Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/*N* for the MO model

NLO graphs for the MO model

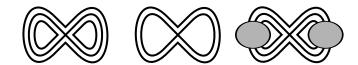
NLO series of the MO model

Summary 8 Outlook

Next-to-leading order in the large N expansion of the multi-orientable random tensor model

Matti Raasakka

CALIN, LIPN, Université Paris 13



Journée Cartes Université Paris 13, November 14th 2013

Outline of the talk

NLO of MO tensor model

Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- A very brief history and motivation of tensor models
- Tensor models and the large N expansion
- Multi-orientable random tensor model
- Solution and the second second
- Classification of the next-to-leading order graphs
- Oritical behavior of the next-to-leading order series
- Summary and outlook

A bit of history & motivation

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook A very brief history and motivation for random tensor models:

• Tensor models were introduced already in the 90's by Sasakura and Ambjorn et al. with the aim to replicate in dimensions higher than 2 the success of **random matrix models**:

A bit of history & motivation

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- Tensor models were introduced already in the 90's by Sasakura and Ambjorn et al. with the aim to replicate in dimensions higher than 2 the success of **random matrix models**:
 - The Feynman graphs arising from the perturbative expansion of the partition function are **dual graphs to triangulated 2d surfaces**.

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook A very brief history and motivation for random tensor models:

- Tensor models were introduced already in the 90's by Sasakura and Ambjorn et al. with the aim to replicate in dimensions higher than 2 the success of random matrix models:
 - The Feynman graphs arising from the perturbative expansion of the partition function are **dual graphs to triangulated 2d surfaces**.
 - Therefore, the model defines a certain **statistical ensemble over discrete geometries** through its perturbative series interesting, e.g., from the point of view of quantum gravity.

イロト 不良 とくほ とくほう 二日

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/*N* for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook A very brief history and motivation for random tensor models:

- Tensor models were introduced already in the 90's by Sasakura and Ambjorn et al. with the aim to replicate in dimensions higher than 2 the success of **random matrix models**:
 - The Feynman graphs arising from the perturbative expansion of the partition function are **dual graphs to triangulated 2d surfaces**.
 - Therefore, the model defines a certain **statistical ensemble over discrete geometries** through its perturbative series interesting, e.g., from the point of view of quantum gravity.
 - An important technique is the **large** N **expansion**, which is controlled by the topology of the surfaces dual to Feynman graphs: in particular, the leading order contribution to the partition function is given by the planar graphs.

・ コット (雪) ・ (目) ・ (目)

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- Tensor models were introduced already in the 90's by Sasakura and Ambjorn et al. with the aim to replicate in dimensions higher than 2 the success of random matrix models:
 - The Feynman graphs arising from the perturbative expansion of the partition function are **dual graphs to triangulated 2d surfaces**.
 - Therefore, the model defines a certain statistical ensemble over discrete geometries through its perturbative series interesting, e.g., from the point of view of quantum gravity.
 - An important technique is the **large** N **expansion**, which is controlled by the topology of the surfaces dual to Feynman graphs: in particular, the leading order contribution to the partition function is given by the planar graphs.
 - Thus, the large *N* expansion allowed to study in detail the **planar sector** of the models and use them, for example, for enumeration of planar maps (and much more).

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- Tensor models were introduced already in the 90's by Sasakura and Ambjorn et al. with the aim to replicate in dimensions higher than 2 the success of random matrix models:
 - The Feynman graphs arising from the perturbative expansion of the partition function are **dual graphs to triangulated 2d surfaces**.
 - Therefore, the model defines a certain statistical ensemble over discrete geometries through its perturbative series interesting, e.g., from the point of view of quantum gravity.
 - An important technique is the **large** N **expansion**, which is controlled by the topology of the surfaces dual to Feynman graphs: in particular, the leading order contribution to the partition function is given by the planar graphs.
 - Thus, the large *N* expansion allowed to study in detail the **planar sector** of the models and use them, for example, for enumeration of planar maps (and much more).
 - By simultaneous scaling of N and the coupling constant, the double-scaling limit allowed to define a continuum limit, where all topologies contribute, which was then possible to connect to 2d gravity.

