Cartography on unoriented surfaces, with applications to real and quaternionic random matrices

Emily Redelmeier

November 19, 2013
CartographyOrientable surfaces
Unoriented surfacesClassification and Euler characteristic
Random MatricesCombinatorics of traces
Example
Matrix models
The Hyperoctahedral Group
The Weingarten functionThe Quaternionic Case
Freeness
Noncommutative probability spaces
Second-order probability spaces

Consider the map:

Consider the map:

The vertex information can be encoded in a permutation

$$
\sigma=(1,2,3,4)(5,6)(7,8)(9,10)(11,12)
$$

Consider the map:

The vertex information can be encoded in a permutation

$$
\sigma=(1,2,3,4)(5,6)(7,8)(9,10)(11,12)
$$

The edge information can be encoded in another permutation

$$
\alpha=(1,2)(3,5)(4,12)(6,7)(8,9)(10,11) .
$$

The face information is encoded in

$$
\varphi:=\sigma^{-1} \alpha^{-1}=(1)(2,4,11,9,7,5)(3,6,8,10,12) .
$$

This construction works equally well with oriented hypermaps:

This construction works equally well with oriented hypermaps:

$$
\sigma=(1,2,3)(4,5)(6,7)
$$

This construction works equally well with oriented hypermaps:

$$
\begin{aligned}
& \sigma=(1,2,3)(4,5)(6,7) \\
& \alpha=(1,6,5)(2,7,3)(4)
\end{aligned}
$$

This construction works equally well with oriented hypermaps:

$$
\begin{gathered}
\sigma=(1,2,3)(4,5)(6,7) \\
\alpha=(1,6,5)(2,7,3)(4) \\
\varphi=\sigma^{-1} \alpha^{-1}=(1,4,5,7)(2)(3,6)
\end{gathered}
$$

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone on the surface rather than within it).

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone on the surface rather than within it).

We do this by constructing a front and back side of each face.

To extend this construction to unoriented surfaces, we construct the orientable two-sheeted covering space (the surface experienced by someone on the surface rather than within it).

We do this by constructing a front and back side of each face.

An untwisted edge-identification connects front to front and back to back, while a twisted edge-identification connects front to back and back to front.

Cartography
Random Matrices

Emily Redelmeier
Cartography on unoriented surfaces

We label the front sides with positive integers and the corresponding back sides with negative integers.

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto-k$.

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto-k$.

A permutation π describing something in this surface should satisfy $\pi=\delta \pi^{-1} \delta$. (We will call such a permutation a premap.)

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto-k$.

A permutation π describing something in this surface should satisfy $\pi=\delta \pi^{-1} \delta$. (We will call such a permutation a premap.)

We let $\varphi_{+}=\varphi$, and $\varphi_{-}=\delta \varphi \delta$.

We label the front sides with positive integers and the corresponding back sides with negative integers.

Let $\delta: k \mapsto-k$.

A permutation π describing something in this surface should satisfy $\pi=\delta \pi^{-1} \delta$. (We will call such a permutation a premap.)

We let $\varphi_{+}=\varphi$, and $\varphi_{-}=\delta \varphi \delta$.

Vertex information is given by $\varphi_{+}^{-1} \alpha^{-1} \varphi_{-}$.

$$
\begin{gathered}
\varphi=(1,2,3,4,5)(7,8,9) \\
\alpha=(1,-7)(7,-1)(2,-4)(4,-2)(3,-6)(6,-3)(5,8)(-8,-5)
\end{gathered}
$$

$$
\begin{gathered}
\varphi=(1,2,3,4,5)(7,8,9) \\
\alpha=(1,-7)(7,-1)(2,-4)(4,-2)(3,-6)(6,-3)(5,8)(-8,-5) \\
\sigma=\varphi_{+}^{-1} \alpha^{-1} \varphi_{-}(1,-3,6,-5,-7)(7,5,-6,3,-1)(2,-8,-4)(4,8,-2)
\end{gathered}
$$

This construction also works equally well for hypermaps, in which the hyperedge permutation must also satisfy $\alpha=\delta \alpha^{-1} \delta$.

This construction also works equally well for hypermaps, in which the hyperedge permutation must also satisfy $\alpha=\delta \alpha^{-1} \delta$.

This construction also works equally well for hypermaps, in which the hyperedge permutation must also satisfy $\alpha=\delta \alpha^{-1} \delta$.

$$
\varphi=(1,2,3)(4,5) ;
$$

This construction also works equally well for hypermaps, in which the hyperedge permutation must also satisfy $\alpha=\delta \alpha^{-1} \delta$.

$$
\varphi=(1,2,3)(4,5) ; \alpha=(1,-3,4)(-4,3,-1)(2,-5)(5,-2)
$$

This construction also works equally well for hypermaps, in which the hyperedge permutation must also satisfy $\alpha=\delta \alpha^{-1} \delta$.

$$
\begin{gathered}
\varphi=(1,2,3)(4,5) ; \alpha=(1,-3,4)(-4,3,-1)(2,-5)(5,-2) \\
\sigma=\varphi_{+}^{-1} \alpha^{-1} \varphi_{-}=(1,5,-2,3,-4)(4,-3,2,-5,-1)
\end{gathered}
$$

Surfaces are classified as one of the following:

Surfaces are classified as one of the following:

- spheres $(\chi=2)$,

Surfaces are classified as one of the following:

- spheres $(\chi=2)$,
- n-holed tori $(\chi=0,-2,-4, \ldots)$,

Surfaces are classified as one of the following:

- spheres $(\chi=2)$,
- n-holed tori $(\chi=0,-2,-4, \ldots)$,
- connected sums of n projective planes $(\chi=1,0,-1,-2,-3, \ldots)$.

Surfaces are classified as one of the following:

- spheres $(\chi=2)$,
- n-holed tori $(\chi=0,-2,-4, \ldots)$,
- connected sums of n projective planes

$$
(\chi=1,0,-1,-2,-3, \ldots)
$$

The covering space of an orientable surface is two copies of the surface.

Surfaces are classified as one of the following:

- spheres $(\chi=2)$,
- n-holed tori $(\chi=0,-2,-4, \ldots)$,
- connected sums of n projective planes

$$
(\chi=1,0,-1,-2,-3, \ldots)
$$

The covering space of an orientable surface is two copies of the surface.

The covering space of an unorientable surface is the orientable surface with Euler characteristic twice that of the original surface (so the connected sum of n projective planes is the $(n-1)$-holed torus).

Definition

Let I be a finite set of integers which does not contain both k and $-k$ for any k. For a $\gamma \in S(I)$ and a premap $\pi \in P M(\pm I)$, we define

$$
\chi(\varphi, \alpha):=\#\left(\varphi_{+} \varphi_{-}^{-1}\right) / 2+\#(\alpha) / 2+\#\left(\varphi_{+}^{-1} \alpha^{-1} \varphi_{-}\right) / 2-|I| .
$$

Definition

Let I be a finite set of integers which does not contain both k and $-k$ for any k. For a $\gamma \in S(I)$ and a premap $\pi \in P M(\pm I)$, we define
$\chi(\varphi, \alpha):=\#\left(\varphi_{+} \varphi_{-}^{-1}\right) / 2+\#(\alpha) / 2+\#\left(\varphi_{+}^{-1} \alpha^{-1} \varphi_{-}\right) / 2-|I|$.

