## Primitive point packing

(a knapsack problem in the integer lattice)

Lionel Pournin, Université Paris 13
joint work with
Antoine Deza, McMaster University

Find $x$ in $\mathbb{R}^{d}$ that maximizes

$$
z=c \cdot x
$$

and satisfies

$$
A x \leq b
$$

where $b$ is in $\mathbb{R}^{n}, c$ in $\mathbb{R}^{d}$, and $A$ is a $n \times d$ matrix.

General question: what is the complexity of linear programming?

Smale's 9th problem: can linear programming be solved with a strongly polynomial algorithm?

Algorithmic, Combinatorial, and

## Geometric aspects of Linear Optimization



Pivoting algorithms:

$$
\frac{21}{20}(n-d) \leq \Delta(d, n) \leq(n-d)^{\log _{2} O\left(d / \log _{2}(d)\right)}
$$

Upper bound: Kalai-Kleitman (1992), ..., Sukegawa (2019). Lower bound: Santos (2012).

Interior point methods:
A large class of polynomial interior point methods are not strongly polynomial: Allamigeon-Benchimol-Gaubert-Joswig (2018)

## Lattice polytopes

A lattice polytope is a polytope ( $=$ a bounded polyhedron) whose vertices belong to $\mathbb{Z}^{d}$.

Instead of $n$, we fix an integer $k$ and study the lattice polytopes contained in $[0, k]^{d}$.

Question: what is the largest possible diameter of a lattice poytope contained in the hypercube $[0, k]^{d}$ ? We denote this diameter by $\delta(d, k)$.


Theorem (Naddef, 1989): $\delta(d, 1)=d$.

$$
\text { Theorem (Thiele, 1991, Acketa-Žunić 1995): } \lim _{k \rightarrow \infty} \frac{\delta(2, k)}{k^{2 / 3}}=\frac{6}{(2 \pi)^{2 / 3}} \text {. }
$$

Theorem (Kleinschmid-Onn, 1992): $\delta(d, k) \leq k d$.

## Lattice polytopes

A lattice polytope is a polytope ( $=$ a bounded polyhedron) whose vertices belong to $\mathbb{Z}^{d}$.

Instead of $n$, we fix an integer $k$ and study the lattice polytopes contained in $[0, k]^{d}$.

Question: what is the largest possible diameter of a lattice poytope contained in the hypercube $[0, k]^{d}$ ? We denote this diameter by $\delta(d, k)$.


Theorem (Del Pia-Michini, 2016): if $k \geq 2$, then $\delta(d, k) \leq k d-\left\lceil\frac{d}{2}\right\rceil$.

Theorem (Deza-P, 2018): if $k \geq 3$, then $\delta(d, k) \leq k d-\left\lceil\frac{2}{3} d\right\rceil-(k-3)$.

## Lattice polytopes

| $k$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| 2 | 2 | 3 | 4 | 4 | 5 | 6 | 6 | 7 | 8 | $\cdots$ |  |
| 3 | 3 | 4 | 6 | 7 | 9 | 10 |  |  |  |  |  |
| 4 | 4 | 6 | 8 |  |  |  |  |  |  |  |  |
| 5 | 5 | 7 | 10 |  |  |  |  |  |  |  |  |
| $\vdots$ | $\vdots$ | $\vdots$ |  |  |  |  |  |  |  |  |  |
| $d$ | $d$ | $\left\lfloor\frac{3}{2} d\right\rfloor$ |  |  |  |  |  |  |  |  |  |

$\uparrow$
All the known values of $\delta(d, k)$
Naddef, 1989
Thiele, 1991, Acketa-Žunić 1995, Deza-Manoussakis-Onn, 2018
Del Pia-Michini, 2016
Deza-P, 2018
Chadder-Deza, 2020
Deza-Deza-Guan-P, 2020
P-Rakotonarivo, 2019

$\uparrow$
Two of the nine (up to symmetry) lattice polytopes of diameter 6 contained in the cube $[0,3]^{3} \ldots$ among 332335207073.

## Lattice polytopes



Minkowski sum

A zonotope is a Minkowski sum of line segments. Denote by $\delta_{z}(d, k)$ the largest possible diameter of a lattice zonotope contained in $[0, k]^{d}$.

