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The vertex information can be encoded in a permutation

σ = (1, 2, 3, 4) (5, 6) (7, 8) (9, 10) (11, 12) .

The edge information can be encoded in another permutation

α = (1, 2) (3, 5) (4, 12) (6, 7) (8, 9) (10, 11) .
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The face information is encoded in

ϕ := σ−1α−1 = (1) (2, 4, 11, 9, 7, 5) (3, 6, 8, 10, 12) .
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This construction works equally well with oriented hypermaps:
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σ = (1, 2, 3) (4, 5) (6, 7)

α = (1, 6, 5) (2, 7, 3) (4)

ϕ = σ−1α−1 = (1, 4, 5, 7) (2) (3, 6)
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To extend this construction to unoriented surfaces, we construct
the orientable two-sheeted covering space (the surface experienced
by someone on the surface rather than within it).

We do this by constructing a front and back side of each face.

An untwisted edge-identification connects front to front and back
to back, while a twisted edge-identification connects front to back
and back to front.
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We label the front sides with positive integers and the
corresponding back sides with negative integers.

Let δ : k 7→ −k .

A permutation π describing something in this surface should satisfy
π = δπ−1δ. (We will call such a permutation a premap.)

We let ϕ+ = ϕ, and ϕ− = δϕδ.

Vertex information is given by ϕ−1+ α−1ϕ−.
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ϕ = (1, 2, 3, 4, 5) (7, 8, 9)

α = (1,−7) (7,−1) (2,−4) (4,−2) (3,−6) (6,−3) (5, 8) (−8,−5)

σ = ϕ−1+ α−1ϕ− (1,−3, 6,−5,−7) (7, 5,−6, 3,−1) (2,−8,−4) (4, 8,−2)
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This construction also works equally well for hypermaps, in which
the hyperedge permutation must also satisfy α = δα−1δ.
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ϕ = (1, 2, 3) (4, 5) ; α = (1,−3, 4) (−4, 3,−1) (2,−5) (5,−2)

σ = ϕ−1+ α−1ϕ− = (1, 5,−2, 3,−4) (4,−3, 2,−5,−1)
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Surfaces are classified as one of the following:

I spheres (χ = 2),

I n-holed tori (χ = 0,−2,−4, . . .),

I connected sums of n projective planes
(χ = 1, 0,−1,−2,−3, . . .).

The covering space of an orientable surface is two copies of the
surface.

The covering space of an unorientable surface is the orientable
surface with Euler characteristic twice that of the original surface
(so the connected sum of n projective planes is the (n − 1)-holed
torus).
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Definition
Let I be a finite set of integers which does not contain both k and
−k for any k . For a γ ∈ S (I ) and a premap π ∈ PM (±I ), we
define

χ (ϕ, α) := #
(
ϕ+ϕ

−1
−
)
/2 + # (α) /2 + #

(
ϕ−1+ α−1ϕ−

)
/2− |I | .

If ±I1 and ±I2 are disjoint, and γi ∈ S (Ii ) and πi ∈ PM (±Ii ) for
i = 1, 2, then

χ (γ1, π1) + χ (γ2, π2) = χ (γ1γ2, π1π2) .
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Theorem
Let π, ρ ∈ S (I ) for some finite set I . Then

# (π) + # (πρ) + # (ρ) ≤ |I |+ 2#〈π, ρ〉.

Lemma
Let ϕ ∈ Sn, and let {V1, . . . ,Vr} ∈ P (n) be the orbits of ϕ. If
α ∈ PM (± [n]) connects the blocks of {±V1, . . . ,±Vr}, then
χ (γ, π) ≤ 2.

Surfaces with maximal Euler characteristic are typically associated
with noncrossing diagrams.
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Combinatorics of traces
Example
Matrix models

In terms of indices, traces may be written

Tr (X1 · · ·Xn) =
∑

1≤i1,i2,...,in≤N
X

(1)
i1i2

X
(2)
i2i3
· · ·X (n)

ini1
.

We can take traces along the cycles of a permutation
π = (c1,1, c1,2, . . . , c1,n1) (c2,1, . . . , c2,n2) · · · (cr ,1, . . . , cr ,nr ):

Trπ (X1, . . . ,Xn) = Tr (X1,1 · · ·X1,n1) · · ·Tr
(
Xcr,1 · · ·Xcr,nr

)
=

∑
1≤i1,...,in

X
(1)
i1,iπ(1)

· · ·X (n)
in,iπ(n)

.
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Combinatorics of traces
Example
Matrix models

Say we wish to calculate

E
(
tr
(

XY1XY2XTY3XY4XTY5

)
tr
(

XTY6XY7XY8

))
.

