Primitive point packing

(a knapsack problem in the integer lattice)

General question: what is the complexity of linear programming?

Smale's 9th problem: can linear programming be solved with a strongly polynomial algorithm?

Algorithmic, Combinatorial, and Geometric aspects of Linear Optimization

Pivoting algorithms:

$$\frac{21}{20}(n-d) \le \Delta(d,n) \le (n-d)^{\log_2 O(d/\log_2(d))}$$

Upper bound: Kalai–Kleitman (1992), ..., Sukegawa (2019). Lower bound: Santos (2012).

Interior point methods:

A large class of polynomial interior point methods are not strongly polynomial: Allamigeon–Benchimol–Gaubert–Joswig (2018)

A lattice polytope is a polytope (= a bounded polyhedron) whose vertices belong to \mathbb{Z}^d .

Instead of *n*, we fix an integer *k* and study the lattice polytopes contained in $[0, k]^d$.

Question: what is the largest possible diameter of a lattice poytope contained in the hypercube $[0, k]^d$? We denote this diameter by $\delta(d, k)$.

Theorem (Naddef, 1989): $\delta(d, 1) = d$.

Theorem (Thiele, 1991, Acketa–Žunić 1995):
$$\lim_{k \to \infty} \frac{\delta(2,k)}{k^{2/3}} = \frac{6}{(2\pi)^{2/3}}.$$

Theorem (Kleinschmid–Onn, 1992): $\delta(d, k) \leq kd$.

A lattice polytope is a polytope (= a bounded polyhedron) whose vertices belong to \mathbb{Z}^d .

Instead of *n*, we fix an integer *k* and study the lattice polytopes contained in $[0, k]^d$.

Question: what is the largest possible diameter of a lattice poytope contained in the hypercube $[0, k]^d$? We denote this diameter by $\delta(d, k)$.

Theorem (Del Pia-Michini, 2016): if $k \ge 2$, then $\delta(d, k) \le kd - \left\lfloor \frac{d}{2} \right\rfloor$.

Theorem (Deza-P, 2018): if $k \ge 3$, then $\delta(d, k) \le kd - \left|\frac{2}{3}d\right| - (k-3)$.

All the known values of $\delta(d, k)$

Naddef, 1989 Thiele, 1991, Acketa-Žunić 1995, Deza-Manoussakis-Onn, 2018 $\delta(d,2) = |3d/2|$ Del Pia-Michini, 2016 Deza-P, 2018 Chadder-Deza, 2020 $\delta(3,4) = 7, \ \delta(3,5) = 9$ Deza-Deza-Guan-P. 2020 $\delta(3,6) = \delta(5,3) = 10$ P-Rakotonarivo, 2019

Two of the nine (up to symmetry) lattice polytopes of diameter 6 contained in the cube [0,3]³... among 332 335 207 073.

 $\delta(d,1) = d$

 $\delta(4,3) = 8$

A zonotope is a Minkowski sum of line segments. Denote by $\delta_z(d, k)$ the largest possible diameter of a lattice zonotope contained in $[0, k]^d$.

Theorem (Deza–Manoussakis–Onn, 2018):

$$\delta_z(d,k) \geq \left\lfloor rac{(k+1)d}{2}
ight
floor$$
 when $k < 2d$.

Conjecture (Deza-Manoussakis-Onn, 2018):

$$\delta(d,k) = \delta_z(d,k).$$

A zonotope is a Minkowski sum of line segments. Denote by $\delta_z(d, k)$ the largest possible diameter of a lattice zonotope contained in $[0, k]^d$.

Theorem (Deza–Manoussakis–Onn, 2018):

$$\delta_z(d,k) \geq \left\lfloor rac{(k+1)d}{2}
ight
floor$$
 when $k < 2d$.

Conjecture (Deza-Manoussakis-Onn, 2018):

$$\delta(d,k) = \delta_z(d,k).$$

Primitive point packing

(a knapsack problem in the integer lattice)

Primitive point packing

(a knapsack problem in the integer lattice)

select, such that $\kappa \leq k$?

Asymptotic estimates

Theorem (Thiele, 1991, Acketa-Žunić 1995):
$$\lim_{k \to \infty} \frac{\delta(2,k)}{k^{2/3}} = \frac{6}{(2\pi)^{2/3}}.$$

But, when d > 2 and k grows large,

?? $\leq \delta(d, k) \leq k(d - 1)$ (minus a term that does not depend on k).