If $\pm l_{1}$ and $\pm l_{2}$ are disjoint, and $\gamma_{i} \in S\left(I_{i}\right)$ and $\pi_{i} \in P M\left(\pm l_{i}\right)$ for $i=1,2$, then

$$
\chi\left(\gamma_{1}, \pi_{1}\right)+\chi\left(\gamma_{2}, \pi_{2}\right)=\chi\left(\gamma_{1} \gamma_{2}, \pi_{1} \pi_{2}\right) .
$$

Theorem

Let $\pi, \rho \in S(I)$ for some finite set I. Then

$$
\#(\pi)+\#(\pi \rho)+\#(\rho) \leq|I|+2 \#\langle\pi, \rho\rangle .
$$

Theorem

Let $\pi, \rho \in S(I)$ for some finite set I. Then

$$
\#(\pi)+\#(\pi \rho)+\#(\rho) \leq|I|+2 \#\langle\pi, \rho\rangle .
$$

Lemma

Let $\varphi \in S_{n}$, and let $\left\{V_{1}, \ldots, V_{r}\right\} \in \mathcal{P}(n)$ be the orbits of φ. If $\alpha \in P M(\pm[n])$ connects the blocks of $\left\{ \pm V_{1}, \ldots, \pm V_{r}\right\}$, then $\chi(\gamma, \pi) \leq 2$.

Theorem

Let $\pi, \rho \in S(I)$ for some finite set I. Then

$$
\#(\pi)+\#(\pi \rho)+\#(\rho) \leq|I|+2 \#\langle\pi, \rho\rangle .
$$

Lemma

Let $\varphi \in S_{n}$, and let $\left\{V_{1}, \ldots, V_{r}\right\} \in \mathcal{P}(n)$ be the orbits of φ. If $\alpha \in P M(\pm[n])$ connects the blocks of $\left\{ \pm V_{1}, \ldots, \pm V_{r}\right\}$, then $\chi(\gamma, \pi) \leq 2$.

Surfaces with maximal Euler characteristic are typically associated with noncrossing diagrams.

In terms of indices, traces may be written

$$
\operatorname{Tr}\left(X_{1} \cdots X_{n}\right)=\sum_{1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq N} X_{i_{1} i_{2}}^{(1)} X_{i_{2} i_{3}}^{(2)} \cdots X_{i_{n} i_{1}}^{(n)}
$$

In terms of indices, traces may be written

$$
\operatorname{Tr}\left(X_{1} \cdots X_{n}\right)=\sum_{1 \leq i_{1}, i_{2}, \ldots, i_{n} \leq N} X_{i_{1} i_{2}}^{(1)} X_{i_{2} i_{3}}^{(2)} \cdots X_{i_{n} i_{1}}^{(n)}
$$

We can take traces along the cycles of a permutation

$$
\begin{aligned}
& \pi=\left(c_{1,1}, c_{1,2}, \ldots, c_{1, n_{1}}\right)\left(c_{2,1}, \ldots, c_{2, n_{2}}\right) \cdots\left(c_{r, 1}, \ldots, c_{r, n_{r}}\right): \\
& \operatorname{Tr}_{\pi}\left(X_{1}, \ldots, X_{n}\right)=\operatorname{Tr}\left(X_{1,1} \ldots X_{1, n_{1}}\right) \cdots \operatorname{Tr}\left(X_{c_{r, 1}} \cdots X_{\left.c_{r, n_{r}}\right)}\right) \\
& =\sum_{1 \leq i_{1}, \ldots, i_{n}} X_{i_{1}, i_{\pi(1)}}^{(1)} \cdots X_{i_{n}, i_{\pi(n)}}^{(n)} .
\end{aligned}
$$

Say we wish to calculate

$$
\mathbb{E}\left(\operatorname{tr}\left(X Y_{1} X Y_{2} X^{T} Y_{3} X Y_{4} X^{T} Y_{5}\right) \operatorname{tr}\left(X^{T} Y_{6} X Y_{7} X Y_{8}\right)\right)
$$

Say we wish to calculate

$$
\mathbb{E}\left(\operatorname{tr}\left(X Y_{1} X Y_{2} X^{T} Y_{3} X Y_{4} X^{T} Y_{5}\right) \operatorname{tr}\left(X^{T} Y_{6} X Y_{7} X Y_{8}\right)\right)
$$

The traces of products are a sum over
$X_{i_{1} j_{1}} Y_{j_{1} i_{2}}^{(1)} X_{i_{2} j_{2}} Y_{j_{2} j_{3}}^{(2)} X_{j_{3} i_{3}}^{T} Y_{i_{3} i_{4}}^{(3)} X_{i_{4} j_{4}} Y_{j_{4} j_{5}}^{(4)} X_{j_{5} i_{5}}^{T} Y_{i_{5} i_{1}}^{(5)} X_{j_{6} i_{6}}^{T} Y_{i_{6} i_{7}}^{(6)} X_{i_{7} j_{7}} Y_{j i_{i}}^{(7)} X_{i_{8} j_{8}} Y_{j_{8} j_{6}}^{(8)}$.

We construct the faces:

We use a result called the Wick formula.

We use a result called the Wick formula. There are three pairings on 4 elements:

We use a result called the Wick formula.
There are three pairings on 4 elements:

If $X_{1}, X_{2}, X_{3}, X_{4}$ are components of a multivariate Gaussian random variable, then

$$
\begin{aligned}
& \mathbb{E}\left(X_{1} X_{2} X_{3} X_{4}\right)=\mathbb{E}\left(X_{1} X_{2}\right) \mathbb{E}\left(X_{3} X_{4}\right)+\mathbb{E}\left(X_{1} X_{3}\right) \mathbb{E}\left(X_{2} X_{4}\right) \\
&+\mathbb{E}\left(X_{1} X_{4}\right) \mathbb{E}\left(X_{2} X_{3}\right)
\end{aligned}
$$

Let $\mathcal{P}_{2}(n)$ be the set of pairings on n elements.

Let $\mathcal{P}_{2}(n)$ be the set of pairings on n elements.
Theorem
Let $\left\{f_{\lambda}: \lambda \in \Lambda\right\}$, for some index set Λ, be a centred Gaussian family of random variables. Then for $i_{1}, \ldots, i_{n} \in \Lambda$,

$$
\mathbb{E}\left(f_{i_{1}} \cdots f_{i_{n}}\right)=\sum_{\mathcal{P}_{2}(n)} \prod_{\{k, l\} \in \mathcal{P}_{2}(n)} \mathbb{E}\left(f_{i_{k}} f_{i_{l}}\right) .
$$

Let $\mathcal{P}_{2}(n)$ be the set of pairings on n elements.
Theorem
Let $\left\{f_{\lambda}: \lambda \in \Lambda\right\}$, for some index set Λ, be a centred Gaussian family of random variables. Then for $i_{1}, \ldots, i_{n} \in \Lambda$,

$$
\mathbb{E}\left(f_{i_{1}} \cdots f_{i_{n}}\right)=\sum_{\mathcal{P}_{2}(n)} \prod_{\{k, l\} \in \mathcal{P}_{2}(n)} \mathbb{E}\left(f_{i_{k}} f_{i_{l}}\right) .
$$

Here, for a pairing $\pi \in \mathcal{P}_{2}(n)$:

$$
\prod_{\{k, l\}} \mathbb{E}\left(f_{i_{k} j_{k}} f_{i j_{l}}\right)= \begin{cases}1, & \text { if } i_{k}=i_{l} \text { and } j_{k}=j_{l} \text { for all }\{k, l\} \in \pi \\ 0, & \text { otherwise }\end{cases}
$$

Putting indices which must be equal next to each other, we get a surface gluing:

We note that if one term is from X and the other from X^{T}, the edge identification is untwisted:

If both terms are from X or from X^{T}, the edge identification is twisted:

The following vertex appears on the surface:

The following vertex appears on the surface:

If a corner appears upside-down, it is the transpose of that matrix which appears.

The following vertex appears on the surface:

If a corner appears upside-down, it is the transpose of that matrix which appears.

It contributes

$$
\operatorname{Tr}\left(Y_{1} Y_{3}^{T} Y_{6} Y_{5}^{T} Y_{7}^{T}\right) .
$$

The same vertex viewed from the opposite side contributes the same value:

Let $X: \Omega \rightarrow M_{M \times N}(\mathbb{R})$ be a random matrix with $X_{i j}=\frac{1}{\sqrt{N}} f_{i j}$, where the $f_{i j}$ are independent $N(0,1)$ random variables.

