Triangulated ternary disc packings that maximize the density

Daria Pchelina

supervised by

Thomas Fernique
September 29, 2020

Discs:

Packing P : (in R^{2})

Discs:

Packing P : (in R^{2})

Density:

$$
\delta(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{area}\left([-n, n]^{2} \cap P\right)}{\operatorname{area}\left([-n, n]^{2}\right)}
$$

Discs:

Packing P : (in R^{2})

Density:

$$
\delta(P)=\underset{n \rightarrow \infty}{\limsup } \frac{\operatorname{area}\left([-n, n]^{2} \cap P\right)}{\operatorname{area}\left([-n, n]^{2}\right)}
$$

Discs:

Packing P : (in R^{2})

Density:

$$
\delta(P)=\underset{n \rightarrow \infty}{\limsup } \frac{\operatorname{area}\left([-n, n]^{2} \cap P\right)}{\operatorname{area}\left([-n, n]^{2}\right)}
$$

Discs:

Packing P : (in R^{2})

Density:

$$
\delta(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{area}\left([-n, n]^{2} \cap P\right)}{\operatorname{area}\left([-n, n]^{2}\right)}
$$

Discs:

Packing P : (in R^{2})

Density:

$$
\delta(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{area}\left([-n, n]^{2} \cap P\right)}{\operatorname{area}\left([-n, n]^{2}\right)}
$$

Discs:

Packing P : (in R^{2})

Density:

$$
\delta(P)=\underset{n \rightarrow \infty}{\limsup } \frac{\operatorname{area}\left([-n, n]^{2} \cap P\right)}{\operatorname{area}\left([-n, n]^{2}\right)}
$$

Discs:

Packing P : (in R^{2})

Density:

$$
\delta(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{area}\left([-n, n]^{2} \cap P\right)}{\operatorname{area}\left([-n, n]^{2}\right)}
$$

Which packings maximize the density?

Discs:

Packing P : (in R^{2})

Density:

$$
\delta(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{area}\left([-n, n]^{2} \cap P\right)}{\operatorname{area}\left([-n, n]^{2}\right)}
$$

Which packings maximize the density?

Why do we study packings?

- To pack fruits

Why do we study packings?

- To pack fruits
- and vegetables

Why do we study packings?

- To pack fruits
- and vegetables

- To make compact materials

Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. Journal of the American Chemical Society, 137(20):6662-6669, 2015.

2D hexagonal \bigcirc-packing:

$$
\delta=\frac{\pi}{2 \sqrt{3}}
$$

Lagrange, 1772
Hexagonal packing maximize the density among \square lattice backings.

The, 1910 (Coth, 1940)
Hexagonal packing maximize the density.

2D hexagonal \bigcirc-packing:

$$
\delta=\frac{\pi}{2 \sqrt{3}}
$$

Lagrange, 1772
Hexagonal packing maximize the density among \square lattice packings.

Thue, 1910 (Toth, 1940)
Hexagonal packing maximize the density.

3D hexagonal \bigcirc-packing:

$$
\delta=\frac{\pi}{3 \sqrt{2}}
$$

Gauss, 1831
Hexagonal packing maximize the density among lattice \bigcirc packings.
Hales, Ferguson, 1998-2014
(Conjectured by Kepler, 1611)
Hexagonal packing maximize the density.

Two discs of radii 1 and r :

Lower bound on the density: $\frac{\pi}{2 \sqrt{3}}$ (hexagonal packing with only 1 disc used)

Two discs of radii 1 and r :

Lower bound on the density: $\frac{\pi}{2 \sqrt{3}}$ (hexagonal packing with only 1 disc used)

Upper bound on the density:
Florian, 1960
The density of a packing never exceeds the density in the following triangle:

A packing is called triangulated if each "hole" is bounded by three tangent discs.

Kennedy, 2006
There are 9 values of r allowing triangulated packings.

A packing is called triangulated if each "hole" is bounded by three tangent discs.

Kennedy, 2006
There are 9 values of r allowing triangulated packings.

Heppes 2000,2003
Kennedy 2004
Bedaride, Fernique, 2019:
All these 9 packings maximize the density

Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is maximized on a saturated triangulated packing.

True for \bigcirc and $\bigcirc \bullet$.

Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is maximized on a saturated triangulated packing.

True for \bigcirc and $\bigcirc \bullet$.

What happens with \bigcirc ○ ?

- $164(r, s)$ with triangulated packings:
(Fernique, Hashemi, Sizova 2019)
- 15 non saturated
- Case 53 is proved (Fernique 2019)
- 14 more cases
(the internship)

- $164(r, s)$ with triangulated packings:
(Fernique, Hashemi, Sizova 2019)
- 15 non saturated
- Case 53 is proved (Fernique 2019)
- 14 more cases
(the internship)
- The others?

