}\right)=\mathrm{n}^{\# \text { cycles of } \alpha_{2}^{-1} \alpha_{1}}
$$

Proposition

For every choice of indices $\mathbf{i}=\left(i_{1}, \ldots, \mathfrak{i}_{\mathrm{k}}, \mathfrak{i}_{\overline{1}}, \ldots, \mathfrak{i}_{\bar{k}}\right)$ and $\mathbf{j}=\left(\mathfrak{j}_{1}, \ldots, \mathfrak{j}_{k}, \mathfrak{j}_{\overline{1}}, \ldots, \mathfrak{j}_{\bar{k}}\right)$,

$$
\mathbb{E}\left(\mathrm{u}_{i_{1} j_{1}} \ldots \mathrm{u}_{i_{k} j_{k}} \bar{u}_{i_{\overline{1}} j_{\overline{1}}} \ldots \overline{\mathrm{u}}_{\mathrm{i}_{\bar{k}}, j_{\bar{k}}}\right)=\sum_{p_{1}, p_{2} \in \mathcal{M}_{2 k}^{u}} \delta_{i}^{p_{1}} \delta_{j}^{p_{2}} W^{\mathbb{U}(n)}\left(p_{1}, p_{2}\right)
$$

$\mathbb{E}\left(\mathrm{O}_{\mathrm{i}_{1} j_{1}} \ldots \mathrm{O}_{\mathrm{i}_{\mathrm{k}} j_{k}} \overline{\mathrm{O}}_{\mathrm{i}_{\overline{1}} \bar{j}_{\overline{1}}} \ldots \overline{\mathrm{O}}_{\mathrm{i}_{\bar{k}}, j_{\bar{k}}}\right)=\sum_{p_{1}, p_{2} \in \mathcal{M}_{2 k}} \delta_{i}^{p_{1}} \delta_{j}^{p_{2}} W^{\mathbb{O}(n)}\left(p_{1}, p_{2}\right)$
where $\delta_{\mathbf{i}}^{p_{1}}\left(r e s p . \delta_{j}^{p_{2}}\right)$ is equal to 1 or 0 if \mathbf{i} (resp. \mathbf{j}) is constant on each pair of p_{1} (resp. p_{2}) or not.

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups

6 Random truncation

7 Main result

8 Subordination

Random truncation

B. Farrell (2011) studied truncated unitary matrices, either deterministic (Discrete Fourier Transform)

$$
\mathrm{DFT}_{j k}^{(n)}=\frac{1}{\sqrt{n}} e^{-2 i \pi(j-1)(k-1) / n}
$$

or Haar distributed, when each row is chosen independently with probability s and each column is chosen independently with probability t. He proved that the ESD converges to the Kesten-McKay distribution.

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups
6. Random truncation

7 Main result

Main result

We can embed this model in a two parameter framework,

$$
\mathcal{T}^{(n)}(s, t)=\sum_{1 \leqslant i, j \leqslant n}\left|U_{i j}\right|^{2} 1_{R_{i} \leqslant s} 1_{C_{j} \leqslant t}
$$

Theorem (CDM+AR+VB 2013)

If U is Haar in $\mathbb{U}(\mathrm{n})$ or $\mathbb{O}(\mathrm{n})$, or if U is the DFT matrix, then

$$
\begin{aligned}
& n^{-1 / 2}\left(\mathcal{T}^{(n)}-\mathbb{E} \mathcal{T}^{(n)}\right) \xrightarrow{\text { law }} \mathcal{W}^{\infty} \\
& \mathcal{W}^{\infty}(s, t)= s B_{0}^{(2)}(t)+B_{0}^{(1)}(s), s, t \in[0,1],
\end{aligned}
$$

with $\mathrm{B}_{0}^{(1)}$ and $\mathrm{B}_{0}^{(2)}$ two independent Brownian bridges.

Plan

1 Motivation

2 Main result

3 The 1-marginals

4 Towards the fidi convergence and tightness

5 Combinatorics of the unitary and orthogonal groups
6. Random truncation

7 Main result

8 Subordination

Subordination

Let $S_{n}^{(1)}(s)=\sum_{i=1}^{n} \mathbf{1}_{R_{i} \leqslant s}$ and $S_{n}^{(2)}(t)=\sum_{j=1}^{n} \mathbf{1}_{C_{j} \leqslant t}$ and $\widetilde{U}_{i j}=\left|U_{i j}\right|^{2}$.

Proposition

If $\widetilde{\mathrm{U}}$ is a random doubly stochastic matrix $\mathrm{n} \times \mathrm{n}$ with a distribution invariant by permutation of rows and columns, then

$$
\begin{equation*}
\mathcal{T}^{(n)} \stackrel{\text { law }}{=}\left(T^{(n)} S_{n}^{(1)}(s), S_{n}^{(2)}(t), s, t \in[0,1]\right) . \tag{4}
\end{equation*}
$$

We can then treat $\omega=\left(R_{1}, R_{2}, \cdots ; C_{1}, C_{2}, \cdots\right)$ as an environment.

