Collegium Uris Nov Eborac \rightarrow Rambo 'Jotformatiguc Oar is colors

Algebraic area enumeration for lattice paths

Work (mostly) with Stéphane Ouvry and (lately) Li Gan arXiv:1908.00990, 2103.15827, 2105.14042, 2107.10851, 2110.06235, 2110.09394

February 8, 2022

What's this talk really about?

- Exploring the combinatorics of various types of random walks
- Using approach that trades combinatorial ingenuity for algebraic dexterity
- Using physics perspective and results to derive combinatorial quantities
- Receiving feedback from combinatorics community

Basic setup

The basic playground: random walks on various lattices

- Sort them by length and area
- Package them in Generating (aka Partition) Functions

Basic setup

The basic playground: random walks on various lattices

- Sort them by length and area
- Package them in Generating (aka Partition) Functions

Basic steps and techniques

- Map process to a Matrix (Hamiltonian)
- Derive matrix-based expressions for generating functions
- Evaluate them using physics techniques (and bias):
-Exclusion statistics
-Bosonization
-Cluster coefficients

Basic setup

The basic playground: random walks on various lattices

- Sort them by length and area
- Package them in Generating (aka Partition) Functions

Basic steps and techniques

- Map process to a Matrix (Hamiltonian)
- Derive matrix-based expressions for generating functions
- Evaluate them using physics techniques (and bias):
-Exclusion statistics
-Bosonization
-Cluster coefficients
- See if either Mathematicians or Physicists care

Combinatorics Diffusion, Adsorption q-Hypergeometric Hofstadter butterflies functions Phase transitions

Types of paths

- Random walks on planar lattices

Square

Triangular

Honeycomb

Algebraic area can be positive or negative

- Forward-moving paths on lattices

Dyck meander

Case study on the plane: square lattice closed walks

Basic device: the "quantum torus"

- Associate steps in each direction with operators and consider the Hamiltonian

$$
\begin{aligned}
H & =u+u^{\dagger}+v \\
\uparrow & v \\
\uparrow & v^{\dagger}
\end{aligned}
$$

[Related to symbolic methods, (Flajolet \& Sedgewick)]

- If $\left\{u, u^{\dagger}, v, v^{\dagger}\right\}$ is a free algebra each monomial in H^{ℓ} represents a unique walk
- H^{ℓ} generates all walks of length ℓ from a fixed origin

Case study on the plane: square lattice closed walks

Basic device: the "quantum torus"

- Associate steps in each direction with operators and consider the Hamiltonian

$$
\begin{aligned}
& H=\underset{\rightarrow}{u}+u^{\dagger} \\
& \leftarrow \underset{\downarrow}{v}+\underset{\downarrow}{v^{\dagger}} \\
& \downarrow
\end{aligned}
$$

[Related to symbolic methods, (Flajolet \& Sedgewick)]

- If $\left\{u, u^{\dagger}, v, v^{\dagger}\right\}$ is a free algebra each monomial in H^{ℓ} represents a unique walk
- H^{ℓ} generates all walks of length ℓ from a fixed origin
- If, instead, we impose

$$
\begin{gathered}
v v^{\dagger}=v^{\dagger} v=u u^{\dagger}=u^{\dagger} u=1, \quad v u=\mathrm{Q} u v \\
\text { then } H^{\ell}=\sum_{A} C_{\ell ; m, n}(A) \mathrm{Q}^{A} v^{n} u^{m}
\end{gathered}
$$

$C_{\ell ; m, n}(A)$: \# walks from $(0,0)$ to (m, n) of length ℓ and area A between the walk and horizontal axis
$\underset{\hookrightarrow}{\leftrightarrows}=v^{\dagger} u^{\dagger} v u=\mathrm{Q}$ elementary plaquette

The total number of closed walks of area A is $C_{\ell ; 0,0}(A)$ and the area generating functions is

$$
G_{\ell}(\mathrm{Q})=\sum_{A} C_{\ell ; 0,0} Q^{A}
$$

- Need to extract term $v^{0} u^{0}$ in H^{ℓ}
- Define the "trace" mapping

$$
\begin{aligned}
\operatorname{Tr}\left(v^{n} u^{m}\right) & =\delta_{n, 0} \delta_{m, 0} \\
\text { Then } \quad G_{\ell}(\mathrm{Q}) & =\operatorname{Tr} H^{\ell}
\end{aligned}
$$