Let $X: \Omega \rightarrow M_{M \times N}(\mathbb{R})$ be a random matrix with $X_{i j}=\frac{1}{\sqrt{N}} f_{i j}$, where the $f_{i j}$ are independent $N(0,1)$ random variables.

Definition

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Let $X: \Omega \rightarrow M_{M \times N}(\mathbb{R})$ be a random matrix with $X_{i j}=\frac{1}{\sqrt{N}} f_{i j}$, where the $f_{i j}$ are independent $N(0,1)$ random variables.

Definition

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Definition

Gaussian orthogonal ensemble matrices, or GOE matrices, are symmetric matrices $T:=\frac{1}{\sqrt{2}}\left(X+X^{T}\right)$

Let $X: \Omega \rightarrow M_{M \times N}(\mathbb{R})$ be a random matrix with $X_{i j}=\frac{1}{\sqrt{N}} f_{i j}$, where the $f_{i j}$ are independent $N(0,1)$ random variables.

Definition

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Definition

Gaussian orthogonal ensemble matrices, or GOE matrices, are symmetric matrices $T:=\frac{1}{\sqrt{2}}\left(X+X^{T}\right)$
Definition
Real Wishart matrices are matrices $W:=X^{T} D_{k} X$ for some deterministic matrix D_{k}.

We wish to calculate expressions of the form

$$
\mathbb{E}\left(\operatorname{tr}_{\varphi}\left(X^{(\varepsilon(1))} Y_{1} \cdots X^{(\varepsilon(n))} Y_{n}\right)\right)
$$

We wish to calculate expressions of the form

$$
\mathbb{E}\left(\operatorname{tr}_{\varphi}\left(X^{(\varepsilon(1))} Y_{1} \ldots X^{(\varepsilon(n))} Y_{n}\right)\right)
$$

$$
=\sum_{\substack{\begin{subarray}{c}{[n] \rightarrow[N] \\
-[n] \rightarrow[M]} }}\end{subarray}} N^{\left.-\#(\varphi)-n \mathbb{E}\left(f_{\iota_{1} \iota_{-1}} \cdots f_{\iota_{n} \iota_{-n}}\right)\right)}
$$

$$
\mathbb{E}\left(Y_{\iota_{-\delta_{\varepsilon}(1)^{\iota} \delta_{\varepsilon} \varphi(1)}^{(1)}} \cdots Y_{\iota_{-\delta_{\varepsilon}(n)} \delta_{\delta_{\varepsilon} \varphi(n)}^{(n)}}^{(n)} .\right.
$$

$$
\sum_{\substack{\begin{subarray}{c}{[n] \rightarrow[N] \\
-[n] \rightarrow[M]} }}\end{subarray}} \sum_{\substack{\pi \in \mathcal{P}_{2}(n) \\
\iota_{ \pm k}=\iota_{ \pm 1}:\{k, l\} \in \pi}} N^{-\#(\varphi)-n} \mathbb{E}\left(Y_{\iota_{-\delta_{\varepsilon}(1)} \iota_{\delta} \varphi(1)}^{(1)} \cdots Y_{\iota_{-\delta_{\varepsilon}(n)} \iota_{\delta \varphi}(n)}^{(n)}\right)
$$

$$
\sum_{\substack{[n] \rightarrow[N] \\
\iota:\left\{\begin{array}{c}
\pi \in \mathcal{P}_{2}(n) \\
-[n] \rightarrow[M] \\
\iota_{ \pm k}=\iota_{ \pm 1}:\{k, l\} \in \pi
\end{array}\right.}} N^{-\#(\varphi)-n} \mathbb{E}\left(Y_{\iota_{-\delta_{\varepsilon}(1)} \iota_{\delta_{\varepsilon} \varphi(1)}}^{(1)} \cdots Y_{\iota_{-\delta_{\varepsilon}(n)} \iota_{\delta \varphi}(n)}^{(n)}\right)
$$

Reversing the order of summation,

$$
\begin{aligned}
& \sum_{\pi \in \mathcal{P}_{2}(n)} \sum_{\{[n] \rightarrow[N]} N^{-\#(\varphi)-n} \mathbb{E}\left(Y_{\iota_{-\delta_{\varepsilon}(1)} \iota_{\delta_{\varepsilon} \varphi(1)}}^{(1)} \cdots Y_{\iota_{-\delta_{\varepsilon}(n)} \iota_{\delta_{\varepsilon} \varphi(n)}}^{(n)}\right) \\
& \pi \in \mathcal{P}_{2}(n) \quad \iota:\left\{\begin{array}{c}
{[n] \rightarrow[N]} \\
-[n] \rightarrow[M]
\end{array}\right. \\
& \iota_{ \pm k}=\iota_{ \pm l}:\{k, l\} \in \pi
\end{aligned}
$$

Regardless of the sign of k, we can write the entry

$$
Y_{\iota_{\delta \delta_{\varepsilon} \varphi_{-}(k)} \iota_{\delta_{\varepsilon} \varphi_{+}(k)}^{(k)} .}
$$

Regardless of the sign of k, we can write the entry

$$
Y_{\iota_{\delta \delta_{\varepsilon} \varphi_{-}}(k)^{\iota} \delta_{\varepsilon} \varphi_{+}(k)}^{(k)}
$$

The first index of $Y_{\varphi_{-}^{-1} \delta_{\varepsilon} \pi \delta \pi \delta_{\varepsilon} \varphi_{+}(k)}$ is:

$$
{ }^{\iota_{\delta} \delta_{\varepsilon} \varphi_{-}\left(\varphi_{-}^{-1} \delta_{\varepsilon} \pi \delta \pi \delta_{\varepsilon} \varphi_{+}(k)\right)}=\iota_{\delta \pi \delta \pi \delta_{\varepsilon} \varphi_{+}(k)}
$$

which is equal to the second index of Y_{k}.

Regardless of the sign of k, we can write the entry

$$
Y_{\iota_{\delta \delta_{\varepsilon} \varphi_{-}}(k)^{\iota} \delta_{\varepsilon} \varphi_{+}(k)}^{(k)}
$$

The first index of $Y_{\varphi_{-}^{-1} \delta_{\varepsilon} \pi \delta \pi \delta_{\varepsilon} \varphi_{+}(k)}$ is:

$$
\iota_{\delta \delta_{\varepsilon} \varphi_{-}\left(\varphi_{-}^{-1} \delta_{\varepsilon} \pi \delta \pi \delta_{\varepsilon} \varphi_{+}(k)\right)}=\iota_{\delta \pi \delta \pi \delta_{\varepsilon} \varphi_{+}(k)}
$$

which is equal to the second index of Y_{k}.

$$
\sum_{-\sim} N^{\#\left(\varphi_{-}^{-1} \delta_{\varepsilon} \pi \delta \pi \delta_{\varepsilon} \varphi_{+}\right) / 2-\#(\varphi)-n} \mathbb{E}\left(\operatorname{tr}_{\mathrm{FD}\left(\varphi_{-\Sigma_{\varepsilon}}^{-1} \delta_{\varepsilon} \pi \delta \delta_{\delta} \delta_{\varepsilon} \varphi_{+}\right)}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
$$

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Thus

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\varphi}\left(Z^{(\varepsilon(1))} Y_{1}, \ldots, Z^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\alpha \in\left\{\pi \delta \pi: \pi \in \mathcal{P}_{2}(n)\right\}} N^{\chi\left(\varphi, \delta_{\varepsilon} \alpha \delta_{\varepsilon}\right)-\#(\varphi)} \mathbb{E}\left(\operatorname{tr}_{\mathrm{FD}\left(\varphi_{-}^{-1} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \varphi_{+}\right)}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

Real Ginibre matrices are square matrices $Z:=X$ with $M=N$.