Theorem (Deza-P-Sukegawa, 2020): For any fixed d,

$$\lim_{k \to \infty} \frac{\delta_z(d,k)}{k^{\frac{d}{d+1}}} = \left(\frac{2^{d-1}(d+1)^d}{d!\zeta(d)}\right)^{\frac{1}{d+1}}$$

Theorem (Deza-P-Sukegawa, 2020): If \mathcal{X}_p is the set of the primitive points (whose first non-zero coordinate is positive) contained in the ball B(d, p) for the 1-norm centered at O and of radius p, then

$$|\mathcal{X}_p| = \delta_z(d, \kappa_p).$$

Moreover, \mathcal{X}_p is the unique such set!

A formula for $\delta_z(d, k)$

$$\# \mathsf{PP} \text{ in } S(d,i) = \sum_{j=1}^d 2^j \binom{d}{j} c_\psi(i,j)$$

 $2^{j} \binom{d}{j}$ is the number of *j*-dimensional faces of a *d*-dimensional cross-polytope and $c_{\psi}(i,j)$ the number of compositions of *i* into *j* relatively prime integers.

A formula for $\delta_z(d, k)$

Proposition (Deza-P, 2020):
$$c_{\psi}(p, d) = \frac{1}{(d-1)!} \sum_{i=1}^{d} s(d, i) J_{i-1}(p).$$

In this expression, s(d, i) are the Stirling numbers of the first kind and $J_i(p)$ is Jordan's totient function. Both be computed efficiently:

$$J_i(p) = p^i \prod_{q|p} \left(1 - \frac{1}{q^i}\right), \text{ where } q \text{ ranges over prime numbers.}$$

$$s(d+1, i) = -ds(d, i) + s(d, i-1) \text{ with } \begin{cases} s(d, d) = 1 \text{ for all } d, \\ s(d, 0) = 0 \text{ when } d > 0. \end{cases}$$

Theorem (Deza-P, 2020):

$$\delta_z(d,k) = \frac{1}{2} \sum_{i=1}^p \sum_{j=1}^d \frac{2^j}{(j-1)!} \binom{d}{j} \sum_{m=1}^j s(j,m) J_{m-1}(i)$$

when, for some positive integer p,

$$k = \kappa_p = \frac{1}{2d} \sum_{i=1}^p \sum_{j=1}^d \frac{i2^j}{(j-1)!} \binom{d}{j} \sum_{m=1}^j s(j,m) J_{m-1}(i)$$

A formula for $\delta_z(d, k)$

What happens between κ_{p-1} and κ_p ?

- (1) Can we only add primitive points of 1-norm p?
- (2) If yes, each additional point increases κ by p/d on average.
- (3) In this case, is it a (discrete) straight line of slope p/d?
- (4) Is there sometimes unicity between κ_{p-1} and κ_p ?

 $(1) \rightarrow$ not always, $(3) \rightarrow$ almost, but on two parallel lines, $(4) \rightarrow$ never.

A formula for $\delta_z(d, k)$

Consider the map $k\mapsto \lambda(d,k)$ such that, when $\kappa_{p-1} < k < \kappa_p$,

$$\frac{\lambda(d,k)-\delta_z(d,\kappa_{p-1})}{k-\kappa_{p-1}}=p/d.$$

Theorem (Deza-P, 2020): For any fixed d, the maps $k \mapsto \delta_z(d, k)$ and $k \mapsto \lfloor \lambda(d, k) \rfloor$ coincide, except on a subset \mathbb{E} of $\mathbb{N} \setminus \{0\}$ such that

$$\lim_{k\to\infty}\frac{|\mathbb{E}\cap[1,k]|}{k^{1/(d-1)}}=0.$$

Moreover, $k \mapsto \delta_z(d,k)$ coincides on \mathbb{E} with $k \mapsto \lfloor \lambda(d,k) \rfloor - 1$.

The exceptions only occur for values of k such that $\kappa_{p-1} < k < \kappa_p$ where d is a proper divisor of p (at most twice in that range when d > 2.)

In fact,
$$\lim_{k \to \infty} \frac{\mathbb{E} \cap [1,k]}{k^{1/(d+1)}} = cte \ (d>2) \ \text{and} \ \lim_{k \to \infty} \frac{\mathbb{E} \cap [1,k]}{k^{2/3}} = cte' \ (d=2)$$