Triangulated ternary disc packings that maximize the density

Daria Pchelina
supervised by
Thomas Fernique
September 29, 2020
What is a packing?

Discs:

Packing P:
(in \mathbb{R}^2)

\[
\delta(P) = \limsup_{n \to \infty} \frac{\text{area}(\{-n, n\} \cap P)}{\text{area}(\{-n, n\} \cap \mathbb{R}^2)}
\]
What is a packing?

Discs:

Packing P: (in \mathbb{R}^2)

Density:

$$
\delta(P) = \limsup_{n \to \infty} \frac{\text{area}([-n, n]^2 \cap P)}{\text{area}([-n, n]^2)}
$$
What is a packing?

Discs:

Packing P:
(in \mathbb{R}^2)

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\text{area}([-n, n]^2 \cap P)}{\text{area}([-n, n]^2)}$$
What is a packing?

Discs:

Packing P: (in R^2)

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\text{area}([-n, n]^2 \cap P)}{\text{area}([-n, n]^2)}$$
What is a packing?

Discs:

Packing P: (in \mathbb{R}^2)

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\text{area}(\left[-n, n \right]^2 \cap P)}{\text{area}(\left[-n, n \right]^2)}$$
What is a packing?

Discs:

Packing P: (in \mathbb{R}^2)

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\text{area}([-n, n]^2 \cap P)}{\text{area}([-n, n]^2)}$$
What is a packing?

Discs:

Packing P:
(in R^2)

Density:

$$
\delta(P) = \limsup_{n \to \infty} \frac{\text{area}([-n, n]^2 \cap P)}{\text{area}([-n, n]^2)}
$$
What is a packing?

Discs:

Packing P: (in \mathbb{R}^2)

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\text{area}([-n, n]^2 \cap P)}{\text{area}([-n, n]^2)}$$

Which packings maximize the density?
What is a packing?

Discs:

Packing P: (in R^2)

Density:

$$\delta(P) = \limsup_{n \to \infty} \frac{\text{area}([-n, n]^2 \cap P)}{\text{area}([-n, n]^2)}$$

Which packings maximize the density?
Why do we study packings?

- To pack fruits

![Fruit Packings](image-url)
Why do we study packings?

- To pack fruits
- and vegetables
Why do we study packings?

- To pack fruits
- and vegetables
- To make compact materials

2D hexagonal \circ-packing: $\delta = \frac{\pi}{2\sqrt{3}}$

Lagrange, 1772

Hexagonal packing maximize the density among \circ lattice packings.

Thue, 1910 (Toth, 1940)

Hexagonal packing maximize the density.
2D hexagonal packing: \(\delta = \frac{\pi}{2\sqrt{3}} \)

Lagrange, 1772

Hexagonal packing maximize the density among \(\bullet \) lattice packings.

Thue, 1910 (Toth, 1940)

Hexagonal packing maximize the density.

3D hexagonal packing: \(\delta = \frac{\pi}{3\sqrt{2}} \)

Gauss, 1831

Hexagonal packing maximize the density among lattice \(\bullet \) packings.

Hales, Ferguson, 1998–2014
(Conjectured by Kepler, 1611)

Hexagonal packing maximize the density.
Two discs of radii 1 and r:

Lower bound on the density: $\frac{\pi}{2\sqrt{3}}$ (hexagonal packing with only 1 disc used)
Two discs of radii 1 and r:

Lower bound on the density: $\frac{\pi}{2\sqrt{3}}$ (hexagonal packing with only 1 disc used)

Upper bound on the density:

Florian, 1960

The density of a packing never exceeds the density in the following triangle:
A packing is called **triangulated** if each “hole” is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing triangulated packings.
A packing is called **triangulated** if each “hole” is bounded by three tangent discs.

Kennedy, 2006

There are 9 values of r allowing triangulated packings.

Heppes 2000, 2003
Kennedy 2004
Bedaride, Fernique, 2019:

All these 9 packings maximize the density.
Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is maximized on a saturated triangulated packing.