Thus

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\varphi}\left(Z^{(\varepsilon(1))} Y_{1}, \ldots, Z^{(\varepsilon(n))} Y_{n}\right)\right) \\
= & \sum_{\alpha \in\left\{\pi \delta \pi: \pi \in \mathcal{P}_{2}(n)\right\}} N^{\chi\left(\varphi, \delta_{\varepsilon} \alpha \delta_{\varepsilon}\right)-\#(\varphi)} \mathbb{E}\left(\operatorname{tr}_{\mathrm{FD}\left(\varphi_{-}^{-1} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \varphi_{+}\right)}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

This is a sum over all gluings compatible with the edge directions given by the transposes.

If we expand out the GOE matrix $T:=\frac{1}{\sqrt{2}}\left(X+X^{T}\right)$, we get

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\varphi}\left(T Y_{1}, \ldots, T Y_{n}\right)\right) \\
& \quad=\sum_{\varepsilon:\{1, \ldots, n\} \rightarrow\{1,-1\}} \frac{1}{2^{n / 2}} \mathbb{E}\left(\operatorname{tr}_{\varphi}\left(X^{(\varepsilon(1))} Y_{1} \ldots X^{(\varepsilon(n))} Y_{n}\right)\right) .
\end{aligned}
$$

If we collect terms, this is equivalent to summing over all edge-identifications.

If we collect terms, this is equivalent to summing over all edge-identifications.

Thus

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\varphi}\left(T Y_{1}, \ldots, T Y_{n}\right)\right) \\
= & \sum_{\alpha \in P M(\pm[n]) \cap \mathcal{P}_{2}(\pm[n])} N^{\chi(\varphi, \alpha)-\#(\varphi)} \mathbb{E}\left(\operatorname{tr}_{\mathrm{FD}\left(\varphi_{-}^{-1} \alpha \varphi_{+}\right)}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

With Wishart matrices $W:=X^{T} D_{k} X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

With Wishart matrices $W:=X^{T} D_{k} X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

With Wishart matrices $W:=X^{T} D_{k} X$, we can collapse the edges corresponding to each matrix to a single edge. We can think of the connecting blocks as (possibly twisted) hyperedges.

Thus:

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\varphi}\left(W_{1} Y_{1}, \cdots, W_{n} Y_{n}\right)\right) \\
& =\sum_{\alpha \in P M([n])} N^{\chi(\varphi, \alpha)-\#(\varphi)} \operatorname{tr}_{\mathrm{FD}\left(\alpha^{-1}\right)}\left(D_{1}, \ldots, D_{n}\right) \\
& \\
& \mathbb{E}\left(\operatorname{tr}_{\mathrm{FD}\left(\varphi_{-}^{-1} \pi \varphi_{+}\right)}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

Definition

A Haar-distributed orthogonal matrix is a random matrix with left-invariant probability measure on the orthogonal matrices.

Definition

A Haar-distributed orthogonal matrix is a random matrix with left-invariant probability measure on the orthogonal matrices.
Theorem (Collins, Śniady, 2006)

$$
\begin{aligned}
\mathbb{E}\left(O_{i_{1} j_{1}} \cdots O_{i_{n} j_{n}}\right)= & \sum^{\left(\pi_{1}, \pi_{2}\right) \in \mathcal{P}_{2}^{2}(n)} \\
& i=i \circ \pi_{1}, j=j \circ \pi_{2}
\end{aligned}
$$

where:

Definition

A Haar-distributed orthogonal matrix is a random matrix with left-invariant probability measure on the orthogonal matrices.
Theorem (Collins, Śniady, 2006)

$$
\mathbb{E}\left(O_{i_{1} j_{1}} \cdots O_{i_{n} j_{n}}\right)=\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \in \mathcal{P}_{2}^{2}(n) \\ i=i \circ \pi_{1}, j=j \circ \pi_{2}}} \operatorname{Wg}\left(\pi_{1}, \pi_{2}\right)
$$

where:

- $\mathrm{Wg}\left(\pi_{1}, \pi_{2}\right)$ depends only on the block structure of $\pi_{1} \vee \pi_{2}$;

Definition

A Haar-distributed orthogonal matrix is a random matrix with left-invariant probability measure on the orthogonal matrices.
Theorem (Collins, Śniady, 2006)

$$
\mathbb{E}\left(O_{i_{1} j_{1}} \cdots O_{i_{n} j_{n}}\right)=\sum_{\substack{\left(\pi_{1}, \pi_{2}\right) \in \mathcal{P}_{2}^{2}(n) \\ i=i \circ \pi_{1}, j=j \circ \pi_{2}}} \operatorname{Wg}\left(\pi_{1}, \pi_{2}\right)
$$

where:

- $\mathrm{Wg}\left(\pi_{1}, \pi_{2}\right)$ depends only on the block structure of $\pi_{1} \vee \pi_{2}$;
- if $\pi_{1} \vee \pi_{2}$ has blocks $2 \lambda_{1}, \ldots, 2 \lambda_{s}$, then

$$
\operatorname{Wg}\left(\pi_{1}, \pi_{2}\right)=\left(\prod_{k=1}^{s}(-1)^{\lambda_{k}-1} C_{\lambda_{k}-1}\right) N^{-\frac{n}{2}-s}+\mathcal{O}\left(N^{-\frac{n}{2}-s-1}\right)
$$

Say we wish to calculate

$$
\mathbb{E}\left(\operatorname{tr}\left(O Y_{1} O Y_{2} O^{\top} Y_{3}\right) \operatorname{tr}\left(O Y_{4} O^{\top} Y_{5} O^{\top} Y_{6} O Y_{7} O Y_{8}\right)\right) .
$$

Say we wish to calculate

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}\left(O Y_{1} O Y_{2} O^{T} Y_{3}\right) \operatorname{tr}\left(O Y_{4} O^{T} Y_{5} O^{T} Y_{6} O Y_{7} O Y_{8}\right)\right) . \\
& =\sum_{\iota: \pm[n] \rightarrow[N]} \mathbb{E}\left(O_{\iota_{1} \iota-1} Y_{\iota_{-1} \iota_{2}}^{(1)} O_{\iota_{2} \iota_{-2}} Y_{\iota_{-2 \iota-3}}^{(2)} O_{\iota_{-3} \iota_{3}}^{T} Y_{\iota 3 \iota_{1}}^{(3)}\right.
\end{aligned}
$$

We construct the faces

$$
\begin{aligned}
& =\sum_{\ell: \pm[n] \rightarrow[N]} \mathbb{E}\left(O_{t_{1} \iota-1} \cdots O_{\iota 8 \iota-8}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\sum_{c: \pm[n] \rightarrow[N]} \prod_{\substack{ }} \sum_{\iota_{1} \iota_{-1}} \cdot O_{\iota_{-} \iota_{-8}}\right) \\
& \times \mathbb{H}\left(Y_{\iota_{-1} \iota_{2}}^{(1)} Y_{\iota_{-2} \iota_{-3}}^{(2)} Y_{\iota_{3} \iota_{1}}^{(3)} Y_{\iota_{-4} \iota_{-5}}^{(4)} Y_{\iota_{5} \iota_{-6}}^{(5)} Y_{\iota_{6} \iota_{7}}^{(6)} Y_{\iota_{-7} \iota_{8}}^{(7)} Y_{\iota_{-8} \iota_{4}}^{(8)}\right) \\
& \mathbb{E}\left(O_{\iota_{1} \iota_{-1}} \cdots O_{\iota_{8} \iota_{-8}}\right)=\quad \sum \quad \operatorname{Wg}\left(\pi_{+}, \pi_{-}\right) \\
& \begin{array}{c}
\left(\pi_{+}, \pi_{-}\right) \in \mathcal{P}_{2}(8)^{2} \\
\iota=\iota \circ \delta \pi-\delta \pi_{+}
\end{array}
\end{aligned}
$$

Consider

$$
\pi_{+}=(1,2)(3,5)(4,8)(6,7)
$$

and

$$
\pi_{-}=(1,6)(2,5)(3,7)(4,8)
$$

Consider

$$
\pi_{+}=(1,2)(3,5)(4,8)(6,7)
$$

and

$$
\pi_{-}=(1,6)(2,5)(3,7)(4,8)
$$

There are a number of vertices containing the Y_{k} matrices.