The traces of products are a sum over

Xi1j1Y
(1)
j1i2

Xi2j2Y
(2)
j2j3

XT
j3i3Y

(3)
i3i4

Xi4j4Y
(4)
j4j5

XT
j5i5Y

(5)
i5i1

XT
j6i6Y

(6)
i6i7

Xi7j7Y
(7)
j7i8

Xi8j8Y
(8)
j8j6

.
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j6i6Y

(6)
i6i7

Xi7j7Y
(7)
j7i8

Xi8j8Y
(8)
j8j6

.

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Combinatorics of traces
Example
Matrix models

We construct the faces:

Y1

i1

j1
i2

j2

j3

i3

i7

j7
i8

j8

j5

i5

i4
j4

i6
Y2

X

X

Y5

XT

Y3

XT

Y6

Y8X

Y7
X

XT
j6

Y4

X
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We use a result called the Wick formula.

There are three pairings on 4 elements:

If X1,X2,X3,X4 are components of a multivariate Gaussian
random variable, then

E (X1X2X3X4) = E (X1X2)E (X3X4) + E (X1X3)E (X2X4)

+ E (X1X4)E (X2X3) .
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Let P2 (n) be the set of pairings on n elements.

Theorem
Let {fλ : λ ∈ Λ}, for some index set Λ, be a centred Gaussian
family of random variables. Then for i1, . . . , in ∈ Λ,

E (fi1 · · · fin) =
∑
P2(n)

∏
{k,l}∈P2(n)

E (fik fil ) .

Here, for a pairing π ∈ P2 (n):

∏
{k,l}

E (fik jk fil jl ) =

{
1, if ik = il and jk = jl for all {k , l} ∈ π
0, otherwise

.
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Putting indices which must be equal next to each other, we get a
surface gluing:

Y1

i1

j1
i2

j2

j3

i3

i7

j7
i8

j8

j5

i5

i4
j4

i6
Y2

X

X

Y5

XT

Y4

Y3

XT

Y6

Y8X

Y7
X

XT
j6

X
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We note that if one term is from X and the other from XT , the
edge identification is untwisted:

Y1

i1

j1
i2

j2

j3

i3

i7

j7
i8

j8

j5

i5

i4
j4

i6
Y2

X

X

Y5

XT

Y4

XT
Y3

XT

Y6

Y8X

Y7
X

XT
j6
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If both terms are from X or from XT , the edge identification is
twisted:

Y1

i1

j1
i2

j2

j3

i3

i7

j7
i8

j8

j5

i5

i4
j4

i6
Y2

X

X

Y5

XT

Y4

XT
Y3

XT

Y6

Y8X

Y7
X

XT
j6
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The following vertex appears on the surface:

Y1

Y T
3 Y6

Y T
5

Y T
7

i3
i4

i2

j1
j7 i8

i5

i1

i7

i6

If a corner appears upside-down, it is the transpose of that matrix
which appears.

It contributes
Tr
(

Y1Y T
3 Y6Y T

5 Y T
7

)
.
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The following vertex appears on the surface:

Y1

Y T
3 Y6

Y T
5

Y T
7

i3
i4

i2

j1
j7 i8

i5

i1

i7

i6
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The same vertex viewed from the opposite side contributes the
same value:

Y1

Y T
3 Y6

Y T
5

Y T
7

i3
i4

i2

j1
j7 i8

i5

i1

i7

i6

Y7

Y5

Y3

Y T
1

Y T
6

i6

i7

i1

i5
i8 j7

j1

i2

i4

i3

Tr
(

Y1Y T
3 Y6Y T

5 Y T
7

)
= Tr

(
Y7Y5Y T

6 Y3Y T
1

)
.
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Let X : Ω→ MM×N (R) be a random matrix with Xij = 1√
N

fij ,

where the fij are independent N (0, 1) random variables.

Definition
Real Ginibre matrices are square matrices Z := X with M = N.