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- Tensor models were introduced already in the 90's by Sasakura and Ambjorn et al. with the aim to replicate in dimensions higher than 2 the success of **random matrix models**:
 - The Feynman graphs arising from the perturbative expansion of the partition function are dual graphs to triangulated 2d surfaces.
 - Therefore, the model defines a certain statistical ensemble over discrete geometries through its perturbative series interesting, e.g., from the point of view of quantum gravity.
 - An important technique is the **large** N **expansion**, which is controlled by the topology of the surfaces dual to Feynman graphs: in particular, the leading order contribution to the partition function is given by the planar graphs.
 - Thus, the large *N* expansion allowed to study in detail the **planar sector** of the models and use them, for example, for enumeration of planar maps (and much more).
 - By simultaneous scaling of N and the coupling constant, the **double-scaling limit** allowed to define a continuum limit, where all topologies contribute, which was then possible to connect to 2d gravity.
- However, only recently a similarly powerful control over random tensor model partition functions has been achieved by restricting the class of graphs that arise from the perturbative series...

Tensor models and the large N expansion

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook A tensor model is specified by its partition function

$$\mathcal{Z}(\lambda_t) = \int \left[\prod_c \mathrm{d}\phi_c \mathrm{d}\overline{\phi}_c\right] e^{-\mathcal{S}(\phi_c,\overline{\phi}_c;\lambda_t)} \,,$$

where ϕ_c are rank-*d* complex tensors of size *N*,

$$\mathcal{S}(\phi_c, \overline{\phi}_c; \lambda_t) = \sum_c \overline{\phi}_c \cdot \phi_c - \sum_t \lambda_t V_t(\phi_c, \overline{\phi}_c),$$

and $\overline{\phi}_c \cdot \phi_c := \sum_{i_1, \dots, i_d} \overline{(\phi_c)_{i_1, \dots, i_d}} (\phi_c)_{i_1, \dots, i_d}$, $i_k = 1, \dots, N$ for all k.

<ロト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<日ト</p>
<101</p>

Tensor models and the large N expansion

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary 8 Outlook A tensor model is specified by its partition function

$$\mathcal{Z}(\lambda_t) = \int \left[\prod_c \mathrm{d}\phi_c \mathrm{d}\overline{\phi}_c\right] e^{-\mathcal{S}(\phi_c,\overline{\phi}_c;\lambda_t)} \,,$$

where ϕ_c are rank-*d* complex tensors of size *N*,

$$\mathcal{S}(\phi_c, \overline{\phi}_c; \lambda_t) = \sum_c \overline{\phi}_c \cdot \phi_c - \sum_t \lambda_t V_t(\phi_c, \overline{\phi}_c) \,,$$

and $\overline{\phi}_c \cdot \phi_c := \sum_{i_1, \dots, i_d} \overline{(\phi_c)_{i_1, \dots, i_d}} (\phi_c)_{i_1, \dots, i_d}, i_k = 1, \dots, N$ for all k.

• Feynman graphs arise as graphical representations of summands in the perturbative expansion of the partition function

$$\mathcal{Z}(\lambda_t) = \sum_{k=0}^{\infty} \int \left[\prod_c \mathrm{d}\phi_c \mathrm{d}\overline{\phi}_c \right] \left(\sum_t \lambda_t V_t(\phi_c, \overline{\phi}_c) \right)^k e^{-\sum_c \overline{\phi}_c \cdot \phi_c} \,,$$

where $\exp(-\sum_{c} \overline{\phi}_{c} \cdot \phi_{c})$ is just a product of Gaussian measures for the tensor components of all tensors.

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- For any order k in the perturbative series, the contributing terms are represented by Feynman graphs with k vertices, connected by oriented edges labelled by the index c. The edges encode the Isserlis-Wick pairings in calculating the expectation values of monomials for the Gaussian measure: $E[x_1x_2\cdots x_{2p}] = \sum \prod E[x_ix_j]$.
- The free energy $\mathcal{F} := N^{-d} \ln \mathcal{Z}$ may be expressed as a sum over the connected vacuum Feynman graphs Γ as

$$\mathcal{F}(\lambda_t) = \sum_{\Gamma} \mathcal{A}(\Gamma) \,,$$

where $\mathcal{A}(\Gamma)$ is called the amplitude of the graph.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- For any order k in the perturbative series, the contributing terms are represented by Feynman graphs with k vertices, connected by oriented edges labelled by the index c. The edges encode the Isserlis-Wick pairings in calculating the expectation values of monomials for the Gaussian measure: $E[x_1x_2\cdots x_{2p}] = \sum \prod E[x_ix_j]$.
- The free energy $\mathcal{F} := N^{-d} \ln \mathcal{Z}$ may be expressed as a sum over the connected vacuum Feynman graphs Γ as

$$\mathcal{F}(\lambda_t) = \sum_{\Gamma} \mathcal{A}(\Gamma) \,,$$

where $\mathcal{A}(\Gamma)$ is called the amplitude of the graph.