There are a number of vertices containing the Y_{k} matrices.

There are a number of vertices containing the Y_{k} matrices.

This vertex contributes:

$$
\operatorname{Tr}\left(Y_{1} Y_{3}^{T} Y_{5}\right)
$$

There are also a number of vertices containing the O matrices.

There are also a number of vertices containing the O matrices.

There are also a number of vertices containing the O matrices.

We expect these to contribute:

$$
\mathrm{Wg}\left(\frac{v_{1}}{2}, \frac{v_{2}}{2}, \ldots, \frac{v_{r}}{2}\right)
$$

We expect these to contribute:

$$
\begin{aligned}
& \operatorname{Wg}\left(\frac{v_{1}}{2}, \frac{v_{2}}{2}, \ldots, \frac{v_{r}}{2}\right) \\
= & N^{r} \mathrm{wg}\left(\frac{v_{1}}{2}, \frac{v_{2}}{2}, \ldots, \frac{v_{r}}{2}\right) .
\end{aligned}
$$

The Y_{k} vertices are given by:

$$
\varphi_{-}^{-1} \delta_{\varepsilon} \pi_{-} \delta \pi_{+} \delta_{\varepsilon} \varphi_{+} .
$$

The Y_{k} vertices are given by:

$$
\varphi_{-}^{-1} \delta_{\varepsilon} \pi_{-} \delta \pi_{+} \delta_{\varepsilon} \varphi_{+}
$$

The permutation

$$
\pi_{-} \delta \pi_{+}=(1,-2,5,-3,7,-6)(6,-7,3,-5,2,-1)(4,-8)(8,-4)
$$

enumerates the points around the cycles of $\pi_{+} \cup \pi_{-}$:

This suggests another picture, in which $\delta_{\varepsilon} \pi_{-} \delta \pi_{+} \delta_{\varepsilon}$ forms a set of hyperedges, and the faces are $\varphi_{-}^{-1} \delta_{\varepsilon} \pi_{-} \delta \pi_{+} \delta_{\varepsilon} \varphi_{+}$.

This suggests another picture, in which $\delta_{\varepsilon} \pi_{-} \delta_{+} \delta_{\varepsilon}$ forms a set of hyperedges, and the faces are $\varphi_{-}^{-1} \delta_{\varepsilon} \pi_{-} \delta \pi_{+} \delta_{\varepsilon} \varphi_{+}$.

Let $\varphi \in S_{n}$, let $\varepsilon:[n] \rightarrow\{1,-1\}$, and let Y_{1}, \ldots, Y_{n} be random matrices independent from O. Then

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}_{\varphi}\left(O^{\varepsilon(1)} Y_{1}, \ldots, O^{\varepsilon(n)} Y_{n}\right)\right) \\
= & \sum_{\left(\pi_{+}, \pi_{-}\right) \in \mathcal{P}_{2}(n)^{2}} N^{\chi\left(\varphi, \delta_{\varepsilon} \pi_{-} \delta \pi_{+} \delta_{\varepsilon}\right)-2 \#(\varphi)} \operatorname{wg}\left(\pi_{+}, \pi_{-}\right) \\
& \times \mathbb{E}\left(\operatorname{tr}_{\varphi_{-}^{-1} \delta_{\varepsilon} \pi_{-} \delta \pi_{+} \delta_{\varepsilon} \varphi_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right) \\
= & \sum_{\alpha \in P M_{\operatorname{alt}}(\pm[n])} N^{\chi\left(\varphi, \delta_{\varepsilon} \alpha \delta_{\varepsilon}\right)-2 \#(\varphi)} \mathrm{wg}(\lambda(\alpha)) \\
& \times \mathbb{E}\left(\operatorname{tr}_{\varphi_{-}^{-1} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \varphi_{+} / 2}\left(Y_{1}, \ldots, Y_{n}\right)\right) .
\end{aligned}
$$

It is possible to mix ensembles in an expression.

It is possible to mix ensembles in an expression.

$$
\mathbb{E}\left(\operatorname{tr}\left(Z_{3} W_{2}^{\left(\lambda_{2}\right)}\right) \operatorname{tr}\left(W_{1}^{\left(\lambda_{3}\right)} Z_{3}^{T} Z_{3}^{T}\right) \operatorname{tr}\left(W_{2}^{\left(\lambda_{6}\right)} Z_{3}^{T} W_{2}^{\left(\lambda_{8}\right)} W_{1}^{\left(\lambda_{9}\right)}\right)\right)
$$

It is possible to mix ensembles in an expression.

$$
\mathbb{E}\left(\operatorname{tr}\left(Z_{3} W_{2}^{\left(\lambda_{2}\right)}\right) \operatorname{tr}\left(W_{1}^{\left(\lambda_{3}\right)} Z_{3}^{T} Z_{3}^{T}\right) \operatorname{tr}\left(W_{2}^{\left(\lambda_{6}\right)} Z_{3}^{T} W_{2}^{\left(\lambda_{8}\right)} W_{1}^{\left(\lambda_{9}\right)}\right)\right)
$$

It is possible to mix ensembles in an expression.

$$
\mathbb{E}\left(\operatorname{tr}\left(Z_{3} W_{2}^{\left(\lambda_{2}\right)}\right) \operatorname{tr}\left(W_{1}^{\left(\lambda_{3}\right)} Z_{3}^{T} Z_{3}^{T}\right) \operatorname{tr}\left(W_{2}^{\left(\lambda_{6}\right)} Z_{3}^{T} W_{2}^{\left(\lambda_{8}\right)} W_{1}^{\left(\lambda_{9}\right)}\right)\right)
$$

$$
\varphi=(1,2)(3,4,5)(6,7,8,9)
$$

$$
\alpha_{1}=(3)(-3)(9)(-9)
$$

$$
\alpha_{1}=(3)(-3)(9)(-9)
$$

$$
\alpha_{2}=(2,8,-6)(6,-8,-2)
$$

$$
\begin{gathered}
\alpha_{1}=(3)(-3)(9)(-9) \\
\alpha_{2}=(2,8,-6)(6,-8,-2) \\
\alpha_{3}=(1,-7)(-1,7)(4,-5)(-4,5)
\end{gathered}
$$

$$
\begin{array}{r}
\delta_{\varepsilon} \alpha \delta_{\varepsilon}=(1,7)(-1,-7)(2,8,-6)(6,-8,-2)(3)(-3)(4,-5) \\
(5,-4)(9)(-9)
\end{array}
$$

$$
\begin{array}{r}
\delta_{\varepsilon} \alpha \delta_{\varepsilon}=(1,7)(-1,-7)(2,8,-6)(6,-8,-2)(3)(-3)(4,-5) \\
(5,-4)(9)(-9)
\end{array}
$$

$$
\begin{aligned}
& \varphi_{-}^{-1} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \varphi_{+} \\
= & (1,8,9,-7,-2,6)(-6,2,7,-9,-8,-1)(3,-4,5)(-5,4,-3)
\end{aligned}
$$

$$
\begin{array}{r}
\delta_{\varepsilon} \alpha \delta_{\varepsilon}=(1,7)(-1,-7)(2,8,-6)(6,-8,-2)(3)(-3)(4,-5) \\
(5,-4)(9)(-9)
\end{array}
$$

$$
\begin{aligned}
& \varphi_{-}^{-1} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \varphi_{+} \\
= & (1,8,9,-7,-2,6)(-6,2,7,-9,-8,-1)(3,-4,5)(-5,4,-3)
\end{aligned}
$$

$$
\operatorname{tr}\left(A_{\lambda_{3}}\right) \operatorname{tr}\left(A_{\lambda_{9}}\right) \operatorname{tr}\left(B_{\lambda_{2}} B_{\lambda_{6}}^{T} B_{\lambda_{8}}\right) N^{-5}
$$

Each vertex gives us a trace, and hence a factor of N when normalized.