Theorem (Deza-Manoussakis-Onn, 2018):

$$
\delta_{z}(d, k) \geq\left\lfloor\frac{(k+1) d}{2}\right\rfloor \text { when } k<2 d
$$

Conjecture (Deza-Manoussakis-Onn, 2018):

$$
\delta(d, k)=\delta_{z}(d, k)
$$



## Lattice polytopes



A zonotope is a Minkowski sum of line segments. Denote by $\delta_{z}(d, k)$ the largest possible diameter of a lattice zonotope contained in $[0, k]^{d}$.

Theorem (Deza-Manoussakis-Onn, 2018):

$$
\delta_{z}(d, k) \geq\left\lfloor\frac{(k+1) d}{2}\right\rfloor \text { when } k<2 d
$$

Conjecture (Deza-Manoussakis-Onn, 2018):

$$
\delta(d, k)=\delta_{z}(d, k)
$$



## Primitive point packing

(a knapsack problem in the integer lattice)
The diameter $\delta(Z)$ of a zonotope is the number of its generators.

The Zonotope $Z$ is contained in $[0, \kappa(Z)]^{d}$ where $\kappa(Z)$ is the largest coordinate of the sum of its generators (thought of as vectors).


Objects $\rightarrow$ vectors from $\mathbb{Z}^{d}$.
Capacity $\rightarrow$ the largest coordinate $\kappa$ of the sum of the selected vectors.

How many such vectors can we select under the requirement that $\kappa \leq k$ ?


## Primitive point packing

(a knapsack problem in the integer lattice)
The diameter $\delta(Z)$ of a zonotope is the number of its generators.

The Zonotope $Z$ is contained in $[0, \kappa(Z)]^{d}$ where $\kappa(Z)$ is the largest coordinate of the sum of its generators (thought of as vectors).


Objects $\rightarrow$ primitive vectors whose first non-zero coordinate is positive. Capacity $\rightarrow$ the largest coordinate $\kappa$ of the sum of the absolute value of the selected vectors.

How many primitive vectors can we select, such that $\kappa \leq k$ ?


## Asymptotic estimates

Theorem (Thiele, 1991, Acketa-Žunić 1995): $\lim _{k \rightarrow \infty} \frac{\delta(2, k)}{k^{2 / 3}}=\frac{6}{(2 \pi)^{2 / 3}}$.
But, when $d>2$ and $k$ grows large,
$? ? \leq \delta(d, k) \leq k(d-1)$ (minus a term that does not depend on $k$ ).
Theorem (Deza-P-Sukegawa, 2020): For any fixed $d$,

$$
\lim _{k \rightarrow \infty} \frac{\delta_{z}(d, k)}{k^{\frac{d}{d+1}}}=\left(\frac{2^{d-1}(d+1)^{d}}{d!\zeta(d)}\right)^{\frac{1}{d+1}}
$$



Theorem (Deza-P-Sukegawa, 2020): If $\mathcal{X}_{p}$ is the set of the primitive points (whose first non-zero coordinate is positive) contained in the ball $B(d, p)$ for the 1 -norm centered at $O$ and of radius $p$, then

$$
\left|\mathcal{X}_{p}\right|=\delta_{z}\left(d, \kappa_{p}\right)
$$

Moreover, $\mathcal{X}_{p}$ is the unique such set!

## A formula for $\delta_{z}(d, k)$



Denote by $S(d, i)$ the boundary of $B(d, i)$.

$$
\begin{aligned}
\left|\mathcal{X}_{p}\right| & =\frac{1}{2} \# \mathrm{PP}^{\star} \text { in } B(d, p) \\
& =\frac{1}{2} \sum_{i=1}^{p} \# \mathrm{PP} \text { in } S(d, i) \\
\kappa_{p} & =\frac{1}{2 d} \sum_{i=1}^{p} i \# \mathrm{PP} \text { in } S(d, i)
\end{aligned}
$$

*PP stands for "primitive points"


$$
\text { \#PP in } S(d, i)=\sum_{j=1}^{d} 2^{j}\binom{d}{j} c_{\psi}(i, j)
$$

$2^{j}\binom{d}{j}$ is the number of $j$-dimensional faces of a $d$ dimensional cross-polytope and $c_{\psi}(i, j)$ the number of compositions of $i$ into $j$ relatively prime integers.