- Main task: calculate the formal trace $\operatorname{Tr} H^{\ell}$ effectively

Matrices to the rescue

- For $\mathrm{Q}=e^{i \phi} u, v$ can be realized as unitary operators
- If $\mathrm{Q}=e^{i 2 \pi p / q}$ (p, q coprime) the algebra $v u=\mathrm{Q} u v$ has a single q-dimensional unitary irreducible representation

$$
\begin{aligned}
& u=e^{i k_{x}}\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & \mathrm{Q} & 0 & \cdots & 0 & 0 \\
0 & 0 & \mathrm{Q}^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{Q}^{q-2} & 0 \\
0 & 0 & 0 & \cdots & 0 & \mathrm{Q}^{q-1}
\end{array}\right) \text { ("clock" matrix) } \\
& v=e^{i k_{y}}\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 \cdots & 0 & 0 \\
0 & 0 & 1 & 0 \cdots & 0 & 0 \\
0 & 0 & 0 & 1 \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 \\
1 & 0 & 0 & 0 & \cdots & 0 \\
0
\end{array}\right) \text { ("shift" matrix) } \\
& \text { with Casimirs: } u^{q}=e^{i q k_{x}}, \quad v^{q}=e^{i q k_{y}}
\end{aligned}
$$

- Hamiltonian of an electron hopping on the square lattice in a constant normal magnetic field: Hofstadter model (1976)
- $p / q=\phi / \phi_{0}$ is the flux per lattice cell measured in units of the elementary flux quantum $\phi_{0}=\hbar / e$
- u, v are noncommuting "magnetic translation operators"
- Hamiltonian of an electron hopping on the square lattice in a constant normal magnetic field: Hofstadter model (1976)
- $p / q=\phi / \phi_{0}$ is the flux per lattice cell measured in units of the elementary flux quantum $\phi_{0}=\hbar / e$
- u, v are noncommuting "magnetic translation operators"
- The energy spectrum of the particle (eigenvalues of H) as a function of the flux becomes fractal: "Hofstadter butterfly"

Back to our purpose: $\operatorname{Tr} H^{\ell}$

The ordinary (matrix) trace of u, v is

$$
\operatorname{tr}\left(v^{n} u^{m}\right)=q \sum_{s, t=-\infty}^{\infty} e^{i s q k_{x}+i t q k_{y}} \delta_{m, s q} \delta_{n, t q}
$$

$$
\text { and for }|m|,|n|<q, \quad \operatorname{tr}\left(v^{n} u^{m}\right)=\delta_{m, 0} \delta_{n, 0}
$$

So for $\ell<q: \quad \operatorname{Tr} H^{\ell}=\frac{1}{q} \operatorname{tr} H^{\ell}$
(For $\ell \geq q: \operatorname{tr} H^{\ell}$ includes paths closing on a q-periodic lattice)

Back to our purpose: $\operatorname{Tr} H^{\ell}$

The ordinary (matrix) trace of u, v is

$$
\operatorname{tr}\left(v^{n} u^{m}\right)=q \sum_{s, t=-\infty}^{\infty} e^{i s q k_{x}+i t q k_{y}} \delta_{m, s q} \delta_{n, t q}
$$

and for $|m|,|n|<q, \quad \operatorname{tr}\left(v^{n} u^{m}\right)=\delta_{m, 0} \delta_{n, 0}$
So for $\ell<q: \quad \operatorname{Tr} H^{\ell}=\frac{1}{q} \operatorname{tr} H^{\ell}$
(For $\ell \geq q$: $\operatorname{tr} H^{\ell}$ includes paths closing on a q-periodic lattice) Define the secular determinant

$$
\begin{aligned}
& \quad \operatorname{det}(1-z H)=1-z \operatorname{tr} H+\frac{z^{2}}{2}\left[(\operatorname{tr} H)^{2}-\operatorname{tr} H^{2}\right]+\cdots \\
& \text { so } \quad \ln \operatorname{det}(1-z H)=\operatorname{tr} \ln (1-z H)=-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \operatorname{tr} H^{n}
\end{aligned}
$$