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

Crossings require handles, so highest order terms typically correspond to noncrossing diagrams with untwisted identifications.

Each vertex gives us a trace, and hence a factor of N when normalized.

Highest order terms are those with the highest Euler characteristic (typically spheres or collections of spheres).

Crossings require handles, so highest order terms typically correspond to noncrossing diagrams with untwisted identifications.

Highest order terms must have a relative orientation of the faces in which none of the edge-identifications are twisted.

The hyperoctahedral group B_{n} is the stabilizer in $S_{2 n}$ of a pairing:

The hyperoctahedral group B_{n} is the stabilizer in $S_{2 n}$ of a pairing:

Pairings are in bijection with cosets of the hyperoctahedral group πB_{n} :

Possible loop structures are in bijection with the double cosets of the hyperoctahedral group $B_{n} \pi B_{n}$:

The premaps are representatives of the cosets of the hyperoctahedral group stabilizing pairing $\{\{1,-1\},\{2,-2\}, \ldots,\{n,-n\}\}$.

The premaps are representatives of the cosets of the hyperoctahedral group stabilizing pairing $\{\{1,-1\},\{2,-2\}, \ldots,\{n,-n\}\}$.

Real matricial cumulants (defined in Capitaine, Casalis, 2007) are indexed by cosets of B_{n}.

The premaps are representatives of the cosets of the hyperoctahedral group stabilizing pairing $\{\{1,-1\},\{2,-2\}, \ldots,\{n,-n\}\}$.

Real matricial cumulants (defined in Capitaine, Casalis, 2007) are indexed by cosets of B_{n}.

Up to a normalization convention, the weight of each diagram is a matricial cumulant.

The space of invariant vectors under $O \otimes \cdots \otimes O$ is spanned by the images of

$$
\sum_{\iota:[n / 2] \rightarrow[N]}\left(e_{\iota_{1}} \otimes e_{\iota_{1}}\right) \otimes \cdots \otimes\left(e_{\iota_{n / 2}} \otimes e_{\iota_{n / 2}}\right)
$$

under permutations of the tensor factors.

The space of invariant vectors under $O \otimes \cdots \otimes O$ is spanned by the images of

$$
\sum_{\iota:[n / 2] \rightarrow[N]}\left(e_{\iota_{1}} \otimes e_{\iota_{1}}\right) \otimes \cdots \otimes\left(e_{\iota_{n / 2}} \otimes e_{\iota_{n / 2}}\right)
$$

under permutations of the tensor factors.

A basis therefore corresponds to cosets of B_{n}, i.e. to pairings.

The inner product of two basis elements is $N^{\#\left(\pi_{+} \vee \pi_{-}\right)}$.

The inner product of two basis elements is $N^{\#\left(\pi_{+} \vee \pi_{-}\right)}$.

The Weingarten function is the inverse of the matrix of the inner products.

In the quaternionic case, the space of invariant vectors is spanned by the images of

$$
\sum_{\substack{l:[n / 2] \rightarrow[N] \\ \eta:[n / 2] \rightarrow\{1,-1\}}} \eta_{1} \cdots \eta_{n / 2}\left(e_{e_{1} ; \eta_{1}} \otimes e_{\iota_{1} ;-\eta_{1}}\right) \otimes \cdots \otimes\left(e_{\iota_{n / 2} ; \eta_{n / 2}} \otimes e_{\iota_{n / 2} ;-\eta_{n / 2}}\right) .
$$

In the quaternionic case, the space of invariant vectors is spanned by the images of

$$
\sum_{\substack{\iota:[n / 2] \rightarrow[N] \\ \eta:[n / 2] \rightarrow\{1,-1\}}} \eta_{1} \cdots \eta_{n / 2}\left(e_{\iota_{1} ; \eta_{1}} \otimes e_{\iota_{1} ;-\eta_{1}}\right) \otimes \cdots \otimes\left(e_{\iota_{n / 2} ; \eta_{n / 2}} \otimes e_{\iota_{n / 2} ;-\eta_{n / 2}}\right) .
$$

When we act on this vector with an odd permutation from B_{n}, it reverses the sign.

In the quaternionic case, the space of invariant vectors is spanned by the images of

$$
\sum_{\substack{\iota:[n / 2] \rightarrow[N] \\ \eta:[n / 2] \rightarrow\{1,-1\}}} \eta_{1} \cdots \eta_{n / 2}\left(e_{\iota_{1} ; \eta_{1}} \otimes e_{\iota_{1} ;-\eta_{1}}\right) \otimes \cdots \otimes\left(e_{\iota_{n / 2} ; \eta_{n / 2}} \otimes e_{\iota_{n / 2} ;-\eta_{n / 2}}\right) .
$$

When we act on this vector with an odd permutation from B_{n}, it reverses the sign.

We consider images under even permutations,

We consider images under even permutations,

We find that the inner product is

$$
(-1)^{n / 2}(-2 N)^{\#\left(\pi_{1} \vee \pi_{2}\right)} .
$$

Quaternions are a noncommutative algebra over the reals such that

$$
i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

Quaternions are a noncommutative algebra over the reals such that

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

A quaternion $a+b i+c j+d k$ may be represented as a 2×2 matrix:

$$
\left[\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right] .
$$

$$
\overline{a+b i+c j+d k}:=a-b i-c j-d k=\left[\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right]^{*}
$$

$$
\overline{a+b i+c j+d k}:=a-b i-c j-d k=\left[\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right]^{*}
$$

$$
\operatorname{Re}(a+b i+c j+d k):=a=\operatorname{tr}\left[\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right]
$$

$$
\overline{a+b i+c j+d k}:=a-b i-c j-d k=\left[\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right]^{*}
$$

$$
\operatorname{Re}(a+b i+c j+d k):=a=\operatorname{tr}\left[\begin{array}{cc}
a+b i & c+d i \\
-c+d i & a-b i
\end{array}\right]
$$

$$
Q_{\eta_{1} \eta_{2}}=\eta_{1} \eta_{2} Q_{-\eta_{2},-\eta_{1}}
$$

We wish to evaluate:

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}\left(Y_{1} X_{1}^{\left(\varepsilon_{1}\right)} Y_{2} \cdots Y_{n_{1}-1} X_{n_{1}-1}^{\left(\varepsilon_{n_{1}-1}\right)} Y_{n_{1}}\right) \cdots\right. \\
& \left.\quad \cdots \operatorname{tr}\left(Y_{n_{r-1}+1} X_{n_{r-1}+1}^{\left(\varepsilon_{n_{r-1}+1}\right)} Y_{n_{r-1}+2} \cdots Y_{n-1} X_{n-1}^{\left(\varepsilon_{n-1}\right)} Y_{n}\right)\right)
\end{aligned}
$$

We wish to evaluate:

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}\left(Y_{1} X_{1}^{\left(\varepsilon_{1}\right)} Y_{2} \cdots Y_{n_{1}-1} X_{n_{1}-1}^{\left(\varepsilon_{n_{1}-1}\right)} Y_{n_{1}}\right) \cdots\right. \\
& \left.\quad \cdots \operatorname{tr}\left(Y_{n_{r-1}+1} X_{n_{r-1}+1}^{\left(\varepsilon_{n_{r-1}+1}\right)} Y_{n_{r-1}+2} \cdots Y_{n-1} X_{n-1}^{\left(\varepsilon_{n-1}\right)} Y_{n}\right)\right)
\end{aligned}
$$

Because the traces are quaternion-valued, they "see" only one face $\zeta=(1,2, \ldots, n)$, rather than φ.