Idea of the proof for

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$\delta^{*}=\delta_{\Delta^{*}}=\frac{\pi}{2 \sqrt{3}}$

$\forall \Delta, \delta_{\Delta} \leq \delta_{\Delta^{*}}=\delta^{*}$

Idea of the proof for

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$\delta^{*}=\delta_{\Delta^{*}}=\frac{\pi}{2 \sqrt{3}}$

$\forall \Delta, \delta_{\Delta} \leq \delta_{\Delta^{*}}=\delta^{*}$

Idea of the proof for

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$\delta^{*}=\delta_{\Delta^{*}}=\frac{\pi}{2 \sqrt{3}}$

$\forall \Delta, \delta_{\Delta} \leq \delta_{\Delta^{*}}=\delta^{*}$

- The largest angle of any Δ is between $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$

Idea of the proof for

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$\delta^{*}=\delta_{\Delta^{*}}=\frac{\pi}{2 \sqrt{3}}$

$\forall \Delta, \delta_{\Delta} \leq \delta_{\Delta^{*}}=\delta^{*}$

- The largest angle of any Δ is between $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$

$$
R=\frac{|A C|}{2 \sin B} \geq \frac{1}{\sin B}
$$

- The density of a triangle $\Delta: \delta_{\Delta}=\frac{\pi / 2}{\operatorname{area}(\Delta)}$

Idea of the proof for

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$\delta^{*}=\delta_{\Delta^{*}}=\frac{\pi}{2 \sqrt{3}}$

$\forall \Delta, \delta_{\Delta} \leq \delta_{\Delta^{*}}=\delta^{*}$

- The largest angle of any Δ is between $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$

$$
R=\frac{|A C|}{2 \sin B} \geq \frac{1}{\sin B}
$$

- The density of a triangle $\Delta: \delta_{\Delta}=\frac{\pi / 2}{\operatorname{area}(\Delta)}$
- The area of a triangle $A B C$ with the largest angle \hat{B} is $\frac{1}{2}|A B| \cdot|B C| \cdot \sin \hat{B}$ which is at least $\frac{1}{2} \cdot 2 \cdot 2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3}$

A Delaunay triangulation of a packing: no points inside a circumscribed circle

$\delta^{*}=\delta_{\Delta^{*}}=\frac{\pi}{2 \sqrt{3}}$

$\forall \Delta, \delta_{\Delta} \leq \delta_{\Delta^{*}}=\delta^{*}$

- The largest angle of any Δ is between $\frac{\pi}{3}$ and $\frac{2 \pi}{3}$

$$
R=\frac{|A C|}{2 \sin B} \geq \frac{1}{\sin B}
$$

- The density of a triangle $\Delta: \delta_{\Delta}=\frac{\pi / 2}{\operatorname{area}(\Delta)}$
- The area of a triangle $A B C$ with the largest angle \hat{B} is $\frac{1}{2}|A B| \cdot|B C| \cdot \sin \hat{B}$ which is at least $\frac{1}{2} \cdot 2 \cdot 2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3}$
- Thus the density of $A B C$ is less or equal to $\frac{\pi / 2}{\sqrt{3}}$

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

What to do?

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

What to do?

Redistribution of the densities:

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

What to do?

Redistribution of the densities:

Some triangles "share their density" with neighbors

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

What to do?

Redistribution of the densities:

Some triangles "share their density" with neighbors

Delaunay triangulation \rightarrow weighted by the disc radii

Triangles have different densities:

What to do?

Redistribution of the densities:

Some triangles "share their density" with neighbors
\mathcal{T}^{*} - saturated triangulated packing of density δ
\mathcal{T} - any other saturated packing with the same discs

\mathcal{T}^{*} - saturated triangulated packing of density δ
\mathcal{T} - any other saturated packing with the same discs

The sparsity of a triangle $\Delta \in \mathcal{T}: S(\Delta)=\delta \times \operatorname{area}(\Delta)-\operatorname{cov}(\Delta)$ $S(\Delta)>0$ iff the density of covering of Δ is less than δ $S(\Delta)<0$ iff the density of covering of Δ is greater than δ

To prove that \mathcal{T} is no denser than \mathcal{T}^{*}, we show that $\sum_{\mathcal{T}} S(\Delta) \geq 0$
\mathcal{T}^{*} - saturated triangulated packing of density δ
\mathcal{T} - any other saturated packing with the same discs