Finishing touch

- Automorphism $u \rightarrow-u v$ preserves algebra (more on that later)
- Hamiltonian becomes 2-paradiagonal (0 diagonal)
- Putting Casimirs $u^{q}=v^{q}=1$ the secular matrix becomes
$1-z H=\left(\begin{array}{cccccc}1 & (\mathrm{Q}-1) z & 0 & \cdots & 0 & 0 \\ \left(\frac{1}{\mathrm{Q}}-1\right) z & 1 & \left(\mathrm{Q}^{2}-1\right) z & \cdots & 0 & 0 \\ 0 & \left(\frac{1}{\mathrm{Q}^{2}}-1\right) z & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & \left(\mathrm{Q}^{q-1}-1\right) z \\ 0 & 0 & 0 & \cdots & \left(\frac{1}{\mathrm{Q}^{q-1}}-1\right) z & 1\end{array}\right)$
- $1-z H$ becomes special 3-diagonal

Save it in the fridge and move on to another type of walks

Case study of forward-moving walks: Dyck paths

$$
H=U V+V^{\dagger} U
$$

Case study of forward-moving walks: Dyck paths

$$
H=U V+V^{\dagger} U
$$

- No lattice points below 0 or $k \Rightarrow V^{k+1}=V^{\dagger^{k+1}}=0$
- V^{-1} does not exist;

Case study of forward-moving walks: Dyck paths

$$
H=U V+V^{\dagger} U
$$

- No lattice points below 0 or $k \Rightarrow V^{k+1}=V^{\dagger^{k+1}}=0$
- V^{-1} does not exist; $\mathrm{Q} \rightarrow q$ (real) and $(k+1) \times(k+1)$ matrices

$$
\begin{gathered}
U=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & q & 0 & \cdots & 0 & 0 \\
0 & 0 & q^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & q^{k-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & q^{k}
\end{array}\right), V=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 \cdots & 0 & 0 \\
0 & 0 & 1 & 0 \cdots & 0 & 0 \\
0 & 0 & 0 & 1 \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 \cdots & 0 & 1 \\
0 & 0 & 0 & 0 \cdots & 0 & 0
\end{array}\right) \\
V U=q U V, \quad V V^{\dagger}=1-|k\rangle\langle k|, \quad V^{\dagger} V=1-|0\rangle\langle 0|
\end{gathered}
$$

$$
H=q^{1 / 2}\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & q & 0 & \cdots & 0 & 0 \\
0 & q & 0 & q^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & q^{k-1} \\
0 & 0 & 0 & 0 & \cdots & q^{k-1} & 0
\end{array}\right)
$$

- "States" in $(k+1)$-dim space correspond to vertical position
- $\langle m| H|n\rangle=H_{m n}$: step from height m to n weighted by area
- Hamiltonian is the transition matrix of the path

$$
H=q^{1 / 2}\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & q & 0 & \cdots & 0 & 0 \\
0 & q & 0 & q^{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & q^{k-1} \\
0 & 0 & 0 & 0 & \cdots & q^{k-1} & 0
\end{array}\right)
$$

- "States" in $(k+1)$-dim space correspond to vertical position
- $\langle m| H|n\rangle=H_{m n}$: step from height m to n weighted by area
- Hamiltonian is the transition matrix of the path

Define full length and area generating function

$$
\begin{aligned}
G_{k, m n}(z, q) & =\sum_{\text {paths }} N(\ell, A ; m, n) z^{\ell} q^{A} \\
& =\sum_{\ell} z^{\ell}\langle m| H^{\ell}|n\rangle=\langle m|(1-z H)^{-1}|n\rangle
\end{aligned}
$$

(no secular determinant yet, but...)

$$
\ldots \text { Voilà! }\langle m|(1-z H)^{-1}|n\rangle=\frac{\operatorname{det}(1-z H)_{(m n)}}{\operatorname{det}(1-z H)} \quad \text { (mn-minor) }
$$

First real use of matrices: because of special structure of H, minors can be related to full secular determinant

Define $\mathcal{Z}_{k}(z, q)=\operatorname{det}(1-z H)[$ for $(k+1)-\operatorname{dim} H]$. Then

$$
G_{k, m n}(z, q)=z^{m-n} q^{\frac{m^{2}-n^{2}}{2}} \frac{\mathcal{Z}_{m-1}(z, q) \mathcal{Z}_{k-n-1}\left(z q^{n+1}, q\right)}{\mathcal{Z}_{k}(z, q)}
$$