Definition
Gaussian orthogonal ensemble matrices, or GOE matrices, are
symmetric matrices T := 1√

2

(
X + XT

)
Definition
Real Wishart matrices are matrices W := XTDkX for some
deterministic matrix Dk .
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We wish to calculate expressions of the form

E
(
trϕ

(
X (ε(1))Y1 · · ·X (ε(n))Yn

))

=
∑

ι:

{
[n]→[N]
−[n]→[M]

N−#(ϕ)−nE
(
fι1ι−1 · · · fιnι−n

)

E
(

Y (1)
ι−δε(1)ιδεϕ(1)

· · ·Y (n)
ι−δε(n)ιδεϕ(n)

)
.
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∑
ι:

{
[n]→[N]
−[n]→[M]

∑
π∈P2(n)

ι±k=ι±l :{k,l}∈π

N−#(ϕ)−nE
(

Y (1)
ι−δε(1)ιδεϕ(1)

· · ·Y (n)
ι−δε(n)ιδεϕ(n)

)

Reversing the order of summation,∑
π∈P2(n)

∑
ι:

{
[n]→[N]
−[n]→[M]

ι±k=ι±l :{k,l}∈π

N−#(ϕ)−nE
(

Y (1)
ι−δε(1)ιδεϕ(1)

· · ·Y (n)
ι−δε(n)ιδεϕ(n)

)
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Regardless of the sign of k , we can write the entry

Y (k)
ιδδεϕ−(k)ιδεϕ+(k)

.

The first index of Yϕ−1
− δεπδπδεϕ+(k)

is:

ιδδεϕ−(ϕ−1
− δεπδπδεϕ+(k)) = ιδπδπδεϕ+(k),

which is equal to the second index of Yk .

∑
π∈P2(n)

N#(ϕ−1
− δεπδπδεϕ+)/2−#(ϕ)−nE

(
trFD(ϕ−1

− δεπδπδεϕ+) (Y1, . . . ,Yn)
)
.
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Real Ginibre matrices are square matrices Z := X with M = N.

Thus

E
(
trϕ

(
Z (ε(1))Y1, . . . ,Z

(ε(n))Yn

))
=

∑
α∈{πδπ:π∈P2(n)}

Nχ(ϕ,δεαδε)−#(ϕ)E
(
trFD(ϕ−1

− δεαδεϕ+) (Y1, . . . ,Yn)
)
.

This is a sum over all gluings compatible with the edge directions
given by the transposes.
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If we expand out the GOE matrix T := 1√
2

(
X + XT

)
, we get

E (trϕ (TY1, . . . ,TYn))

=
∑

ε:{1,...,n}→{1,−1}

1

2n/2
E
(
trϕ

(
X (ε(1))Y1 · · ·X (ε(n))Yn

))
.

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Combinatorics of traces
Example
Matrix models

If we collect terms, this is equivalent to summing over all
edge-identifications.

Thus

E (trϕ (TY1, . . . ,TYn))

=
∑

α∈PM(±[n])∩P2(±[n])

Nχ(ϕ,α)−#(ϕ)E
(
trFD(ϕ−1

− αϕ+) (Y1, . . . ,Yn)
)
.
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With Wishart matrices W := XTDkX , we can collapse the edges
corresponding to each matrix to a single edge. We can think of the
connecting blocks as (possibly twisted) hyperedges.

i7
i8

j8 j9

i9

j10j7

X

XT

X
XT

X

X

XTX

XT

j1

i1

i2

j2j3

i3

i4

j4

i5
i6

j6

i10

Y4

D5

Y5

D1

Y1

D2

D3

Y3

j5
XTY2

D4
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With Wishart matrices W := XTDkX , we can collapse the edges
corresponding to each matrix to a single edge. We can think of the
connecting blocks as (possibly twisted) hyperedges.

i7
i8

j8 j9

i9

j10j7

X

XT

X
XT

X

X

XTX

XT

j1

i1

i2

j2j3

i3

i4

j4

i5
i6

j6

i10

Y4

D5

Y5

D1

Y1

D2

D3

Y3
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XTY2

D4
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With Wishart matrices W := XTDkX , we can collapse the edges
corresponding to each matrix to a single edge. We can think of the
connecting blocks as (possibly twisted) hyperedges.

1W1

W3

W2

Y1

Y2

Y3

W4 W5

Y5

Y4
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Thus:

E (trϕ (W1Y1, · · · ,WnYn))

=
∑

α∈PM([n])

Nχ(ϕ,α)−#(ϕ)trFD(α−1) (D1, . . . ,Dn)

E
(
trFD(ϕ−1

− πϕ+) (Y1, . . . ,Yn)
)
.
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Definition
A Haar-distributed orthogonal matrix is a random matrix with
left-invariant probability measure on the orthogonal matrices.