True for ○ and ⬤.
Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is maximized on a saturated triangulated packing.

True for \(\bigcirc \) and \(\bigcirc \cdot \).

What happens with \(\bigcirc \cdot \cdot \)?
3 discs

- 164 \((r, s)\) with triangulated packings: (Fernique, Hashemi, Sizova 2019)
- 15 non saturated packings
- Case 53 is proved (Fernique 2019)
- 14 more cases (the internship)
- 164 \((r, s)\) with triangulated packings: (Fernique, Hashemi, Sizova 2019)
- 15 non saturated
- Case 53 is proved (Fernique 2019)
- 14 more cases (the internship)
- The others?
A Delaunay triangulation of a packing: no points inside a circumscribed circle

\[\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}} \]

\[\forall \, \Delta, \; \delta_{\Delta} \leq \delta_{\Delta^*} = \delta^* \]
A Delaunay triangulation of a packing: no points inside a circumscribed circle

\[\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}} \]

\[\forall \Delta, \delta_\Delta \leq \delta_{\Delta^*} = \delta^* \]
A Delaunay triangulation of a packing: no points inside a circumscribed circle

\[\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}} \]

\[\forall \ \Delta, \ \delta_{\Delta} \leq \delta_{\Delta^*} = \delta^* \]

- The largest angle of any \(\triangle \) is between \(\frac{\pi}{3} \) and \(\frac{2\pi}{3} \)

\[R = \frac{|AC|}{2 \sin B} \geq \frac{1}{\sin B} \]
A Delaunay triangulation of a packing: no points inside a circumscribed circle

$$\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}}$$

$$\forall \Delta, \delta_\Delta \leq \delta_{\Delta^*} = \delta^*$$

- The largest angle of any Δ is between $\frac{\pi}{3}$ and $\frac{2\pi}{3}$

- The density of a triangle Δ: $\delta_\Delta = \frac{\pi/2}{\text{area}(\Delta)}$

$$R = \frac{|AC|}{2 \sin B} \geq \frac{1}{\sin B}$$
Idea of the proof for

A Delaunay triangulation of a packing: no points inside a circumscribed circle

\[\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}} \]

\[\forall \Delta, \; \delta_{\Delta} \leq \delta_{\Delta^*} = \delta^* \]

- The largest angle of any \(\Delta \) is between \(\frac{\pi}{3} \) and \(\frac{2\pi}{3} \)
- The density of a triangle \(\Delta \): \(\delta_{\Delta} = \frac{\pi/2}{\text{area(\(\Delta \))}} \)
- The area of a triangle \(ABC \) with the largest angle \(\hat{B} \) is \(\frac{1}{2} |AB| \cdot |BC| \cdot \sin \hat{B} \) which is at least \(\frac{1}{2} \cdot 2 \cdot 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \)

\[R = \frac{|AC|}{2 \sin \hat{B}} \geq \frac{1}{\sin \hat{B}} \]
Idea of the proof for a Delaunay triangulation of a packing: no points inside a circumscribed circle

\[\delta^* = \delta_{\Delta^*} = \frac{\pi}{2\sqrt{3}} \]

\[\forall \Delta, \; \delta_\Delta \leq \delta_{\Delta^*} = \delta^* \]

- The largest angle of any \(\Delta \) is between \(\frac{\pi}{3} \) and \(\frac{2\pi}{3} \)

\[R = \frac{|AC|}{2 \sin B} \geq \frac{1}{\sin B} \]

- The density of a triangle \(\Delta \): \(\delta_\Delta = \frac{\pi/2}{\text{area}(\Delta)} \)

- The area of a triangle \(ABC \) with the largest angle \(\hat{B} \) is \(\frac{1}{2} |AB| \cdot |BC| \cdot \sin \hat{B} \)
 which is at least \(\frac{1}{2} \cdot 2 \cdot 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \)

- Thus the density of \(ABC \) is less or equal to \(\frac{\pi/2}{\sqrt{3}} \)
Idea of the proof for Delaunay triangulation → weighted by the disc radii

Triangles have different densities:

\[\delta(\text{blue}) \neq \delta(\text{red}) \]

What to do?