...Voilà! $\langle m|(1-z H)^{-1}|n\rangle=\frac{\operatorname{det}(1-z H)_{(m n)}}{\operatorname{det}(1-z H)} \quad$ (mn-minor)
First real use of matrices: because of special structure of H, minors can be related to full secular determinant

Define $\mathcal{Z}_{k}(z, q)=\operatorname{det}(1-z H)[$ for $(k+1)-\operatorname{dim} H]$. Then

$$
G_{k, m n}(z, q)=z^{m-n} q^{\frac{m^{2}-n^{2}}{2}} \frac{\mathcal{Z}_{m-1}(z, q) \mathcal{Z}_{k-n-1}\left(z q^{n+1}, q\right)}{\mathcal{Z}_{k}(z, q)}
$$

Result for unrestricted $(k=\infty)$ excursions $(m=n=0)$ as a ratio $f(z q, q) / f(z, q)$ was known (Bousquet-Mélou, Bacher)
New result*/insight:

- Derivation for bounded meanders (k, m, n nontrivial)
- Identification of components as determinants
- Several (old and new) dualities and recursion relations algebraic manipulations instead of combinatorial relations

Physics-solving the secular determinant

Consider: $\quad \mathcal{Z}=\operatorname{det}\left(\begin{array}{cccccc}1 & z \alpha_{1} & 0 & \cdots & 0 & 0 \\ z \beta_{1} & 1 & z \alpha_{2} & \cdots & 0 & 0 \\ 0 & z \beta_{2} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & z \alpha_{k} \\ 0 & 0 & 0 & \cdots & z \beta_{k} & 1\end{array}\right)$
Consider: $\mathcal{Z}=\operatorname{det}\left(\begin{array}{cccccc}1 & z \alpha_{1} & 0 & \cdots & 0 & 0 \\ z \beta_{1} & 1 & z \alpha_{2} & \cdots & 0 & 0 \\ 0 & z \beta_{2} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & z \alpha_{k} \\ 0 & 0 & 0 & \cdots & z \beta_{k} & 1\end{array}\right)$

Basic observation: \mathcal{Z} is the grand canonical partition function of exclusion statistics-2 particles on energy levels $1,2, \ldots, k$ with spectral factors $s_{j}=e^{-\beta \epsilon_{j}}=\alpha_{j} \beta_{j}$ and fugacity $y=-z^{2}$

Square lattice walks: secular matrix gives spectral factors

$$
s_{j}=\left(Q^{j}-1\right)\left(\mathrm{Q}^{-j}-1\right)=4 \sin ^{2}(\pi j p / q)
$$

Mapping $\quad \operatorname{In} \operatorname{det}(1-z H)=-\sum_{n=1}^{\infty} \frac{z^{n}}{n} \operatorname{tr} H^{n}$
to (Grand potential) $\ln \mathcal{Z}=\sum_{n=1}^{\infty} y^{n} b_{n} \quad$ (cluster coefficients)
and calculating cluster coefficients for exclusion-2 particles, we get

$$
\begin{aligned}
& \operatorname{tr} H^{2 n}=\sum_{\substack{l_{1}, l_{2}, \ldots, l_{i} \\
\text { composition of } n}} c_{2}\left(l_{1}, l_{2}, \ldots, l_{i}\right) \sum_{j=1}^{k-i+1} s_{j}^{l_{1}} s_{j+1}^{l_{2}} \cdots s_{j+i-1}^{l_{i}} \\
& c_{2}\left(l_{1}, l_{2}, \ldots, l_{i}\right)=\frac{2 n}{l_{1}}\binom{l_{1}+l_{2}-1}{l_{2}}\binom{l_{2}+l_{3}-1}{l_{3}} \cdots\binom{l_{i-1}+l_{i}}{l_{i}}
\end{aligned}
$$