Theorem (Collins, Śniady, 2006)

E (Oi1j1 · · ·Oinjn) =
∑

(π1,π2)∈P2
2 (n)

i=i◦π1,j=j◦π2

Wg (π1, π2)

where:

I Wg (π1, π2) depends only on the block structure of π1 ∨ π2;

I if π1 ∨ π2 has blocks 2λ1, . . . , 2λs , then

Wg (π1, π2) =

(
s∏

k=1

(−1)λk−1 Cλk−1

)
N−

n
2
−s+O

(
N−

n
2
−s−1

)
.
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E (Oi1j1 · · ·Oinjn) =
∑

(π1,π2)∈P2
2 (n)

i=i◦π1,j=j◦π2

Wg (π1, π2)

where:

I Wg (π1, π2) depends only on the block structure of π1 ∨ π2;

I if π1 ∨ π2 has blocks 2λ1, . . . , 2λs , then

Wg (π1, π2) =

(
s∏

k=1

(−1)λk−1 Cλk−1

)
N−

n
2
−s+O

(
N−

n
2
−s−1

)
.

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Combinatorics of traces
Example
Matrix models

Definition
A Haar-distributed orthogonal matrix is a random matrix with
left-invariant probability measure on the orthogonal matrices.

Theorem (Collins, Śniady, 2006)
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Say we wish to calculate

E
(
tr
(

OY1OY2OTY3

)
tr
(

OY4OTY5OTY6OY7OY8

))
.

=
∑

ι:±[n]→[N]

E
(

Oι1ι−1Y (1)
ι−1ι2Oι2ι−2Y (2)

ι−2ι−3
OT
ι−3ι3Y (3)

ι3ι1

×Oι4ι−4Y (4)
ι−4ι−5

OT
ι−5ι5Y (5)

ι5ι−6
OT
ι−6ι6Y (6)

ι6ι7Oι7ι−7Y (7)
ι−7ι8Oι8ι−8Y (8)

ι−8ι4

)
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We construct the faces

O

O
OT

OT

O
O

O

OT

Y8

Y7

Y6

Y5

Y4

Y3

Y1

Y2

ι1

ι−1

ι2

ι−2

ι−3

ι3

ι4

ι−4

ι−5

ι5

ι7
ι−7

ι8

ι−8ι6

ι−6
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=
∑

ι:±[n]→[N]

E
(
Oι1ι−1 · · ·Oι8ι−8

)
× E

(
Y (1)
ι−1ι2Y (2)

ι−2ι−3
Y (3)
ι3ι1Y (4)

ι−4ι−5
Y (5)
ι5ι−6

Y (6)
ι6ι7Y (7)

ι−7ι8Y (8)
ι−8ι4

)

E
(
Oι1ι−1 · · ·Oι8ι−8

)
=

∑
(π+,π−)∈P2(8)

2

ι=ι◦δπ−δπ+

Wg (π+, π−)
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ι−4ι−5
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ι5ι−6

Y (6)
ι6ι7Y (7)
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)
E
(
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)
=

∑
(π+,π−)∈P2(8)

2

ι=ι◦δπ−δπ+

Wg (π+, π−)

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Combinatorics of traces
Example
Matrix models

Consider
π+ = (1, 2) (3, 5) (4, 8) (6, 7)

and
π− = (1, 6) (2, 5) (3, 7) (4, 8) .

O

O
OT

OT

O
O

O

OT

Y8

Y7

Y6

Y5

Y4

Y3

Y1

Y2

ι1

ι−1

ι2

ι−2

ι−3

ι3

ι4

ι−4

ι−5

ι5

ι7
ι−7

ι8

ι−8ι6

ι−6
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There are a number of vertices containing the Yk matrices.

Y T
3

Y5

Y1

ι−1

ι2 ι1

ι5
ι−6

ι3

This vertex contributes:

Tr
(

Y1Y T
3 Y5

)
.
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There are also a number of vertices containing the O matrices.
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We expect these to contribute:

Wg
(v1

2
,

v2
2
, . . . ,

vr
2

)

= N rwg
(v1

2
,

v2
2
, . . . ,

vr
2

)
.
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2
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(v1
2
,

v2
2
, . . . ,

vr
2

)
.

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Combinatorics of traces
Example
Matrix models

The Yk vertices are given by:

ϕ−1− δεπ−δπ+δεϕ+.

The permutation

π−δπ+ = (1,−2, 5,−3, 7,−6) (6,−7, 3,−5, 2,−1) (4,−8) (8,−4)

enumerates the points around the cycles of π+ ∪ π−:

1 2 3 4 5 6 7 8

π+

π−
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The Yk vertices are given by:

ϕ−1− δεπ−δπ+δεϕ+.