## A formula for $\delta_{z}(d, k)$

Proposition (Deza-P, 2020): $c_{\psi}(p, d)=\frac{1}{(d-1)!} \sum_{i=1}^{d} s(d, i) J_{i-1}(p)$.
In this expression, $s(d, i)$ are the Stirling numbers of the first kind and $J_{i}(p)$ is Jordan's totient function. Both be computed efficiently:

$$
\begin{gathered}
J_{i}(p)=p^{i} \prod_{q \mid p}\left(1-\frac{1}{q^{i}}\right), \text { where } q \text { ranges over prime numbers. } \\
s(d+1, i)=-d s(d, i)+s(d, i-1) \text { with }\left\{\begin{array}{l}
s(d, d)=1 \text { for all } d \\
s(d, 0)=0 \text { when } d>0 .
\end{array}\right.
\end{gathered}
$$

Theorem (Deza-P, 2020):

$$
\delta_{z}(d, k)=\frac{1}{2} \sum_{i=1}^{p} \sum_{j=1}^{d} \frac{2^{j}}{(j-1)!}\binom{d}{j} \sum_{m=1}^{j} s(j, m) J_{m-1}(i)
$$

when, for some positive integer $p$,

$$
k=\kappa_{p}=\frac{1}{2 d} \sum_{i=1}^{p} \sum_{j=1}^{d} \frac{i 2^{j}}{(j-1)!}\binom{d}{j} \sum_{m=1}^{j} s(j, m) J_{m-1}(i)
$$

## A formula for $\delta_{z}(d, k)$



For fixed $d$, our point packing problem is solved (uniquely)

- at $\kappa_{p-1}$ by the set of the primitive points of 1-norm $p-1$, ${ }^{\star}$
- at $\kappa_{p}$ by the set of the primitive points of 1-norm $p$.
* whose first non-zero coordinate is positive.

What happens between $\kappa_{p-1}$ and $\kappa_{p}$ ?
(1) Can we only add primitive points of 1 -norm $p$ ?
(2) If yes, each additional point increases $\kappa$ by $p / d$ on average.
(3) In this case, is it a (discrete) straight line of slope $p / d$ ?
(4) Is there sometimes unicity between $\kappa_{p-1}$ and $\kappa_{p}$ ?
(1) $\rightarrow$ not always, (3) $\rightarrow$ almost, but on two parallel lines, (4) $\rightarrow$ never.

## A formula for $\delta_{z}(d, k)$

Consider the map $k \mapsto \lambda(d, k)$ such that, when $\kappa_{p-1}<k<\kappa_{p}$,

$$
\frac{\lambda(d, k)-\delta_{z}\left(d, \kappa_{p-1}\right)}{k-\kappa_{p-1}}=p / d .
$$

Theorem (Deza-P, 2020): For any fixed $d$, the maps $k \mapsto \delta_{z}(d, k)$ and $k \mapsto\lfloor\lambda(d, k)\rfloor$ coincide, except on a subset $\mathbb{E}$ of $\mathbb{N} \backslash\{0\}$ such that

$$
\lim _{k \rightarrow \infty} \frac{|\mathbb{E} \cap[1, k]|}{k^{1 /(d-1)}}=0
$$

Moreover, $k \mapsto \delta_{z}(d, k)$ coincides on $\mathbb{E}$ with $k \mapsto\lfloor\lambda(d, k)\rfloor-1$.
The exceptions only occur for values of $k$ such that $\kappa_{p-1}<k<\kappa_{p}$ where $d$ is a proper divisor of $p$ (at most twice in that range when $d>2$.)

In fact, $\lim _{k \rightarrow \infty} \frac{\mathbb{E} \cap[1, k]}{k^{1 /(d+1)}}=c t e(d>2)$ and $\lim _{k \rightarrow \infty} \frac{\mathbb{E} \cap[1, k]}{k^{2 / 3}}=c t e^{\prime}(d=2)$