Compositions: ordered partitions (e.g., $3=2+1=1+2=1+1+1$), 2^{n-1} in all

Finally, expanding the trigo sum and extracting its Q^{A} part, we obtain the number of walks of length $\ell=2 n$ and area A

$$
\begin{aligned}
& C_{2 n}(A)=\sum_{\substack{l_{1}, l_{2}, \ldots, l_{j} \\
\text { composition of } \mathrm{n}}} \sum_{k_{3}=0}^{2 / 3} \sum_{k_{4}=0}^{2 /_{4}} \cdots \sum_{k_{j}=0}^{2 l_{j}} \\
& \quad \prod_{i=3}^{j}\binom{2 I_{i}}{k_{i}}\left(\begin{array}{l}
I_{1}+A+\sum_{i=3}^{j}(i-2)\left(k_{i}-l_{i}\right)
\end{array}\right)\binom{2 l_{2}}{I_{2}-A-\sum_{i=3}^{j}(i-1)\left(k_{i}-l_{i}\right)}
\end{aligned}
$$

(Ouvry \& Wu, based on earlier work by Kreft)

- Explicit, but quite complicated
- Computational complexity increases with $\ell=2 n$
- Perhaps other expressions available?
- $\operatorname{tr} H^{2 n}$ for special values of p, q leads to sequences of Apéry-like numbers

Dyck paths: Secular determinant gives spectral factors $s_{j}=q^{2 j}$

- $s_{j}=e^{-\beta \epsilon_{j}}$: equidistant spectrum (harmonic oscillator)
- Full machinery of SM/QM and bosonization at play

$$
\mathcal{Z}_{k}=\sum_{N=0}^{\lfloor(k+1) / 2\rfloor} y^{N} Z_{k, N}^{(2)}
$$

Dyck paths: Secular determinant gives spectral factors $s_{j}=q^{2 j}$

- $s_{j}=e^{-\beta \epsilon_{j}}$: equidistant spectrum (harmonic oscillator)
- Full machinery of SM/QM and bosonization at play

$$
\begin{aligned}
\mathcal{Z}_{k} & =\sum_{N=0}^{\lfloor(k+1) / 2\rfloor} y^{N} Z_{k, N}^{(2)} \\
\text { (bosonization) } & =\sum_{N=0}^{\lfloor(k+1) / 2\rfloor}\left(-z^{2}\right)^{N} q^{N(N-1)} Z_{k-2(N-1), N}^{B} \\
\text { where } \quad Z_{k, N}^{B} & =\prod_{j=1}^{k-1} \frac{1-q^{j+N}}{1-q^{j}}=\prod_{j=1}^{N} \frac{1-q^{j+k-1}}{1-q^{j}} \\
& =\frac{[k+N-1]!_{q}}{[N]!_{q}[k-1]!_{q}}=\binom{k+N-1}{N}_{q}
\end{aligned}
$$

Dyck paths: Secular determinant gives spectral factors $s_{j}=q^{2 j}$

- $s_{j}=e^{-\beta \epsilon_{j}}$: equidistant spectrum (harmonic oscillator)
- Full machinery of SM/QM and bosonization at play

$$
\begin{aligned}
\mathcal{Z}_{k} & =\sum_{N=0}^{\lfloor(k+1) / 2\rfloor} y^{N} Z_{k, N}^{(2)} \\
\text { (bosonization) } & =\sum_{N=0}^{\lfloor(k+1) / 2\rfloor}\left(-z^{2}\right)^{N} q^{N(N-1)} Z_{k-2(N-1), N}^{B} \\
\text { where } \quad Z_{k, N}^{B} & =\prod_{j=1}^{k-1} \frac{1-q^{j+N}}{1-q^{j}}=\prod_{j=1}^{N} \frac{1-q^{j+k-1}}{1-q^{j}} \\
& =\frac{[k+N-1]!q}{[N]!_{q}[k-1]!_{q}}=\binom{k+N-1}{N}_{q} \\
\text { so } \quad \mathcal{Z}_{k}(z, q) & =\sum_{N=0}^{\lfloor(k+1) / 2\rfloor}\left(-z^{2}\right)^{N} q^{N(N-1)}\binom{k-N+1}{N}_{q}
\end{aligned}
$$