The permutation
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This suggests another picture, in which δεπ−δπ+δε forms a set of
hyperedges, and the faces are ϕ−1− δεπ−δπ+δεϕ+.

O

O
OT

OT

O
O

O

OT

Y8

Y7

Y6

Y5

Y4

Y3

Y1

Y2

ι1

ι−1

ι2

ι−2

ι−3

ι3

ι4

ι−4

ι−5

ι5

ι7
ι−7

ι8

ι−8ι6

ι−6

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Combinatorics of traces
Example
Matrix models

This suggests another picture, in which δεπ−δπ+δε forms a set of
hyperedges, and the faces are ϕ−1− δεπ−δπ+δεϕ+.
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Let ϕ ∈ Sn, let ε : [n]→ {1,−1}, and let Y1, . . . ,Yn be random
matrices independent from O. Then

E
(
trϕ

(
Oε(1)Y1, . . . ,O

ε(n)Yn

))
=

∑
(π+,π−)∈P2(n)

2

Nχ(ϕ,δεπ−δπ+δε)−2#(ϕ)wg (π+, π−)

×E
(
trϕ−1

− δεπ−δπ+δεϕ+/2
(Y1, . . . ,Yn)

)
=

∑
α∈PMalt(±[n])

Nχ(ϕ,δεαδε)−2#(ϕ)wg (λ (α))

×E
(
trϕ−1

− δεαδεϕ+/2
(Y1, . . . ,Yn)

)
.
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It is possible to mix ensembles in an expression.

E
(
tr
(

Z3W
(λ2)
2

)
tr
(

W
(λ3)
1 ZT

3 ZT
3

)
tr
(

W
(λ6)
2 ZT

3 W
(λ8)
2 W

(λ9)
1

))

W
(λ2)
2 W

(λ9)
1

Z
ZT

ZT

ZTW
(λ3)
1 W

(λ6)
2

W
(λ8)
2

ϕ = (1, 2) (3, 4, 5) (6, 7, 8, 9)
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W
(λ2)
2 W

(λ9)
1

Z
ZT

ZT

ZTW
(λ3)
1 W

(λ6)
2

W
(λ8)
2

α1 = (3) (−3) (9) (−9)

α2 = (2, 8,−6) (6,−8,−2)

α3 = (1,−7) (−1, 7) (4,−5) (−4, 5)
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δεαδε = (1, 7) (−1,−7) (2, 8,−6) (6,−8,−2) (3) (−3) (4,−5)

(5,−4) (9) (−9)

ϕ−1− δεαδεϕ+

= (1, 8, 9,−7,−2, 6) (−6, 2, 7,−9,−8,−1) (3,−4, 5) (−5, 4,−3)

tr (Aλ3) tr (Aλ9) tr
(

Bλ2BT
λ6Bλ8

)
N−5
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Each vertex gives us a trace, and hence a factor of N when
normalized.

Highest order terms are those with the highest Euler characteristic
(typically spheres or collections of spheres).

Crossings require handles, so highest order terms typically
correspond to noncrossing diagrams with untwisted identifications.

Highest order terms must have a relative orientation of the faces in
which none of the edge-identifications are twisted.
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The Weingarten function

The hyperoctahedral group Bn is the stabilizer in S2n of a pairing:

1 2 3 4 5 6 7 8

Pairings are in bijection with cosets of the hyperoctahedral group
πBn:

1 2 3 4 5 6 7 8
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The Weingarten function

Possible loop structures are in bijection with the double cosets of
the hyperoctahedral group BnπBn:

1 2 3 4 5 6 7 8
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The Weingarten function

The premaps are representatives of the cosets of the
hyperoctahedral group stabilizing pairing
{{1,−1} , {2,−2} , . . . , {n,−n}}.

Real matricial cumulants (defined in Capitaine, Casalis, 2007) are
indexed by cosets of Bn.

Up to a normalization convention, the weight of each diagram is a
matricial cumulant.
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matricial cumulant.
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The Weingarten function

The space of invariant vectors under O ⊗ · · · ⊗ O is spanned by
the images of ∑

ι:[n/2]→[N]

(eι1 ⊗ eι1)⊗ · · · ⊗
(

eιn/2 ⊗ eιn/2

)
under permutations of the tensor factors.

A basis therefore corresponds to cosets of Bn, i.e. to pairings.
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The Weingarten function

The inner product of two basis elements is N#(π+∨π−).