Proposition (Quenched)

$$
\mathcal{T}^{(n)}-n^{-1} S_{n}^{(1)} \otimes S_{n}^{(2)} \xrightarrow{\text { law }} \sqrt{\frac{2}{\beta}} W^{(\infty)} \text { for a.e. } \omega .
$$

Proposition (Skorokhod embedding)

Let $\mathrm{A}^{(\mathrm{n})}$ be $\mathrm{D}\left([0,1]^{2}\right)$-valued such that $\mathrm{A}^{(\mathrm{n})} \xrightarrow{\text { law }} A$. Let $\mathrm{S}_{\mathrm{n}}^{(1)}$ and $\mathrm{S}_{\mathrm{n}}^{(2)}$ be two independent processes as above, independent upon $A^{(n)}$. Set $\widetilde{S_{n}^{(1)}}=\left(n^{-1 / 2}\left(S_{n}^{(1)}(s)-n s\right), s \in[0,1]\right)$ and idem for $\widetilde{S_{n}^{(2)}}$ and
$\mathcal{A}^{(n)}=\left(A_{\left(n^{-1} S_{n}^{(1)}(s), n^{-1} S_{n}^{(2)}(t)\right)}^{(n)}, s, t \in[0,1]\right)$. Then

$$
\left(\mathcal{A}^{(n)}, \widetilde{S}_{n}^{(1)}, \widetilde{S}_{n}^{(2)}\right) \xrightarrow{\text { law }}\left(A, B_{0}^{1)}, B_{0}^{(2)}\right)
$$

where $\mathrm{A}, \mathrm{B}_{0}^{(1)}, \mathrm{B}_{0}^{(2)}$) are independent and $\mathrm{B}_{0}^{(1)}$ and $\mathrm{B}_{0}^{(2)}$ are two $B B$.

Lemma

$$
\left(n^{-1 / 2}\left(n^{-1} S_{n}^{(1)}(s) S_{n}^{(2)}(t)-n s t\right) s, t \in[0,1]\right) \xrightarrow{\text { law }} \mathcal{W}^{(\infty)}
$$

Now,

$$
\mathcal{T}^{(n)}-\mathbb{E}^{(n)}=\left(\mathcal{T}^{(n)}-\mathbb{E}^{\omega} \mathcal{T}^{(n)}\right)+\left(\mathbb{E}^{\omega} \mathcal{T}^{(n)}-\mathbb{E}^{(n)}\right)
$$

Lemma

$$
\left(n^{-1 / 2}\left(n^{-1} S_{n}^{(1)}(s) S_{n}^{(2)}(t)-n s t\right) s, t \in[0,1]\right) \xrightarrow{\text { law }} \mathcal{W}^{(\infty)}
$$

Now,

$$
\mathcal{T}^{(\mathfrak{n})}-\mathbb{E} \mathcal{T}^{(\mathfrak{n})}=\left(\mathcal{T}^{(\mathfrak{n})}-\mathbb{E}^{\omega} \mathcal{T}^{(n)}\right)+\left(\mathbb{E}^{\omega} \mathcal{T}^{(n)}-\mathbb{E} \mathcal{T}^{(\mathfrak{n})}\right)
$$

Lemma

$$
\left(n^{-1 / 2}\left(n^{-1} S_{n}^{(1)}(s) S_{n}^{(2)}(t)-n s t\right) s, t \in[0,1]\right) \xrightarrow{\text { law }} \mathcal{W}^{(\infty)}
$$

Now,

$$
\mathcal{T}^{(\mathfrak{n})}-\mathbb{E} \mathcal{T}^{(n)}=\left(\mathcal{T}^{(\mathfrak{n})}-\mathbb{E}^{\omega} \mathcal{T}^{(n)}\right)+\left(\mathbb{E}^{\omega} \mathcal{T}^{(n)}-\mathbb{E} \mathcal{T}^{(\mathfrak{n})}\right)
$$

Proposition (annealed)

$$
\mathfrak{n}^{-1 / 2}\left(\mathcal{T}^{(n)}-\mathbb{E} \mathcal{T}^{(n)}\right) \xrightarrow{\text { law }} \mathcal{W}^{\infty}
$$

Plan

1 Motivation

Open problem

Quantum groups, in particular quantum permutation group.

 Haar, Weingarten$$
\int u_{i_{1} j_{1}} \cdots u_{i_{k} j_{k}}=\sum_{p_{1}, p_{2}} \delta_{p_{1}, i} \delta_{p_{2}, j} W_{k, n}\left(p_{1}, p_{2}\right)
$$

where p_{1}, p_{2} are non-crossing partitions of $[k]$ and

$$
W_{k, n}=G_{k, n}^{-\frac{1}{n}}, G_{k, n}\left(p_{1}, p_{2}\right)=n^{\mid p_{1}, ~} p_{2} \mid
$$

Open problem

Quantum groups, in particular quantum permutation group.

where p_{1}, p_{2} are non-crossing partitions of $[k]$ and

$$
W_{k, n}=G_{k, n}^{-1}, G_{k, n}\left(p_{1}, p_{2}\right)=n^{\left|p_{1}, p_{2}\right|}
$$

Open problem

Quantum groups, in particular quantum permutation group. Haar, Weingarten

$$
\int u_{\mathfrak{i}_{1} j_{1}} \cdots u_{\mathfrak{i}_{k} j_{k}}=\sum_{\mathfrak{p}_{1}, p_{2}} \delta_{\mathfrak{p}_{1}, i} \delta_{\mathfrak{p}_{2, j}} W_{k, n}\left(p_{1}, p_{2}\right)
$$

where p_{1}, p_{2} are non-crossing partitions of $[k]$ and

$$
W_{k, n}=G_{k, n}^{-1}, G_{k, n}\left(p_{1}, p_{2}\right)=n^{\left|p_{1} \vee p_{2}\right|}
$$

Bibliography

- Truncation of Haar unitary matrices, traces and bivariate Brownian bridge (with Catherine Donati-Martin) Random Matrices : Theory and Applications, Nov. 2011.
- Bridges and random truncations of random matrices (with V. Beffara and C. Donati-Martin) Random Matrices : Theory and Applications, April 2014.

THANK YOU FOR YOUR ATTENTION!