$\mathcal{Z}_{k}(z, q)$ is a q-deformed Fibonacci polynomial in z^{2}

Summarizing, full length and area Dyck paths generating function

$$
\begin{aligned}
G_{k, m n}(z, q) & =z^{m-n} q^{\frac{m^{2}-n^{2}}{2}} \frac{\mathcal{Z}_{m-1}(z, q) \mathcal{Z}_{k-n-1}\left(z q^{n+1}, q\right)}{\mathcal{Z}_{k}(z, q)} \\
\mathcal{Z}_{k}(z, q) & =\sum_{N=0}^{\lfloor(k+1) / 2\rfloor} q^{N(N-1)} \prod_{j=1}^{N}\left(-z^{2}\right) \frac{1-q^{j+k-2 N+1}}{1-q^{j}}
\end{aligned}
$$

We can also derive

$$
\begin{aligned}
& \qquad \ln G_{k, m n}(z, q)=(n-m) \ln z+\frac{\left(n^{2}-m^{2}\right)}{2} \ln q+\sum_{\ell=1}^{\infty} \frac{z^{\ell}}{\ell} p_{k, m n ; \ell}(q) \\
& \text { with } \quad p_{k, m n ; \ell}=\sum_{\substack{l_{1}, l_{2}, \ldots, l_{j} ; j \leq k \\
\text { composition of } n}} c_{2}\left(l_{1}, l_{2}, \ldots, l_{j}\right) q^{\sum_{i=1}^{j}(i-1) l_{i}} \sum_{r=\max (m-j, 0)}^{\min (k-j, n)} q^{r \ell}
\end{aligned}
$$

"Close" to $\langle m| H^{\ell}|n\rangle\left(\right.$ cf. $\left.\ln \mathcal{Z}=\ln (1-z H)=-\sum_{\ell} \operatorname{tr} H^{\ell} / \ell\right)$ but...

Other walks, other statistics: a taste

- What about other types of (planar or forward-moving) walks?
- Why only exclusion-2? What about other statistics?

Other walks, other statistics: a taste

- What about other types of (planar or forward-moving) walks?
- Why only exclusion-2? What about other statistics?

The two questions are related.

Other walks, other statistics: a taste

- What about other types of (planar or forward-moving) walks?
- Why only exclusion-2? What about other statistics?

The two questions are related.
Consider the off-diagonal matrix H_{g} with matrix elements

$$
\left(H_{g}\right)_{i j}=\alpha_{i} \delta_{i+1, j}+\beta_{i} \delta_{i, j+g-1}, \quad 0 \leq i, j \leq k
$$

One side-diagonal above the diagonal, the other $g-1$ steps below it

$$
\text { Basic fact: } \quad \mathcal{Z}_{g}\left(y_{g}\right)=\operatorname{det}\left(1-z H_{g}\right)
$$

- $\mathcal{Z}\left(y_{g}\right)$ grand partition function of exclusion- g particles
- Fugacity $y_{g}=-z^{g}$
- Spectral factors $s_{i}=\beta_{i} \alpha_{i} \alpha_{i+1} \cdots \alpha_{i+g-2}$
- $g=2$ reduces to previous cases (planar \& Dyck walks)

(A wealth of) Examples

Planar walks:

$$
H_{g}=A(u) v+v^{1-g} B(u) \Rightarrow \alpha_{i}=A\left(\mathrm{Q}^{i}\right), \beta_{i}=B\left(\mathrm{Q}^{i}\right)
$$

(A wealth of) Examples

Planar walks:

$$
H_{g}=A(u) v+v^{1-g} B(u) \Rightarrow \alpha_{i}=A\left(\mathrm{Q}^{i}\right), \beta_{i}=B\left(\mathrm{Q}^{i}\right)
$$

Many walks can be brought to this form via a

- square lattice modular transformation, or
- equivalently, u, v algebra automorphism

$$
u \rightarrow e^{i \phi} u^{m_{1}} v^{m_{2}}, \quad v \rightarrow e^{i \theta} u^{n_{1}} v^{n_{2}}, \quad \mathrm{Q} \rightarrow \mathrm{Q}^{m_{1} n_{2}-m_{2} n_{1}}
$$

(A wealth of) Examples

Planar walks:

$$
H_{g}=A(u) v+v^{1-g} B(u) \Rightarrow \alpha_{i}=A\left(\mathrm{Q}^{i}\right), \beta_{i}=B\left(\mathrm{Q}^{i}\right)
$$