1 2 3 4 5 6 7 8

π+

π−

The Weingarten function is the inverse of the matrix of the inner
products.
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The Weingarten function

In the quaternionic case, the space of invariant vectors is spanned
by the images of∑
ι:[n/2]→[N]

η:[n/2]→{1,−1}

η1 · · · ηn/2 (eι1;η1 ⊗ eι1;−η1)⊗· · ·⊗
(

eιn/2;ηn/2 ⊗ eιn/2;−ηn/2

)
.

When we act on this vector with an odd permutation from Bn, it
reverses the sign.

1 2 3 4 5 6 7 8
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The Weingarten function

We consider images under even permutations,

We find that the inner product is

(−1)n/2 (−2N)#(π1∨π2) .
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Quaternions are a noncommutative algebra over the reals such that

i2 = j2 = k2 = ijk = −1.

A quaternion a + bi + cj + dk may be represented as a 2× 2 matrix:[
a + bi c + di
−c + di a− bi

]
.
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a + bi + cj + dk := a− bi − cj − dk =

[
a + bi c + di
−c + di a− bi

]∗

Re (a + bi + cj + dk) := a = tr

[
a + bi c + di
−c + di a− bi

]

Qη1η2 = η1η2Q−η2,−η1
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We wish to evaluate:

E
(
tr

(
Y1X

(ε1)
1 Y2 · · ·Yn1−1X

(εn1−1)
n1−1 Yn1

)
· · ·

· · · tr
(

Ynr−1+1X
(εnr−1+1)
nr−1+1 Ynr−1+2 · · ·Yn−1X

(εn−1)
n−1 Yn

))

Because the traces are quaternion-valued, they “see” only one face
ζ = (1, 2, . . . , n), rather than ϕ.
The asymptotics depend only on the vertices according to the
surface constructed from ϕ, but the vertices of the surface
constructed according to ζ will contribute signs and factors of 2.
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For each negative εk , we get a factor of ηkη−k .

For each negative k ∈ FD (α), we get a factor of ηkη−k .

Regardless of the sign of k , the entry of Yk may be written

Y
(k)
ιδδεϕ−(k),ιδεϕ+(k);sgn(k)εζ−1

+ (k)
η
δδεζ

−1
+ (k)

,sgn(k)ε
ζ−1
− (k)

η
δεζ

−1
− (k)

.

For each negative k ∈ FD
(
ζ+δεαδεζ

−1
−
)
, we get a factor of

ε
(
ζ−1+ (k)

)
η
(
δδεζ

−1
+ (k)

)
ε (k) η (δε (k)).
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On a certain island near Haiti, half the inhabitants have been . . .
turned into zombies . . . . [T]he zombies . . . always lie and the
humans . . . always tell the truth.
The situation is enormously complicated by the fact that . . . .
whenever you ask them a yes-no question, they reply “Bal” or
“Da”—one of which means yes and the other no . . . . [W]e do
not know which.

[I]s it possible in only one question to find out what “Bal” means?

You . . . wish to marry the King’s daughter . . . . The test is that
you may ask the medicine man any one question . . . . If he
answers “Bal” then you may marry the king’s daughter; if he
answers “Da” then you may not.
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Some of the natives answer questions with “Bal” and “Da,” but
others have broken away . . . and answer with the English words
“Yes” and “No.” . . . . [A]ny pair of brothers . . . are either both
human or both zombies . . . . A native was suspected of high
treason.
Question (to A) / Is the defendent innocent?
A’s Answer / Bal.
Question (to B) / What does “Bal” mean?
B’s Answer / “Bal” means yes.
Question (to C) / Are A and B brothers?
C’s Answer / No.
Second Question to C / Is the defendent innocent?
C’s Answer / Yes.
Is the defendent innocent or guilty?
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Traces are taken along the cycles of ϕ+δεαδεϕ
−1
− .

Real parts are taken along the cycles of ζ+δεαδεζ
−1
− .
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Noncommutative probability spaces
Second-order probability spaces

Definition
A noncommutative probability space is a unital algebra A with a
tracial linear functional ϕ : A→ C with ϕ (1A) = 1.

Definition
For A1, . . . ,An ⊆ A subalgebras of noncommutative probability
space A, A1, . . . ,An are free if

ϕ1 (a1, . . . , ap) = 0

when the ai are centred and alternating.