• The large N expansion is facilitated by the fact that we have

 $\mathcal{A}(\Gamma) \propto N^{-\omega(\Gamma)}$.

Thus, the expansion in 1/N is controlled by the **degree** ω .

 Different tensor models may incorporate different classes of graphs and possibly also have different expressions for the degree ω.

Tensor models and the large N expansion

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook • Colored tensor models were introduced by Razvan Gurau in 2009: Feynman graphs for d dimensions may be represented as bipartite (d + 1)-edge-colored regular graphs of vertex-degree d + 1.

・ロト・日本・日本・日本・日本・日本・日本

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- **Colored** tensor models were introduced by Razvan Gurau in 2009: Feynman graphs for d dimensions may be represented as bipartite (d + 1)-edge-colored regular graphs of vertex-degree d + 1.
- The edge-coloring allows for an improved control over the perturbative expansion and the graph combinatorics. In particular, the degree ω has a simple expression in terms of topological data of certain 2d subgraphs of the colored graphs called jackets.

イロン 不得 とくほ とくほ とうほ

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary 8 Outlook

- **Colored** tensor models were introduced by Razvan Gurau in 2009: Feynman graphs for *d* dimensions may be represented as bipartite (d + 1)-edge-colored regular graphs of vertex-degree d + 1.
- The edge-coloring allows for an improved control over the perturbative expansion and the graph combinatorics. In particular, the degree ω has a simple expression in terms of topological data of certain 2d subgraphs of the colored graphs called jackets.
- Recently, the large N expansion of colored tensor models has been under intensive investigation. Some very important recent advances:
 - The first derivation of the large *N* expansion for colored tensor models. [Gurau (2011)]
 - The leading order ($\omega = 0$) sector is given by the so-called melonic graphs, which correspond to a subclass of triangulations of a *d*-sphere. [Bonzom, Gurau, Riello, Rivasseau (2011)]
 - The next-to-leading order ($\omega=1$) sector was classified and summed over. [Kaminski, Oriti, Ryan (2013)]
 - All orders in ω were classified and enumerated, and the existence of a double-scaling limit established.

[Gurau, Schaeffer (2013)] and [Dartois, Gurau, Rivasseau (2013)]

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

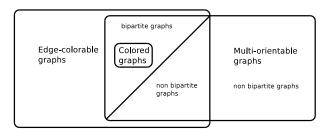
Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook • The multi-orientable tensor model introduced by Adrian Tanasa in 2011: Incorporates a strictly larger set of graphs than the corresponding rank-4 colored tensor model.



[Dartois, Rivasseau, Tanasa (2013)]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

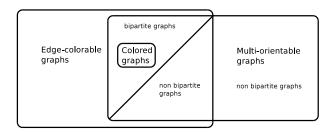
Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook • The multi-orientable tensor model introduced by Adrian Tanasa in 2011: Incorporates a strictly larger set of graphs than the corresponding rank-4 colored tensor model.



[Dartois, Rivasseau, Tanasa (2013)]

Question:

How much of the large N scaling properties of colored tensor models generalize to this larger family of tensor graphs?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook The edges and vertices of the multi-orientable tensor model can be represented as

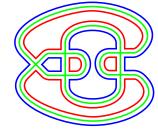
NLO of MO tensor model

Multiorientable tensor model

The edges and vertices of the multi-orientable tensor model can be represented as



The strands, representing the tensor indices, can be classified into three types [Dartois, Rivasseau, Tanasa (2013)]



The strands running inside the vertices (green) are called inner strands while the others (blue and red) are called outer strands.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/*N* for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook • By removing any one of the three types of strands, we end up with a ribbon graph, called a **jacket** of the original tensor graph:

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook • By removing any one of the three types of strands, we end up with a ribbon graph, called a **jacket** of the original tensor graph:

• The degree of a MO graph is the sum over the genera of the jackets

$$\omega = \sum_J g_J \,.$$

The genus g_J is obtained through the Euler characteristic formula

$$g_J = 1 - \frac{1}{2}(F_J - L_J + V_J) \in \mathbb{N}/2 \; (!!!) \; ,$$

where $F_J, L_J, V_J = #$ of faces, lines, vertices of J.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Leading order in 1/N for the multi-orientable tensor model

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

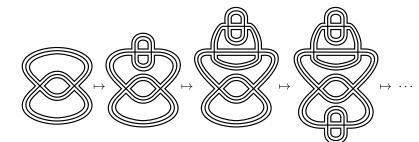
Multiorientable tensor model

LO in 1 / N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook The leading order ω = 0 is still given by the melonic sector obtained by sequential melonic insertions to the elementary melon.
 [Dartois, Rivasseau, Tanasa (2013)]



Leading order in 1/N for the multi-orientable tensor model

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large N expansion

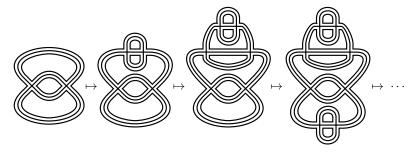
Multiorientable tensor model

LO in 1 / N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary 8 Outlook The leading order ω = 0 is still given by the melonic sector obtained by sequential melonic insertions to the elementary melon.
 [Dartois, Rivasseau, Tanasa (2013)]



 The melonic graphs can be mapped to trees, and thus counted exactly. The leading order series has the same behavior as the colored model:

$$\mathcal{F}_{\mathrm{LO}} \propto \mathrm{const.} + \left(1 - rac{\lambda^2}{\lambda_c^2}
ight)^{2 - \gamma_{\mathrm{LO}}} \,, \qquad \gamma_{\mathrm{LO}} = rac{1}{2} \,.$$

[Bonzom, Gurau, Riello, Rivasseau (2011)]

10/21

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

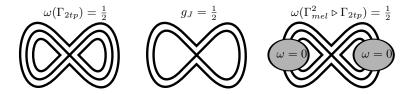
LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

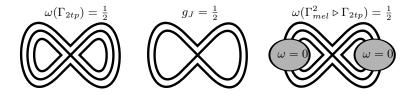
- The multi-orientable next-to-leading order sector is given by $\omega = 1/2$, because of non-orientable jackets, not $\omega = 1$ as for colored models.
- Simplest NLO graph is the double-tadpole:



• Any insertion of a melonic 2-point subgraph conserves the degree.

- Matti Raasakka
- Outline
- History & Motivation
- Tensor models and the large *N* expansion
- Multiorientable tensor model
- LO in 1 / A for the MO model
- NLO graphs for the MO model
- NLO series of the MO model
- Summary & Outlook

- The multi-orientable next-to-leading order sector is given by $\omega = 1/2$, because of non-orientable jackets, not $\omega = 1$ as for colored models.
- Simplest NLO graph is the double-tadpole:



• Any insertion of a melonic 2-point subgraph conserves the degree.

Question:

But are the graphs so obtained all the possible NLO ($\omega = 1/2$) graphs?

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1 / M for the MO model

NLO graphs for the MO model

NLO series of the MO model

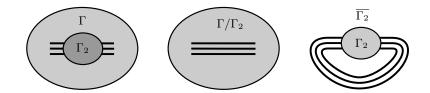
Summary & Outlook

Lemma 1:

Let Γ be an MO vacuum Feynman graph, and Γ_2 an MO 2-point subgraph of Γ . Let us denote by Γ/Γ_2 the graph obtained by replacing Γ_2 inside Γ with a propagator. We then have the relation

$$\omega(\Gamma) = \omega(\Gamma/\Gamma_2) + \omega(\overline{\Gamma_2}),$$

where $\overline{\Gamma_2}$ denotes the vacuum graph obtained by gluing the external legs of Γ_2 to each other.



Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/*I* for the MO model

NLO graphs for the MO model

NLO series of the MO model

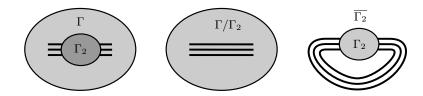
Summary & Outlook

Lemma 1:

Let Γ be an MO vacuum Feynman graph, and Γ_2 an MO 2-point subgraph of Γ . Let us denote by Γ/Γ_2 the graph obtained by replacing Γ_2 inside Γ with a propagator. We then have the relation

$$\omega(\Gamma) = \omega(\Gamma/\Gamma_2) + \omega(\overline{\Gamma_2}),$$

where $\overline{\Gamma_2}$ denotes the vacuum graph obtained by gluing the external legs of Γ_2 to each other.