Redistribution of the densities:

Some triangles "share their density" with neighbors
Idea of the proof for Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

$$\delta(\text{red}) \neq \delta(\text{blue})$$

What to do?

Redistribution of the densities:
Idea of the proof for Delaunay triangulation → weighted by the disc radii

Triangles have different densities:

$$\delta(\text{left}) \neq \delta(\text{right})$$

What to do?

Redistribution of the densities:

Some triangles “share their density” with neighbors
Idea of the proof for Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

$$\delta(\text{red}) \neq \delta(\text{blue})$$

What to do?

Redistribution of the densities:

Some triangles “share their density” with neighbors
Idea of the proof for Delaunay triangulation → weighted by the disc radii

Triangles have different densities:
\[\delta(\text{red}) \neq \delta(\text{blue}) \]

What to do?

Redistribution of the densities:

Some triangles “share their density” with neighbors
Proof for

\(\mathcal{T}^\ast \) – saturated triangulated packing of density \(\delta \)

\(\mathcal{T} \) – any other saturated packing with the same discs

The sparsity of a triangle \(\triangle \in \mathcal{T} \):

\[
S(\triangle) = \delta \times \text{area}(\triangle) - \text{cov}(\triangle)
\]

\(S(\triangle) > 0 \) iff the density of covering of \(\triangle \) is less than \(\delta \)

\(S(\triangle) < 0 \) iff the density of covering of \(\triangle \) is greater than \(\delta \)

To prove that \(\mathcal{T}^\ast \) is no denser than \(\mathcal{T} \), we show that

\[
\sum_{\triangle \in \mathcal{T}} S(\triangle) \geq 0
\]

1: Introduce a potential \(U \) such that for any triangle \(\triangle \in \mathcal{T} \),

\[
S(\triangle) \geq U(\triangle)
\]

and

\[
\sum_{\triangle \in \mathcal{T}} U(\triangle) \geq 0
\]
\mathcal{T}^* – saturated triangulated packing of density δ

\mathcal{T} – any other saturated packing with the same discs

The **sparsity** of a triangle $\triangle \in \mathcal{T}$: $S(\triangle) = \delta \times \text{area}(\triangle) - \text{cov}(\triangle)$

- $S(\triangle) > 0$ iff the density of covering of \triangle is less than δ
- $S(\triangle) < 0$ iff the density of covering of \triangle is greater than δ

To prove that \mathcal{T} is no denser than \mathcal{T}^*, we show that $\sum_{\mathcal{T}} S(\triangle) \geq 0$
\(\mathcal{T}^* \) – saturated triangulated packing of density \(\delta \)

\(\mathcal{T} \) – any other saturated packing with the same discs

The sparsity of a triangle \(\triangle \in \mathcal{T} \): \(S(\triangle) = \delta \times \text{area}(\triangle) - \text{cov}(\triangle) \)

\(S(\triangle) > 0 \) iff the density of covering of \(\triangle \) is less than \(\delta \)

\(S(\triangle) < 0 \) iff the density of covering of \(\triangle \) is greater than \(\delta \)

To prove that \(\mathcal{T} \) is no denser than \(\mathcal{T}^* \), we show that \(\sum_{\mathcal{T}} S(\triangle) \geq 0 \)