We wish to evaluate:

$$
\begin{aligned}
& \mathbb{E}\left(\operatorname{tr}\left(Y_{1} X_{1}^{\left(\varepsilon_{1}\right)} Y_{2} \cdots Y_{n_{1}-1} X_{n_{1}-1}^{\left(\varepsilon_{n_{1}-1}\right)} Y_{n_{1}}\right) \cdots\right. \\
& \left.\quad \cdots \operatorname{tr}\left(Y_{n_{r-1}+1} X_{n_{r-1}+1}^{\left(\varepsilon_{n_{r-1}+1}\right)} Y_{n_{r-1}+2} \cdots Y_{n-1} X_{n-1}^{\left(\varepsilon_{n-1}\right)} Y_{n}\right)\right)
\end{aligned}
$$

Because the traces are quaternion-valued, they "see" only one face $\zeta=(1,2, \ldots, n)$, rather than φ.
The asymptotics depend only on the vertices according to the surface constructed from φ, but the vertices of the surface constructed according to ζ will contribute signs and factors of 2 .

For each negative ε_{k}, we get a factor of $\eta_{k} \eta_{-k}$.

For each negative ε_{k}, we get a factor of $\eta_{k} \eta_{-k}$.

For each negative $k \in \mathrm{FD}(\alpha)$, we get a factor of $\eta_{k} \eta_{-k}$.

For each negative ε_{k}, we get a factor of $\eta_{k} \eta_{-k}$.

For each negative $k \in \mathrm{FD}(\alpha)$, we get a factor of $\eta_{k} \eta_{-k}$.

Regardless of the sign of k, the entry of Y_{k} may be written

$$
Y_{\iota \delta \delta_{\varepsilon \varphi_{-}(k)}^{(k)} \iota_{\delta_{\varepsilon} \varphi_{+}(k)}^{(k)} \operatorname{sgn}(k) \varepsilon_{\zeta_{+}^{-1}(k)} \eta_{\delta \delta_{\varepsilon} \zeta_{+}^{-1}(k)}, \operatorname{sgn}(k) \varepsilon_{\zeta_{-}^{-1}(k)} \eta_{\delta_{\varepsilon} \zeta_{-}^{-1}(k)} .} .
$$

For each negative ε_{k}, we get a factor of $\eta_{k} \eta_{-k}$.

For each negative $k \in \mathrm{FD}(\alpha)$, we get a factor of $\eta_{k} \eta_{-k}$.

Regardless of the sign of k, the entry of Y_{k} may be written

$$
Y_{\iota \delta \delta_{\varepsilon \varphi_{-}(k)}^{(k)} \iota_{\delta_{\varepsilon} \varphi_{+}(k)}^{(k)} \operatorname{sgn}(k) \varepsilon_{\zeta_{+}^{-1}(k)} \eta_{\delta \delta_{\varepsilon} \zeta_{+}^{-1}(k)}, \operatorname{sgn}(k) \varepsilon_{\zeta_{-}^{-1}(k)} \eta_{\delta_{\varepsilon} \zeta_{-}^{-1}(k)} .} .
$$

For each negative $k \in \mathrm{FD}\left(\zeta_{+} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \zeta_{-}^{-1}\right)$, we get a factor of $\varepsilon\left(\zeta_{+}^{-1}(k)\right) \eta\left(\delta \delta_{\varepsilon} \zeta_{+}^{-1}(k)\right) \varepsilon(k) \eta\left(\delta_{\varepsilon}(k)\right)$.

On a certain island near Haiti, half the inhabitants have been turned into zombies [T]he zombies . . . always lie and the humans . . . always tell the truth.
The situation is enormously complicated by the fact that whenever you ask them a yes-no question, they reply "Bal" or "Da"-one of which means yes and the other no [W]e do not know which.

On a certain island near Haiti, half the inhabitants have been . . . turned into zombies [T]he zombies . . . always lie and the humans . . . always tell the truth.
The situation is enormously complicated by the fact that whenever you ask them a yes-no question, they reply "Bal" or "Da"-one of which means yes and the other no [W]e do not know which.
$[I] s$ it possible in only one question to find out what "Bal" means?

On a certain island near Haiti, half the inhabitants have been . . . turned into zombies [T]he zombies . . . always lie and the humans . . . always tell the truth.
The situation is enormously complicated by the fact that whenever you ask them a yes-no question, they reply "Bal" or "Da"-one of which means yes and the other no [W]e do not know which.
$[1] s$ it possible in only one question to find out what "Bal" means?

You . . . wish to marry the King's daughter The test is that you may ask the medicine man any one question If he answers "Bal" then you may marry the king's daughter; if he answers " Da " then you may not.

Some of the natives answer questions with "Bal" and "Da," but others have broken away . . . and answer with the English words "Yes" and "No." [A]ny pair of brothers . . . are either both human or both zombies A native was suspected of high treason.
Question (to A) / Is the defendent innocent?
A's Answer / Bal.
Question (to B) / What does "Bal" mean?
B's Answer / "Bal" means yes.
Question (to C) / Are A and B brothers?
C's Answer / No.
Second Question to C / Is the defendent innocent?
C's Answer / Yes.
Is the defendent innocent or guilty?

Traces are taken along the cycles of $\varphi_{+} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \varphi_{-}^{-1}$.

Traces are taken along the cycles of $\varphi_{+} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \varphi_{-}^{-1}$.

Real parts are taken along the cycles of $\zeta_{+} \delta_{\varepsilon} \alpha \delta_{\varepsilon} \zeta_{-}^{-1}$.

Definition

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi: A \rightarrow \mathbb{C}$ with $\varphi\left(1_{A}\right)=1$.

Definition

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi: A \rightarrow \mathbb{C}$ with $\varphi\left(1_{A}\right)=1$.

Definition

For $A_{1}, \ldots, A_{n} \subseteq A$ subalgebras of noncommutative probability space A, A_{1}, \ldots, A_{n} are free if

$$
\varphi_{1}\left(a_{1}, \ldots, a_{p}\right)=0
$$

when the a_{i} are centred and alternating.

Definition

A noncommutative probability space is a unital algebra A with a tracial linear functional $\varphi: A \rightarrow \mathbb{C}$ with $\varphi\left(1_{A}\right)=1$.

Definition

For $A_{1}, \ldots, A_{n} \subseteq A$ subalgebras of noncommutative probability space A, A_{1}, \ldots, A_{n} are free if

$$
\varphi_{1}\left(a_{1}, \ldots, a_{p}\right)=0
$$

when the a_{i} are centred and alternating.

Definition

Families of matrices are asymptotically free if

$$
\lim _{N \rightarrow \infty} \mathbb{E}\left(\operatorname { t r } \left({\left.\left.\stackrel{\circ}{A_{1, N}} \cdots \AA_{p, N}\right)\right)=0}\right.\right.
$$

when the A. are from cyolicallv alternatino families

Definition

A second-order probability space is a noncommutative probability space $\left(A, \varphi_{1}\right)$ with a bilinear function $\varphi_{2}: A \times A \rightarrow \mathbb{C}$ such that

Definition

A second-order probability space is a noncommutative probability space $\left(A, \varphi_{1}\right)$ with a bilinear function $\varphi_{2}: A \times A \rightarrow \mathbb{C}$ such that

- φ_{2} is tracial in each argument

Definition

A second-order probability space is a noncommutative probability space $\left(A, \varphi_{1}\right)$ with a bilinear function $\varphi_{2}: A \times A \rightarrow \mathbb{C}$ such that

- φ_{2} is tracial in each argument
- $\varphi_{2}\left(1_{A}, a\right)=\varphi_{2}\left(a, 1_{A}\right)=0$.