Easy to prove using the helpful expression $\omega(\Gamma) = 3 + \frac{3}{2}V_{\Gamma} - F_{\Gamma}$, which can be derived from $V_J = V_{\Gamma}$, $L_J = L_{\Gamma} = 2V_{\Gamma}$ and $\sum_J F_J = 2F_{\Gamma}$.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Definition:

A **NLO melon-free graph** is a graph with $\omega = \frac{1}{2}$ and no melonic 2-point subgraphs.

- The double-tadpole is an NLO melon-free graph, since it does not contain melonic 2-point subgraphs.
- All NLO graphs can be obtained by melonic insertions into the melon-free NLO graphs.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large N expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Definition:

A **NLO melon-free graph** is a graph with $\omega = \frac{1}{2}$ and no melonic 2-point subgraphs.

- The double-tadpole is an NLO melon-free graph, since it does not contain melonic 2-point subgraphs.
- All NLO graphs can be obtained by melonic insertions into the melon-free NLO graphs.
- ⇒ The melon-free graphs classify the NLO graphs into families related through insertions and contractions of melonic 2-point subgraphs.

It is then sufficient to focus on the melon-free NLO multi-orientable graphs.

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/A for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Definition:

A **NLO melon-free graph** is a graph with $\omega = \frac{1}{2}$ and no melonic 2-point subgraphs.

- The double-tadpole is an NLO melon-free graph, since it does not contain melonic 2-point subgraphs.
- All NLO graphs can be obtained by melonic insertions into the melon-free NLO graphs.
- ⇒ The melon-free graphs classify the NLO graphs into families related through insertions and contractions of melonic 2-point subgraphs.

It is then sufficient to focus on the melon-free NLO multi-orientable graphs.

Definition:

A graph is **2-particle-irreducible (2PI)** if it does not contain any proper non-trivial 2-point subgraphs.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

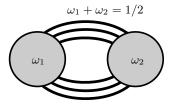
NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Lemma 2:

A NLO melon-free graph of the MO model is 2-particle-irreducible.



・ロト・聞・・聞・・聞・ 一回・ うらの

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

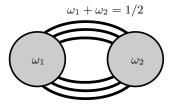
NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Lemma 2:

A NLO melon-free graph of the MO model is 2-particle-irreducible.



- (i) By Lemma 1, either $\omega_1 = 0$ and $\omega_2 = 1/2$, or vice versa. (ω_i is the degree of the corresponding vacuum graph.)
- (ii) $\omega = 0$ only for the propagator and melonic 2-point graphs.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

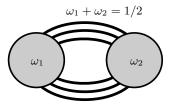
NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Lemma 2:

A NLO melon-free graph of the MO model is 2-particle-irreducible.



- (i) By Lemma 1, either $\omega_1 = 0$ and $\omega_2 = 1/2$, or vice versa. (ω_i is the degree of the corresponding vacuum graph.)
- (ii) $\omega = 0$ only for the propagator and melonic 2-point graphs.
- \Rightarrow The part with $\omega = 0$ must be a propagator for a melon-free graph.
- \Rightarrow No non-trivial 2-point subgraphs in a NLO melon-free graph.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Main theorem:

The only NLO melon-free graph of the MO model is the double-tadpole.

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Main theorem:

The only NLO melon-free graph of the MO model is the double-tadpole.

Assume Γ is a NLO melon-free graph.

 The jacket formed by outer strands is always orientable [DRT (2013)], thus its genus is always an integer, so it is zero for a NLO graph. NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Main theorem:

The only NLO melon-free graph of the MO model is the double-tadpole.

Assume Γ is a NLO melon-free graph.

- The jacket formed by outer strands is always orientable [DRT (2013)], thus its genus is always an integer, so it is zero for a NLO graph.
- $\Rightarrow F_{\Gamma,o} = V_{\Gamma} + 2$ for the number of faces formed by the outer strands.
- $\Rightarrow \omega(\Gamma) = 3 + \frac{3}{2}V (F_{\Gamma,o} + F_{\Gamma,i}) = 1 + \frac{1}{2}V_{\Gamma} F_{\Gamma,i}, \text{ where } F_{\Gamma,i} \text{ is the number of faces in } \Gamma \text{ formed by the inner strands.}$

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Main theorem:

The only NLO melon-free graph of the MO model is the double-tadpole.