1: Introduce a potential \(U \) such that for any triangle \(\triangle \in \mathcal{T} \),

\[S(\triangle) \geq U(\triangle) \quad (\Delta) \]

and

\[\sum_{\Delta \in \mathcal{T}} U(\Delta) \geq 0 \quad (U) \]
2: Instead of proving a global inequality

\[\sum_{\Delta \in \mathcal{T}} U(\Delta) \geq 0 \quad (U) \]

we define the vertex potential: for a triangle \(\Delta \) with vertices \(A, B \) and \(C \),

\[U(\Delta) = \dot{U}_\Delta^A + \dot{U}_\Delta^B + \dot{U}_\Delta^C \]

and prove a local inequality for each vertex \(v \in \mathcal{T} \):

\[\sum_{\Delta \in \mathcal{T} | v \in \Delta} \dot{U}_\Delta^v \geq 0 \quad (\bullet) \]
Proof for 2: Instead of proving a global inequality

\[\sum_{\triangle \in \mathcal{T}} U(\triangle) \geq 0 \] \hfill (U)

we define the vertex potential: for a triangle \(\triangle \) with vertices \(A, B \) and \(C \),

\[U(\triangle) = \dot{U}_\triangle^A + \dot{U}_\triangle^B + \dot{U}_\triangle^C \]

and prove a local inequality for each vertex \(v \in \mathcal{T} \):

\[\sum_{\triangle \in \mathcal{T} \mid v \in \triangle} \dot{U}_\triangle^v \geq 0 \] \hfill (\bullet)

Delaunay triangulation properties \(\rightarrow \) finite number of cases \(\rightarrow \) verification by computer

4\(\dot{U}_{\triangle_1}^v \) + 2\(\dot{U}_{\triangle_2}^v \) + \(\dot{U}_{\triangle_3}^v \) = 0

\(\dot{U}_{\triangle_1}^{v'} + \dot{U}_{\triangle_2}^{v'} + \dot{U}_{\triangle_3}^{v'} + \dot{U}_{\triangle_4}^{v'} > 0 \)
To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

```
sage: x = RIF(0,1)  # Interval [0,1]
sage: (x+x).endpoints()  # [0,1]+[0,1]
(0.0, 2.0)
sage: x < 2  # ∀t ∈ [0,1], t < 2
True
```
To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval I whose endpoints are exact values representable in a computer memory and such that $x \in I$.

```
sage: x = RIF(0,1)  # Interval $[0,1]$
sage: (x+x).endpoints()  # $[0,1]+[0,1]$
(0.0, 2.0)
sage: x < 2  # $\forall t \in [0,1], t < 2$
True
```

```
sage: Ipi = RIF(pi)  # Interval for $\pi$
(3.14159265358979, 3.14159265358980)
sage: sin(Ipi).endpoints()  # Interval for $\sin(\pi)$
(-3.21624529935328e-16, 1.22464679914736e-16)
sage: sin(Ipi) >= 0  # Interval for $\sin(\pi)$ contains 0
False
```
Defining U, we try to make it as small as possible keeping it locally positive around any vertex (\bullet).

3: How to check

$$S(\triangle) \geq U(\triangle)$$

(\triangle) on each triangle \triangle? (There is a continuum of them).
Proving a continuum of inequalities with interval arithmetic

Defining U, we try to make it as small as possible keeping it locally positive around any vertex (\bullet).

3: How to check

$$S(\triangle) \geq U(\triangle)$$

on each triangle \triangle? (There is a continuum of them).

Interval arithmetic!

Delaunay triangulation properties \rightarrow uniform bound on edge length:

Verify $S(\triangle_{e_1,e_2,e_3}) \geq U(\triangle_{e_1,e_2,e_3})$ where

$$e_1 = [r_a+r_b, r_a+r_b+2s] \quad e_2 = [r_c+r_b, r_c+r_b+2s] \quad e_3 = [r_a+r_c, r_a+r_c+2s]$$

Not precise enough \rightarrow dichotomy
Conclusion

What was done and what will be done...

- 14 cases proved
- 133 cases to prove (Connelly’s conjecture)
- Maximal density for other disc sizes (which do not allow triangulated packings)

Various techniques: computer-assisted proofs, interval arithmetic, optimisation, combinatorics, discrete geometry

For this: good comprehension of the density redistribution, more optimisation

Deformations of triangulated packings keep the density high → good lower bound on the maximal density