Efficient Solutions for the λ-coloring Problem on Classes of Graphs

Daniel Posner (PESC - UFRJ)
PhD student - posner@cos.ufrj.br

Advisor: Márcia Cerioli

LIPN – Université Paris-Nord
29th november 2011
\[d(u, v) = \text{distance between } u \text{ and } v. \]

\[\text{diameter} = \max\{d(u, v) \mid u, v \in V(G)\} \]

\[\text{Ex: } d(u, v) = 3; \text{ diameter of the graph is 3}. \]
coloring of a graph $G = (V, E)$

$f: V \rightarrow \mathbb{N}^*$, such that

if $uv \in E$, then $f(u) \neq f(v)$
\(\lambda \)-coloring of a graph \(G = (V, E) \)

\[f : V \rightarrow \mathbb{N} \]

such that

- if \(uv \in E \), then \(|f(u) - f(v)| \geq 2 \),

- if \(\text{dist}(u, v) = 2 \), then \(f(u) \neq f(v) \)
Motivation
Motivation
Motivation

\[\chi(G) = 4 \]
Motivation

\[\lambda(G) = 9 \]
L(2,1)-coloring Problem

Instance: $G = (V, E), k \in \mathbb{N}$

Question: Is there an λ-coloring f of G with $f : V \rightarrow \{0, 1, ..., k\}$?

The minimum span is denoted λ
Examples

$\lambda = 5$

$\lambda(\text{Kn}) = 2n - 2$

$\lambda \geq \Delta + 1$
<table>
<thead>
<tr>
<th>Class</th>
<th>Comp.</th>
<th>Class</th>
<th>Comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>trees</td>
<td>P</td>
<td>diameter 2</td>
<td>$NP-c$</td>
</tr>
<tr>
<td>p-quasi trees</td>
<td>P</td>
<td>k fixed</td>
<td>$NP-c$</td>
</tr>
<tr>
<td>bipartite chain</td>
<td>P</td>
<td>proper interval</td>
<td>$Open$</td>
</tr>
<tr>
<td>bipartite planar</td>
<td>$NP-c$</td>
<td>permutation</td>
<td>$Open$</td>
</tr>
<tr>
<td>bipartite permutation</td>
<td>$Open$</td>
<td>regular grids</td>
<td>P</td>
</tr>
<tr>
<td>split</td>
<td>$NP-c$</td>
<td>cographs</td>
<td>P</td>
</tr>
<tr>
<td>split permutation</td>
<td>P</td>
<td>P4-tidy</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>graphs (q, q-4), q fixed</td>
<td>P</td>
</tr>
</tbody>
</table>
$\lambda = \Delta + 1 \text{ or } \Delta + 2$
[Griggs e Yeh 92] conjectured λ-col. of trees was NP-complete.

[Chang e Kuo 96] showed an $O(n^{4.5})$ algorithm.

[Hasunuma et al. 09] gave a linear time algorithm.

It is still open a structural characterization of trees.
$pv(G) = minimum\ number\ of\ disjoint\ paths$

$pv(G) = 3$
$\lambda(G)$ and $pv(G)$

[Griggs e Yeh 92]

$\lambda(G \land K_1) = n \iff G^c$ is hamiltonian

[Georges et al. 94]

$pv(G^c) \geq 2 \iff \lambda = n + pv(G^c) - 2$

$pv(G^c) = 1 \iff \lambda \leq n - 1$
A graph \(G \) is \((q, q-4)\) if each set of \(q \) vertices induces at most \(q - 4 \) P4's. [Babel e Olariu]

Ex.:
- \(q = 4 \) a.k.a. **cografos** (G is cograph \(\iff \) P4-free)
- \(q = 5 \) a.k.a. **P4-sparse**
- \(q = 7 \) superclass of **P4-lite** (P4-tidy and perfect)
Teo (Jamison e Olariu): If G is $(q, q-4)$, then:

(i) union of two $(q, q-4)$ graphs or;

(ii) join of two $(q, q-4)$ graphs or;

(iii) spider where the head is a $(q, q-4)$ graph or;