Assume Γ is a NLO melon-free graph.

- The jacket formed by outer strands is always orientable [DRT (2013)], thus its genus is always an integer, so it is zero for a NLO graph.
- $\Rightarrow F_{\Gamma,o} = V_{\Gamma} + 2$ for the number of faces formed by the outer strands.
- $\Rightarrow \omega(\Gamma) = 3 + \frac{3}{2}V (F_{\Gamma,o} + F_{\Gamma,i}) = 1 + \frac{1}{2}V_{\Gamma} F_{\Gamma,i}, \text{ where } F_{\Gamma,i} \text{ is the number of faces in } \Gamma \text{ formed by the inner strands.}$
 - Since the outer jacket is planar, the graph may be drawn on a plane so that the inner faces intersect only at vertices.
- For a connected graph with $F_{\Gamma,i} > 1$ any inner face must always intersect another inner face.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

Main theorem:

The only NLO melon-free graph of the MO model is the double-tadpole.

Assume Γ is a NLO melon-free graph.

- The jacket formed by outer strands is always orientable [DRT (2013)], thus its genus is always an integer, so it is zero for a NLO graph.
- $\Rightarrow F_{\Gamma,o} = V_{\Gamma} + 2$ for the number of faces formed by the outer strands.
- $\Rightarrow \omega(\Gamma) = 3 + \frac{3}{2}V (F_{\Gamma,o} + F_{\Gamma,i}) = 1 + \frac{1}{2}V_{\Gamma} F_{\Gamma,i}, \text{ where } F_{\Gamma,i} \text{ is the number of faces in } \Gamma \text{ formed by the inner strands.}$
 - Since the outer jacket is planar, the graph may be drawn on a plane so that the inner faces intersect only at vertices.
- For a connected graph with $F_{\Gamma,i} > 1$ any inner face must always intersect another inner face.

We may then concentrate on the properties of inner faces.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

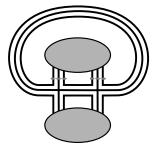
Multiorientable tensor model

LO in 1 / A for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook



NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

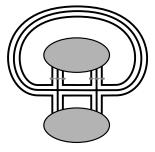
Multiorientable tensor model

LO in 1 / A for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook



- (i) *f* must intersect the same face twice, since the number of intersections between any pair of faces is even.
- (ii) *f* cannot intersect itself, because this would correspond to a non-trivial 2-point subgraph in Γ, but Γ is 2PI, since it is NLO melon-free.
- (iii) There are no further intersections between f and other faces of Γ .

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

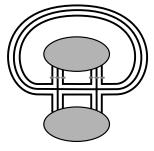
Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook



- (i) *f* must intersect the same face twice, since the number of intersections between any pair of faces is even.
- (ii) *f* cannot intersect itself, because this would correspond to a non-trivial 2-point subgraph in Γ, but Γ is 2PI, since it is NLO melon-free.
- (iii) There are no further intersections between f and other faces of Γ .
- \Rightarrow f divides the plane on which Γ is drawn into two separate regions.
- ⇒ The part of Γ inside f is a connected 2-point subgraph of Γ , so it must be trivial. But then the 2-point subgraph of Γ obtained by cutting just outside f is a melonic subgraph.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

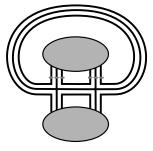
Multiorientable tensor model

LO in 1/A for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook



- (i) *f* must intersect the same face twice, since the number of intersections between any pair of faces is even.
- (ii) *f* cannot intersect itself, because this would correspond to a non-trivial 2-point subgraph in Γ, but Γ is 2PI, since it is NLO melon-free.
- (iii) There are no further intersections between f and other faces of Γ .
- \Rightarrow f divides the plane on which Γ is drawn into two separate regions.
- ⇒ The part of Γ inside f is a connected 2-point subgraph of Γ , so it must be trivial. But then the 2-point subgraph of Γ obtained by cutting just outside f is a melonic subgraph. **CONTRADICTION!**

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- ⇒ Each inner face must intersect the other inner faces at least four times in a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.
- Each intersection corresponds to a vertex of Γ and is shared by exactly two inner faces.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