Definition
Families of matrices are asymptotically free if

lim
N→∞

E
(
tr
(

Å1,N · · · Åp,N

))
= 0

when the Ai are from cyclically alternating families.
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Noncommutative probability spaces
Second-order probability spaces

Definition
A second-order probability space is a noncommutative probability
space (A, ϕ1) with a bilinear function ϕ2 : A× A→ C such that

I ϕ2 is tracial in each argument

I ϕ2 (1A, a) = ϕ2 (a, 1A) = 0.
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Noncommutative probability spaces
Second-order probability spaces

We want to consider covariances of alternating products of centred
matrices which are independent and in “general position”.

For g a Haar-distributed unitary, orthogonal or symplectic matrix,
we consider:

cov
(
Tr
(

g−1v(1)A1gv(1) · · · g−1v(p)Apgv(p)

)
,

Tr
(

g−1w(1)B1gw(1) · · · g−1w(q)Bqgw(q)

))
with E (tr (Ak)) = E (tr (Bk)) = 0 and words v , w alternating.
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Noncommutative probability spaces
Second-order probability spaces

g−1
1

g1

A1

g2

A2

B8
A3

A4

A5

A7

A8

B2

B1

B3

B4

B5

B6 B7

g−1
1g1

g1

g−1
1

g3

g−1
3

g−1
2

g2

g−1
3

g3

g−1
2

g2

g1

g−1
1

g−1
1

g1

g1

g−1
1

g3

g−1
3

g−1
1

g1

g−1
1

g1

g3

g−1
2

A6

g−1
3

g−1
2

g2

E (tr (A1B1) tr (A1B8) · · · tr (A8B7))
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Definition (Mingo, Speicher, 2006)

Families of matrices are asymptotically complex second-order free
if they are asymptotically free, have a second-order limit
distribution, and for Ai and Bi in algebras generated by cyclically
alternating families, we have

I for p 6= q:

lim
N→∞

k2
(
Tr
(

Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊q

))
= 0

I and for p = q:

lim
N→∞

k2
(
Tr
(

Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊p

))
=

p−1∑
k=0

p∏
i=1

(
lim

N→∞
(E (tr (AiBk−i ))− E (tr (Ai ))E (tr (Bk−i )))

)
.
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Definition (Mingo, Speicher, 2006)

Subalgebras A1, . . . ,An of a second-order noncommutative
probability space (A, ϕ1, ϕ2) are complex second-order free if they
are free and for a1, . . . , ap and b1, . . . , bq centred and either
cyclically alternating or consisting of a single term, we have

I when p 6= q:
ϕ2 (a1 · · · ap, b1 · · · bq) = 0

I and when p = q:

ϕ2 (a1 · · · ap, b1 · · · bp) =

p−1∑
k=0

p∏
i=1

ϕ1 (aibk−i ) .

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Noncommutative probability spaces
Second-order probability spaces

Definition (Mingo, Speicher, 2006)

Subalgebras A1, . . . ,An of a second-order noncommutative
probability space (A, ϕ1, ϕ2) are complex second-order free if they
are free and for a1, . . . , ap and b1, . . . , bq centred and either
cyclically alternating or consisting of a single term, we have

I when p 6= q:
ϕ2 (a1 · · · ap, b1 · · · bq) = 0

I and when p = q:

ϕ2 (a1 · · · ap, b1 · · · bp) =

p−1∑
k=0

p∏
i=1

ϕ1 (aibk−i ) .

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Noncommutative probability spaces
Second-order probability spaces

Definition (Mingo, Speicher, 2006)

Subalgebras A1, . . . ,An of a second-order noncommutative
probability space (A, ϕ1, ϕ2) are complex second-order free if they
are free and for a1, . . . , ap and b1, . . . , bq centred and either
cyclically alternating or consisting of a single term, we have

I when p 6= q:
ϕ2 (a1 · · · ap, b1 · · · bq) = 0

I and when p = q:

ϕ2 (a1 · · · ap, b1 · · · bp) =

p−1∑
k=0

p∏
i=1

ϕ1 (aibk−i ) .