Many walks can be brought to this form via a

- square lattice modular transformation, or
- equivalently, u, v algebra automorphism

$$
u \rightarrow e^{i \phi} u^{m_{1}} v^{m_{2}}, \quad v \rightarrow e^{i \theta} u^{n_{1}} v^{n_{2}}, \quad \mathrm{Q} \rightarrow \mathrm{Q}^{m_{1} n_{2}-m_{2} n_{1}}
$$

Square lattice walk: $H=u+v+u^{-1}+v^{-1}$

$$
u \rightarrow-u v: \quad H \rightarrow(1-u) v+v^{-1}\left(1-u^{-1}\right) \quad(g=2)
$$

(A wealth of) Examples

Planar walks:

$$
H_{g}=A(u) v+v^{1-g} B(u) \Rightarrow \alpha_{i}=A\left(\mathrm{Q}^{i}\right), \beta_{i}=B\left(\mathrm{Q}^{i}\right)
$$

Many walks can be brought to this form via a

- square lattice modular transformation, or
- equivalently, u, v algebra automorphism

$$
u \rightarrow e^{i \phi} u^{m_{1}} v^{m_{2}}, \quad v \rightarrow e^{i \theta} u^{n_{1}} v^{n_{2}}, \quad \mathrm{Q} \rightarrow \mathrm{Q}^{m_{1} n_{2}-m_{2} n_{1}}
$$

Square lattice walk: $H=u+v+u^{-1}+v^{-1}$

$$
u \rightarrow-u v: \quad H \rightarrow(1-u) v+v^{-1}\left(1-u^{-1}\right) \quad(g=2)
$$

Chiral triangular walk: $H=u+v+\mathrm{Q}^{\frac{1+a}{2}} u^{-1} v^{-1}, a \in \mathrm{R}$
$u \rightarrow-i u v, v \rightarrow i u^{-1} v: H \rightarrow i\left(-u+u^{-1}\right) v+\mathrm{Q}^{a} v^{-2} \quad(g=3)$

$$
\begin{gathered}
\alpha_{j}=2 \sin \frac{2 \pi p j}{q}, \quad \beta_{j}=e^{i 2 \pi a p / q} \\
s_{j}=\beta_{j} \alpha_{j} \alpha_{j+1}=4 e^{i 2 \pi a p / q} \sin \frac{2 \pi p j}{q} \sin \frac{2 \pi p(j+1)}{q}
\end{gathered}
$$

Interpretation: chiral hopping on triangular lattice

- u, v and $w=\mathrm{Q}^{1+a} u^{-1} v^{-1}$ represent jumps at 120° angles
- $w v u=v u w=u w v=\mathrm{Q}^{1+a}$
\rightarrow up-cell of area $1+a$
- $v w u=w u v=u v w=\left(\mathrm{Q}^{1-a}\right)^{-1}$ \rightarrow down-cell of area $1-a$

Forward-moving walks:

$$
H=U V+q^{\frac{g-2}{2}} V^{\dagger}{ }^{g-1} U
$$

$$
g=3,(1,2) \text { path }
$$

- Represents a "one step up, $g-1$ steps down" process [(1,g-1) Lukasiewicz(?) paths]
- Corresponds to an exclusion-g grand partition function
- $g=2$: Dyck paths, as before
...and so on.

Exclusion-g connection allows for explicit solutions
Planar paths: $\operatorname{tr} H^{\ell}$ given in terms of cluster coefficients

$$
\operatorname{tr} H^{g n}=\sum_{\substack{l_{1}, l_{2}, \ldots, l_{i} \\ g \text {-composition of } n}} c_{g}\left(l_{1}, l_{2}, \ldots, l_{i}\right) \sum_{j=1}^{k-i+1} s_{j}^{l_{1}} s_{j+1}^{l_{2}} \cdots s_{j+i-1}^{l_{i}}
$$

with $\quad c_{g}\left(l_{1}, l_{2}, \ldots, l_{j}\right)=\frac{\prod_{i=1}^{j-g+1}\left(l_{i}+\cdots+l_{i+g-1}-1\right)!}{\prod_{i=1}^{j-g}\left(l_{i+1}+\cdots+l_{i+g-1}-1\right)!} \prod_{i=1}^{j} \frac{1}{l_{i}!}$
g-compositions: compositions with up to $g-2$ zeros inserted between parts (e.g., $g=3: 2=1+1=1+0+1$); g^{n-1} in all