(iv) it has a separable p-component $H = (H_1, H_2)$,

$$|H| \leq q,$$

$$G[V \setminus H_2] = G[V \setminus H] \uparrow G[H_1],$$

$$G[V \setminus H_1] = G[V \setminus H] \cup G[H_2].$$
If \(G = (V, E) \) is a spider, then

\[V = S \cup K \cup R. \]

- \(S \) is a stable set.
- \(K \) is a clique,
- \(|S| = |K| \)

\[G[R \cup K] = G[R] \uplus G[K] \]

- bijective function \(f : S \rightarrow K \)

(a) edges: thin spider

(b) no edges: thick spider
Thin spider and Thick spider

(a)

(b)
Separable p-component
λ-coloring of union and join

λ-coloring of $G \cup H$

$\lambda = \max\{ \lambda(G), \lambda(H) \}$

λ-coloring $G \uplus H$

$\lambda = \lambda'(G) + \lambda'(H) + 2$
If G is thin spider with $|K| > 3$.

then $\lambda = \max\{ |R| - 1, \lambda(G[R]) \} + 2 |K|$

$|K| - 1 \in \{0, \ldots, 2|K| - 2\}$
If G is thick spider with $|K| \geq 3$

$$
\lambda = \begin{cases}
\lambda(G[R]) + 2 |K| & \text{if } \lambda(G[R]) \geq |R| + \left\lceil \frac{|K|}{2} \right\rceil - 2 \\
n + \left\lceil \frac{|K|}{2} \right\rceil - 2 & \text{otherwise}
\end{cases}
$$
If G has a separable p-component $H = (H_1, H_2)$, then

$$pv(G) = \min \left\{ \max_{\psi \in CH} \{ pv(G \setminus H) - |B_1(\psi)|, \left\lceil \frac{|B_3(\psi)|}{2} \right\rceil, 1 \} + |B_2(\psi)| \right\}$$
FPT (fixed parameter tractable) in \(q(G) \)

\[q(G) = \text{smallest } q \text{ for which } G \text{ is } (q, q-4) \text{ graph} \]

Algorithm FPT in \(q(G) \)

Linear algorithms for \((q, q-4) \text{ graphs}\) with \(q\) fixed

Ex: \(O(2^q n)\) or \(O(q^q n)\)
\[\lambda \text{-coloring of separable p-component} \]

Theorem If \(G \) is \((q, q-4)\) graph, \(q \) fixed, with a separable p-component then \(\lambda \) can be obtained in linear time.

Proof.

\(G^c \) is \((q, q-4)\) graph and \(H^c \) is a separable p-component.

If \(G \) has less than \(2q \) vertices, one can obtain \(\lambda \) in \(O(2q^{4q}) \).

Otherwise, \(pv(G^c) \) can be obtained in \(O(n) \), as \(|CH| \leq q^q \).
\begin{proof}

If \(d(u,v) \geq 3 \), then \(u, v \in H_1 \cup H_2 \).

\end{proof}
λ-coloring of separable p-component

Teo If G is $(q, q-4)$ graph, q fixed, with a separable p-component then λ can be obtained in linear time.

proof.

Let G' be obtained from G merging vertices in the same class.

If $pv(G^c) > 1$, then $\lambda(G') = n' + pv(G^c) - 2$ (Georges et al.)

If $pv(G^c) = 1$, then $\lambda(G') = n' - 1$ (use hamiltonian path.)
\textbf{λ-coloring of separable p-component}

Theorem If G is \((q, q-4)\) graph, \(q\) fixed, with a separable p-component then \(\lambda\) can be obtained in linear time.

Proof.

Assign the \textbf{same color} to the \textbf{merged vertices}.

For each \(O(q^q)\) possible \(G'\) one can obtain \(\lambda'\).

\(\lambda\) will be the \textbf{minimum} among all these \(\lambda'\).

Complexity: \(O(n \cdot 2q^{5q})\)
Example
Example
Example
Example
Example
Example

$G \setminus H$

H_1

H_2
Example

\[(G \setminus H)^C\]
Example

\[(G\setminus H)^C\]
Example

\[(G \setminus H)^C\]
Example
Example

\[G \setminus H \]

\[H_1 \]

\[H_2 \]

13

13
Example

G\H

H₁

H₂

5

5

5
Example
Interval graph: $G = \Omega(l)$
Comparability graph: \(\exists \) transitive orientation of the edges of the graph.