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Noncommutative probability spaces
Second-order probability spaces

Spoke diagrams:

a1

a2

b1

b2

b3a3 a3

a1

a2

b3

b1

b2

a1

a2

a3
b3

b1

b2

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Noncommutative probability spaces
Second-order probability spaces

g−1
1

g1

A1

g2

A2

A3

A4

A5

A7

A8

g−1
1g1

g3

g−1
3

g−1
1

g1

g−1
1

g1

g3

g−1
2

A6

g−1
3

g−1
2

g2
BT
8

BT
1

BT
2BT

3

BT
4

BT
5

bT
6

B7

g2

g−1
2

g1

g−1
1

g3

g−1
3g1

g−1
1

g2

g−1
2

g1

g−1
1

g3

g−1
3

g1

g−1
1

E
(
tr
(

A1BT
3

)
tr
(

A1BT
4

)
· · · tr

(
A8BT

2

))

Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Noncommutative probability spaces
Second-order probability spaces

g−1
1

g1

A1

g2

A2

A3

A4

A5

A7

A8

g−1
1g1

g3

g−1
3

g−1
1

g1

g−1
1

g1

g3

g−1
2

A6

g−1
3

g−1
2

g2
BT
8

BT
1

BT
2BT

3

BT
4

BT
5

bT
6

B7

g2

g−1
2

g1

g−1
1

g3

g−1
3g1

g−1
1

g2

g−1
2

g1

g−1
1

g3

g−1
3

g1

g−1
1

E
(
tr
(

A1BT
3

)
tr
(

A1BT
4

)
· · · tr

(
A8BT

2

))
Emily Redelmeier Cartography on unoriented surfaces



Cartography
Random Matrices

The Hyperoctahedral Group
The Quaternionic Case

Freeness

Noncommutative probability spaces
Second-order probability spaces

Definition
Families of matrices are asymptotically real second-order free if
they are asymptotically free, have a second-order limit distribution,
and for Ai and Bi in algebras generated by cyclically alternating
families

lim
N→∞

cov
(
Tr
(

Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊q

))
vanishes when p 6= q, and when p = q, is equal to

lim
N→∞

cov
(
Tr
(

Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊p

))
=

p−1∑
k=0

p∏
i=1

(
lim

N→∞
(E (tr (AiBk−i ))− E (tr (Ai ))E (tr (Bk−i )))

)

+

p−1∑
k=0

p∏
i=1

(
lim

N→∞

(
E
(
tr
(

AiB
T
k+i

))
− E (tr (Ai ))E

(
tr
(

BT
k+i

))))
.
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Definition
Subalgebras A1, . . . ,An of a second-order noncommutative
probability space (A, ϕ1, ϕ2) are real second-order free if they are
free and for a1, . . . , ap and b1, . . . , bq centred and either cyclically
alternating or consisting of a single term

ϕ2 (a1 · · · ap, b1 · · · bq) = 0

when p 6= q and

ϕ2 (a1 · · · ap, b1 · · · bp) =

p−1∑
k=0

p∏
i=1

ϕ1 (aibk−i ) +

p−1∑
k=0

p∏
i=1

ϕ1

(
aib

t
k+i

)
.
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Definition
Families of matrices are asymptotically quaternion second-order
free if they are asymptotically free, have a second-order limit
distribution, and for Ai and Bi in algebras generated by cyclically
alternating families

lim
N→∞

k2
(
Tr
(

Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊q

))
vanishes when p 6= q,
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and when p = q, is equal to

lim
N→∞

cov
(
Tr
(

Å1 · · · Åp

)
,Tr

(
B̊1 · · · B̊p

))
= 4

p∏
i=1

Re

(
lim

N→∞
(E (tr (AiBn−i ))− E (tr (Ai ))E (tr (Bn−i )))

)

− 2

p∏
i=1

Re

(
lim

N→∞

(
E
(
tr
(

AiB
T
i

))
− E (tr (Ai ))E

(
tr
(

BT
i

))))

+

p−1∑
k=1

p∏
i=1

Re

(
lim

N→∞
(E (tr (AiBk−i ))− E (tr (Ai ))E (tr (Bk−i )))

)

+

p−1∑
k=1

p∏
i=1

Re

(
lim

N→∞

(
E
(
tr
(

AiB
T
k+i

))
− E (tr (Ai ))E

(
tr
(

BT
k+i

))))
.
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Definition
Subalgebras A1, . . . ,An of a second-order noncommutative
probability space (A, ϕ1, ϕ2) are quaternion second-order free if
they are free and for a1, . . . , ap and b1, . . . , bq centred and either
cyclically alternating or consisting of a single term

ϕ2 (a1 · · · ap, b1 · · · bq) = 0

when p 6= q and

ϕ2 (a1 · · · ap, b1 · · · bp)

= 4Re (ϕ1 (aibp−i ))− 2Re
(
ϕ1

(
aib

t
i

))
+

p−1∑
k=1

p∏
i=1

Re (ϕ1 (aibk−i )) +

p−1∑
k=1

p∏
i=1

Re
(
ϕ1

(
aib

t
k+i

))
.
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