- Leads to complicated but explicit trigo sums for number of paths of given area \& length $C(\ell, A)$

Exclusion-g connection allows for explicit solutions
Planar paths: $\operatorname{tr} H^{\ell}$ given in terms of cluster coefficients

with $\quad c_{g}\left(l_{1}, l_{2}, \ldots, l_{j}\right)=\frac{\prod_{i=1}^{j-g+1}\left(l_{i}+\cdots+l_{i+g-1}-1\right)!}{\prod_{i=1}^{j-g}\left(l_{i+1}+\cdots+l_{i+g-1}-1\right)!} \prod_{i=1}^{j} \frac{1}{I_{i}!}$
g-compositions: compositions with up to $g-2$ zeros inserted between parts (e.g., $g=3: 2=1+1=1+0+1$); g^{n-1} in all

- Leads to complicated but explicit trigo sums for number of paths of given area \& length $C(\ell, A)$

Forward-moving paths: bosonization still works, yields explicit expressions for $G_{m, n}(z, q)$ and expansion for $\ln G_{m, n}(z, q)$

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo?

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!
- Can it be done with combinatorial techniques (rather than matrices)?

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!
- Can it be done with combinatorial techniques (rather than matrices)? Answer: Some yes, some look harder (e.g., Motzkin meanders with both floor and ceiling "markers")

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!
- Can it be done with combinatorial techniques (rather than matrices)? Answer: Some yes, some look harder (e.g., Motzkin meanders with both floor and ceiling "markers")
- Any other type of (useful) exclusion statistics?

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!
- Can it be done with combinatorial techniques (rather than matrices)? Answer: Some yes, some look harder (e.g., Motzkin meanders with both floor and ceiling "markers")
- Any other type of (useful) exclusion statistics? Answer: Yes: "mixed" statistics $g_{1} / g_{2} / g_{3} \ldots \Rightarrow$ extensions of partitions

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!
- Can it be done with combinatorial techniques (rather than matrices)? Answer: Some yes, some look harder (e.g., Motzkin meanders with both floor and ceiling "markers")
- Any other type of (useful) exclusion statistics? Answer: Yes: "mixed" statistics $g_{1} / g_{2} / g_{3} \ldots \Rightarrow$ extensions of partitions
- Arbitrary forward-moving paths (set of up- and down-moves)?

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!
- Can it be done with combinatorial techniques (rather than matrices)? Answer: Some yes, some look harder (e.g., Motzkin meanders with both floor and ceiling "markers")
- Any other type of (useful) exclusion statistics? Answer: Yes: "mixed" statistics $g_{1} / g_{2} / g_{3} \ldots \Rightarrow$ extensions of partitions
- Arbitrary forward-moving paths (set of up- and down-moves)?
- Compact expressions for plane walk combinatorics?

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!
- Can it be done with combinatorial techniques (rather than matrices)? Answer: Some yes, some look harder (e.g., Motzkin meanders with both floor and ceiling "markers")
- Any other type of (useful) exclusion statistics? Answer: Yes: "mixed" statistics $g_{1} / g_{2} / g_{3} \ldots \Rightarrow$ extensions of partitions
- Arbitrary forward-moving paths (set of up- and down-moves)?
- Compact expressions for plane walk combinatorics?
- Relation between distinct-looking but equivalent results?

Epilogue, or, Where do we go from here?

Several other models have been studied (honeycomb lattice, Motzkin paths) or can be studied [Kagomé lattice, (1,p)-paths]

Open/interesting questions:

- Can all that be done without physics lingo? Answer: Yes!
- Can it be done with combinatorial techniques (rather than matrices)? Answer: Some yes, some look harder (e.g., Motzkin meanders with both floor and ceiling "markers")
- Any other type of (useful) exclusion statistics? Answer: Yes: "mixed" statistics $g_{1} / g_{2} / g_{3} \ldots \Rightarrow$ extensions of partitions
- Arbitrary forward-moving paths (set of up- and down-moves)?
- Compact expressions for plane walk combinatorics?
- Relation between distinct-looking but equivalent results?
Suggestions welcome - Thank You!