Cocomparability graph: \(G^c \) is a comparability graph.
Permutation graph: $G = \Omega(S)$
Split graph: $G = (V, E), V = S \cup K$.

- K is a clique
- S is a stable set
Split permutation graph: \(G \) is \textit{split} and \textit{permutation}.

[Brandstäd, Bang Le and Spinrad-99]
There are $\theta \left(\frac{4^n}{\sqrt{n}} \right)$ split permutation graphs.

Split permutation \subset clique Helly

Extended triangle

G is clique-Helly \iff every extended triangle of G has an universal vertex
Our work:

For a split permutation graph G,

$$\lambda(G) = \max\{ \lambda(G_R), \lambda(G_L) \}$$

$G_L = G \setminus S_R$

$G_R = G \setminus S_L$

$\lambda(G)$ can be computed in linear time.

$O(n^2)$ algorithm that obtain an λ-coloring with this span
split permutation graphs
∃ Chain ordering \(a_1 < a_2 < \ldots < a_{L+M} \) such that: \(N(a_1) \subseteq N(a_2) \subseteq \ldots \subseteq N(a_{L+M}) \)
\[\forall c \in S_M \Rightarrow K_L \subseteq N(c) \text{ or } K_R \subseteq N(c). \]
For a split permutation graph G, $\lambda(G) \geq \max\{\lambda(G_R), \lambda(G_L)\}$.

For a split permutation graph G_L, $\lambda(G_L) = n_L + pv(G_L^c) - 2$.

$diameter$ of G_L is 2

$\lambda(G_L) \geq \lambda(G_L)$.

G_L subgraph of G
\[\lambda(G) = \max\{\lambda(G_R), \lambda(G_L)\} \]
split permutation graphs

\[G^c \]

\[S_L, a+12, a+10, a+8 \]

\[S_M, a+6, a+4, a+3, a+1 \]

\[K_L, a, a+5, a+7, K_R \]

\[K_M, a+9, a+2 \]
Interval model has to be modified:

(a) Split permutation graphs

(b) Split permutation graphs

(c) Split permutation graphs
A linear-time algorithm to find $\lambda(G_R)$ and $\lambda(G_L)$.

For split permutation graphs $\lambda(G) = \max\{\lambda(G_R), \lambda(G_L)\}$.

This proof also gives a $O(n^2)$ algorithm to find an optimum λ-coloring of graphs on this class.
Griggs and Yeh Conjecture:

\[\lambda \leq \Delta^2 \]

only proved for a few classes of graphs,

and it is still open for bipartite graphs.

\[\lambda \leq \Delta^2 + \Delta - 2 \]
[Gonçalves 06]
<table>
<thead>
<tr>
<th>Class</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>diameter 2</td>
<td>$\Delta^2 [\text{Griggs and Yeh}]$</td>
</tr>
<tr>
<td>regular grids</td>
<td>$\Delta + 2 [\text{Calamoneri et al.}]$</td>
</tr>
<tr>
<td>cocomparability</td>
<td>$4\Delta - 1 [\text{Calamoneri et al.}]$</td>
</tr>
<tr>
<td>cograph</td>
<td>$n + \text{pv}(G^c) - 2 [\text{Chang e Kuo}], 2\Delta [\text{C. and P.}]$</td>
</tr>
<tr>
<td>planar</td>
<td>$2\Delta + 25 [\text{van den Heuvel and McGuinness}]$</td>
</tr>
<tr>
<td>bipartite permutation</td>
<td>$\text{wb}(G)+1 [\text{Araki}]$</td>
</tr>
<tr>
<td>weakly chordal</td>
<td>$\Delta^2 [\text{C. and P.}]$</td>
</tr>
<tr>
<td>split</td>
<td>$0.385\Delta^{1.5} + 2\Delta + \Delta^{0.5} - 2 [\text{C. and P.}]$</td>
</tr>
<tr>
<td>interval</td>
<td>$2\Delta [\text{Calamoneri et al.}]$</td>
</tr>
</tbody>
</table>