17/21

NLO of MO tensor model

- Matti Raasakka
- Outline
- History & Motivation
- Tensor models and the large *N* expansion
- Multiorientable tensor model
- LO in 1 / N for the MO model

NLO graphs for the MO model

- NLO series of the MO model
- Summary & Outlook

- ⇒ Each inner face must intersect the other inner faces at least four times in a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.
- Each intersection corresponds to a vertex of Γ and is shared by exactly two inner faces.
- ⇒ The number of vertices obeys $V_{\Gamma} \ge 4 \times \frac{1}{2} F_{\Gamma,i} = 2F_{\Gamma,i}$ for a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.
- $\Rightarrow \omega = 1 + \frac{1}{2}V_{\Gamma} F_{\Gamma,i} \ge 1.$

NLO of MO tensor model

- Matti Raasakka
- Outline
- History & Motivation
- Tensor models and the large *N* expansion
- Multiorientable tensor model
- LO in 1 / N for the MO model

NLO graphs for the MO model

- NLO series of the MO model
- Summary & Outlook

- ⇒ Each inner face must intersect the other inner faces at least four times in a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.
- Each intersection corresponds to a vertex of Γ and is shared by exactly two inner faces.
- ⇒ The number of vertices obeys $V_{\Gamma} \ge 4 \times \frac{1}{2} F_{\Gamma,i} = 2F_{\Gamma,i}$ for a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.
- $\Rightarrow \omega = 1 + \frac{1}{2}V_{\Gamma} F_{\Gamma,i} \geq 1.$ CONTRADICTION!

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large N expansion

Multiorientable tensor model

LO in 1 / M for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- ⇒ Each inner face must intersect the other inner faces at least four times in a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.
- Each intersection corresponds to a vertex of Γ and is shared by exactly two inner faces.
- ⇒ The number of vertices obeys $V_{\Gamma} \ge 4 \times \frac{1}{2} F_{\Gamma,i} = 2F_{\Gamma,i}$ for a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.

 $\Rightarrow \omega = 1 + \frac{1}{2}V_{\Gamma} - F_{\Gamma,i} \ge 1.$ CONTRADICTION!

 \Rightarrow We must have $F_{\Gamma,i} = 1$ for any NLO melon-free graph.

$$\Rightarrow \omega = 1 + \frac{1}{2}V_{\Gamma} - 1 = \frac{1}{2}$$
 for a NLO graph, so $V_{\Gamma} = 1$.

 \Rightarrow The double-tadpole is the only NLO melon-free graph.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large N expansion

Multiorientable tensor model

LO in 1 / M for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- ⇒ Each inner face must intersect the other inner faces at least four times in a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.
- Each intersection corresponds to a vertex of Γ and is shared by exactly two inner faces.
- ⇒ The number of vertices obeys $V_{\Gamma} \ge 4 \times \frac{1}{2} F_{\Gamma,i} = 2F_{\Gamma,i}$ for a NLO melon-free graph Γ with $F_{\Gamma,i} > 1$.

 $\Rightarrow \omega = 1 + \frac{1}{2}V_{\Gamma} - F_{\Gamma,i} \ge 1.$ CONTRADICTION!

 \Rightarrow We must have $F_{\Gamma,i} = 1$ for any NLO melon-free graph.

$$\Rightarrow \omega = 1 + \frac{1}{2}V_{\Gamma} - 1 = \frac{1}{2}$$
 for a NLO graph, so $V_{\Gamma} = 1$.

 \Rightarrow The double-tadpole is the only NLO melon-free graph.

Corollary:

All graphs contributing to the next-to-leading order of the MO model arise from insertions of melonic 2-point subgraphs into the double-tadpole.

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- Following the classification of NLO graphs, one may determine the sum over the NLO amplitudes of the model by relating it to the LO series.
- Consider the connected and the 1PI 2-point functions G and Σ .
- We have $G_{NLO} = G_{LO}^2 \Sigma_{NLO}$ from the following graphical relation:

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

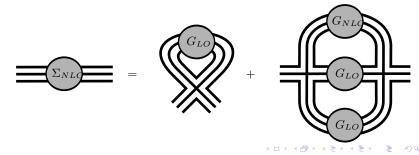
NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- Following the classification of NLO graphs, one may determine the sum over the NLO amplitudes of the model by relating it to the LO series.
- Consider the connected and the 1PI 2-point functions G and Σ .
- We have $G_{NLO} = G_{LO}^2 \Sigma_{NLO}$ from the following graphical relation:

• On the other hand, $\Sigma_{NLO} = \lambda G_{LO} + 3\lambda^2 G_{LO}^2 G_{NLO}$ follows from:



NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook Substituting one to the other, we may solve for

$$G_{NLO} = \frac{\lambda G_{LO}^3}{1 - 3\lambda^2 G_{LO}^4}$$

• Differentiating the LO two-point function relation $G_{LO} = 1 + \lambda^2 G_{LO}^4$ we get

$$\frac{\partial}{\partial \lambda} G_{LO} = \frac{2\lambda G_{LO}^4}{1 - 4\lambda^2 G_{LO}^3} = \frac{2\lambda G_{LO}^5}{1 - 3\lambda^2 G_{LO}^4}$$

where for the last equality we used the LO two-point function identity.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

19/21

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary 8 Outlook • Substituting one to the other, we may solve for

$$G_{NLO} = \frac{\lambda G_{LO}^3}{1 - 3\lambda^2 G_{LO}^4}$$

• Differentiating the LO two-point function relation $G_{LO} = 1 + \lambda^2 G_{LO}^4$ we get

$$\frac{\partial}{\partial \lambda}G_{LO} = \frac{2\lambda G_{LO}^4}{1 - 4\lambda^2 G_{LO}^3} = \frac{2\lambda G_{LO}^5}{1 - 3\lambda^2 G_{LO}^4}$$

where for the last equality we used the LO two-point function identity.

Thus, we get the expression

$$G_{NLO} = \frac{\lambda}{G_{LO}^2} \frac{\partial}{\partial \lambda^2} G_{LO} \,,$$

which implies, together with $G_{LO} \propto \text{const.} + (1 - (\lambda^2/\lambda_c^2))^{1/2}$,

$$G_{NLO} \propto \left(1 - \frac{\lambda^2}{\lambda_c^2}\right)^{-1/2}$$

19/21

▲□▶▲□▶▲□▶▲□▶ □ のQ@

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook • We have from a Schwinger-Dyson equation the relation

$$G_{\rm NLO} = 1 - 4\lambda^2 \frac{\partial}{\partial \lambda^2} \mathcal{F}_{\rm NLO}$$

for the connected two-point function G_{NLO} and the free energy \mathcal{F}_{NLO} .

Critical behavior of the NLO free energy:

$$\mathcal{F}_{
m NLO} \propto \left(1 - rac{\lambda^2}{\lambda_c^2}
ight)^{2 - \gamma_{
m NLO}} \,, \quad ext{where} \quad \gamma_{
m NLO} = 3/2 \,.$$

- Thus we find the same critical value of the coupling constant for the NLO series as for the LO series. Nevertheless, one has a distinct value for the NLO susceptibility exponent.
- Such behavior is indicative of the existence of a **double-scaling limit** also for the multi-orientable tensor model.

Summary & outlook

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large N expansion

Multiorientable tensor model

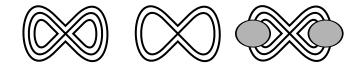
LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- All next-to-leading order vacuum graphs of the multi-orientable random tensor model arise from insertions of melonic 2-point subgraphs into the double-tadpole graph.
- The next-to-leading order free energy has the same critical coupling constant as the leading order free energy, and a critical exponent 3/2.



Summary & outlook

NLO of MO tensor model

Matti Raasakka

Outline

History & Motivation

Tensor models and the large *N* expansion

Multiorientable tensor model

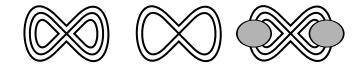
LO in 1/N for the MO model

NLO graphs for the MO model

NLO series of the MO model

Summary & Outlook

- All next-to-leading order vacuum graphs of the multi-orientable random tensor model arise from insertions of melonic 2-point subgraphs into the double-tadpole graph.
- The next-to-leading order free energy has the same critical coupling constant as the leading order free energy, and a critical exponent 3/2.



- This indicates a double-scaling limit also for the multi-orientable model. What about higher orders?
- In higher orders deviations from the colored model are enhanced. How to classify generic multi-orientable graphs without the convenience of color labels?
- Can one further loosen up the restrictions on the tensor graphs and retain control over the large *N* expansion? Is there a motivation?

イロト 不良 とくほ とくほう 二日