We want to consider covariances of alternating products of centred matrices which are independent and in "general position".

We want to consider covariances of alternating products of centred matrices which are independent and in "general position".

For g a Haar-distributed unitary, orthogonal or symplectic matrix, we consider:

$$
\begin{aligned}
\operatorname{cov}\left(\operatorname { T r } \left(g_{v(1)}^{-1} A_{1} g_{v(1)} \cdots\right.\right. & \left.g_{v(p)}^{-1} A_{p} g_{v(p)}\right) \\
& \left.\operatorname{Tr}\left(g_{w(1)}^{-1} B_{1} g_{w(1)} \cdots g_{w(q)}^{-1} B_{q} g_{w(q)}\right)\right)
\end{aligned}
$$

with $\mathbb{E}\left(\operatorname{tr}\left(A_{k}\right)\right)=\mathbb{E}\left(\operatorname{tr}\left(B_{k}\right)\right)=0$ and words v, w alternating.

$\mathbb{E}\left(\operatorname{tr}\left(A_{1} B_{1}\right) \operatorname{tr}\left(A_{1} B_{8}\right) \cdots \operatorname{tr}\left(A_{8} B_{7}\right)\right)$

Definition (Mingo, Speicher, 2006)

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families, we have

Definition (Mingo, Speicher, 2006)

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families, we have

- for $p \neq q$:

Definition (Mingo, Speicher, 2006)

Families of matrices are asymptotically complex second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families, we have

- for $p \neq q$:

$$
\lim _{N \rightarrow \infty} k_{2}\left(\operatorname{Tr}\left(\stackrel{\circ}{A}_{1} \cdots \circ_{p}\right), \operatorname{Tr}\left(\stackrel{\circ}{B}_{1} \cdots \grave{B}_{q}\right)\right)=0
$$

- and for $p=q$:

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} k_{2}\left(\operatorname{Tr}\left(\AA_{1} \cdots \AA_{p}\right), \operatorname{Tr}\left(\stackrel{\circ}{B}_{1} \cdots \AA_{p}\right)\right) \\
= & \sum^{p-1} \prod^{p}\left(\lim _{\text {Emily }}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{k-i}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{k-i}\right)\right)\right)\right)
\end{aligned}
$$

Definition (Mingo, Speicher, 2006)

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space $\left(A, \varphi_{1}, \varphi_{2}\right)$ are complex second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term, we have

Definition (Mingo, Speicher, 2006)

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space $\left(A, \varphi_{1}, \varphi_{2}\right)$ are complex second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term, we have

- when $p \neq q$:

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{q}\right)=0
$$

Definition (Mingo, Speicher, 2006)

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space $\left(A, \varphi_{1}, \varphi_{2}\right)$ are complex second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term, we have

- when $p \neq q$:

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{q}\right)=0
$$

- and when $p=q$:

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{p}\right)=\sum_{k=0}^{p-1} \prod_{i=1}^{p} \varphi_{1}\left(a_{i} b_{k-i}\right)
$$

Spoke diagrams:

$$
\mathbb{E}\left(\operatorname{tr}\left(A_{1} B_{3}^{T}\right) \operatorname{tr}\left(A_{1} B_{4}^{T}\right) \cdots \operatorname{tr}\left(A_{8} B_{2}^{T}\right)\right)
$$

Definition

Families of matrices are asymptotically real second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families

$$
\lim _{N \rightarrow \infty} \operatorname{cov}\left(\operatorname{Tr}\left(\stackrel{\circ}{A}_{1} \cdots \stackrel{\circ}{A}_{p}\right), \operatorname{Tr}\left(\stackrel{\circ}{B}_{1} \cdots \stackrel{\circ}{B}_{q}\right)\right)
$$

vanishes when $p \neq q$, and when $p=q$, is equal to

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \operatorname{cov}\left(\operatorname{Tr}\left(\stackrel{\circ}{A}_{1} \cdots \AA_{\neq}\right), \operatorname{Tr}\left(\stackrel{\circ}{B}_{1} \cdots \stackrel{\circ}{B}_{p}\right)\right) \\
& =\sum_{k=0}^{p-1} \prod_{i=1}^{p}\left(\lim _{N \rightarrow \infty}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{k-i}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{k-i}\right)\right)\right)\right)
\end{aligned}
$$

$\left.+\sum^{p-1}{ }^{p}\left(\lim \left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B^{T}\right)_{t}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{T}^{T}\right)\right)\right)\right)$.

Definition

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space $\left(A, \varphi_{1}, \varphi_{2}\right)$ are real second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{q}\right)=0
$$

when $p \neq q$ and
$\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{p}\right)=\sum_{k=0}^{p-1} \prod_{i=1}^{p} \varphi_{1}\left(a_{i} b_{k-i}\right)+\sum_{k=0}^{p-1} \prod_{i=1}^{p} \varphi_{1}\left(a_{i} b_{k+i}^{t}\right)$.

Spoke diagrams for the real case:

Definition

Families of matrices are asymptotically quaternion second-order free if they are asymptotically free, have a second-order limit distribution, and for A_{i} and B_{i} in algebras generated by cyclically alternating families

$$
\lim _{N \rightarrow \infty} k_{2}\left(\operatorname{Tr}\left(\dot{A}_{1} \cdots \dot{A}_{p}\right), \operatorname{Tr}\left(\dot{B}_{1} \cdots \dot{B}_{q}\right)\right)
$$

vanishes when $p \neq q$,
and when $p=q$, is equal to

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \operatorname{cov}\left(\operatorname{Tr}\left(\AA_{1} \cdots \AA_{p}\right), \operatorname{Tr}\left(\stackrel{\circ}{1}_{1} \cdots \AA_{p}\right)\right) \\
= & 4 \prod_{i=1}^{p} \operatorname{Re}\left(\lim _{N \rightarrow \infty}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{n-i}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{n-i}\right)\right)\right)\right) \\
- & 2 \prod_{i=1}^{p} \operatorname{Re}\left(\lim _{N \rightarrow \infty}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{i}^{T}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{i}^{T}\right)\right)\right)\right) \\
+ & \sum_{k=1}^{p-1} \prod_{i=1}^{p} \operatorname{Re}\left(\lim _{N \rightarrow \infty}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{k-i}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{k-i}\right)\right)\right)\right) \\
+ & \sum_{k=1}^{p-1} \prod_{i=1}^{p} \operatorname{Re}\left(\lim _{N \rightarrow \infty}\left(\mathbb{E}\left(\operatorname{tr}\left(A_{i} B_{k+i}^{T}\right)\right)-\mathbb{E}\left(\operatorname{tr}\left(A_{i}\right)\right) \mathbb{E}\left(\operatorname{tr}\left(B_{k+i}^{T}\right)\right)\right)\right) .
\end{aligned}
$$

Definition

Subalgebras A_{1}, \ldots, A_{n} of a second-order noncommutative probability space $\left(A, \varphi_{1}, \varphi_{2}\right)$ are quaternion second-order free if they are free and for a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q} centred and either cyclically alternating or consisting of a single term

$$
\varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{q}\right)=0
$$

when $p \neq q$ and

$$
\begin{aligned}
& \varphi_{2}\left(a_{1} \cdots a_{p}, b_{1} \cdots b_{p}\right) \\
& \quad=4 \operatorname{Re}\left(\varphi_{1}\left(a_{i} b_{p-i}\right)\right)-2 \operatorname{Re}\left(\varphi_{1}\left(a_{i} b_{i}^{t}\right)\right) \\
& \quad+\sum_{k=1}^{p-1} \prod_{i=1}^{p} \operatorname{Re}\left(\varphi_{1}\left(a_{i} b_{k-i}\right)\right)+\sum_{k=1}^{p-1} \prod_{i=1}^{p} \operatorname{Re}\left(\varphi_{1}\left(a_{i} b_{k+i}^{t}\right)\right)
\end{aligned}
$$