The sparsity of a triangle $\Delta \in \mathcal{T}: S(\Delta)=\delta \times \operatorname{area}(\Delta)-\operatorname{cov}(\Delta)$

$$
S(\Delta)>0 \text { iff the density of covering of } \Delta \text { is less than } \delta
$$ $S(\Delta)<0$ iff the density of covering of Δ is greater than δ

To prove that \mathcal{T} is no denser than \mathcal{T}^{*}, we show that $\sum_{\mathcal{T}} S(\Delta) \geq 0$
1: Introduce a potential U such that for any triangle $\Delta \in \mathcal{T}$,

$$
S(\Delta) \geq U(\Delta)
$$

and

$$
\begin{equation*}
\sum_{\Delta \in \mathcal{T}} U(\Delta) \geq 0 \tag{U}
\end{equation*}
$$

2: Instead of proving a global inequality

$$
\begin{equation*}
\sum_{\Delta \in \mathcal{T}} U(\Delta) \geq 0 \tag{U}
\end{equation*}
$$

we define the vertex potential: for a triangle \triangle with vertices A, B and C,

$$
U(\Delta)=\dot{U}_{\Delta}^{A}+\dot{U}_{\Delta}^{B}+\dot{U}_{\Delta}^{C}
$$

and prove a local inequality for each vertex $v \in \mathcal{T}$:

$$
\sum_{\Delta \in \mathcal{T} \mid v \in \Delta} \dot{U}_{\Delta}^{v} \geq 0
$$

2: Instead of proving a global inequality

$$
\begin{equation*}
\sum_{\Delta \in \mathcal{T}} U(\Delta) \geq 0 \tag{U}
\end{equation*}
$$

we define the vertex potential: for a triangle Δ with vertices A, B and C,

$$
U(\Delta)=\dot{U}_{\Delta}^{A}+\dot{U}_{\Delta}^{B}+\dot{U}_{\Delta}^{C}
$$

and prove a local inequality for each vertex $v \in \mathcal{T}$:

$$
\sum_{\Delta \in \mathcal{T} \mid v \in \Delta} \dot{U}_{\Delta}^{v} \geq 0
$$

$$
4 \dot{U}_{\Delta_{1}}^{v}+2 \dot{U}_{\Delta_{2}}^{v}+\dot{U}_{\Delta_{3}}^{v}=0 \quad \quad \dot{U_{\Delta_{1}^{\prime}}^{v^{\prime}}}+\dot{U_{\Delta_{2}^{\prime}}^{v^{\prime}}}+\dot{U_{\Delta_{3}^{\prime}}^{v^{\prime}}}+\dot{U_{\Delta_{4}^{\prime}}^{v^{\prime}}}>0
$$

Delaunay triangulation properties \rightarrow finite number of cases \rightarrow verification by computer

To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval / whose endpoints are exact values representable in a computer memory and such that $x \in I$.

```
sage: x = RIF (0,1)
sage: (x+x).endpoints()
(0.0, 2.0)
sage: x < 2
True
```

```
# Interval [0,1]
```


Interval [0,1]

 # [0,1]+[0,1]
 # [0,1]+[0,1]

\forallt\in[0,1],t<2

```
# \forallt\in[0,1],t<2
```

To store and perform computations on transcendental numbers (like π), we use intervals.

A representation of a number x is an interval / whose endpoints are exact values representable in a computer memory and such that $x \in I$.

```
sage: x = RIF (0,1)
sage: (x+x).endpoints()
(0.0, 2.0)
sage: x < 2
True
sage: Ipi = RIF(pi) # Interval for }
(3.14159265358979, 3.14159265358980)
sage: sin(Ipi).endpoints() # Interval for sin(\pi)
(-3.21624529935328e-16, 1.22464679914736e-16)
sage: sin(Ipi) >= 0
False # Interval for }\operatorname{sin}(\pi)\mathrm{ contains 0
```

Defining U, we try to make it as small as possible keeping it locally positive around any vertrex (\bullet).

3: How to check

$$
S(\Delta) \geq U(\Delta)
$$

on each triangle Δ ? (There is a continuum of them).

Defining U, we try to make it as small as possible keeping it locally positive around any vertrex (\bullet).

3: How to check

$$
S(\Delta) \geq U(\Delta)
$$

on each triangle Δ ? (There is a continuum of them).

Interval arithmetic!

Delaunay triangulation properties \rightarrow uniform bound on edge length:

$$
\begin{gathered}
\text { Verify } S\left(\Delta_{e_{1}, e_{2}, e_{3}}\right) \geq U\left(\Delta_{e_{1}, e_{2}, e_{3}}\right) \text { where } \\
e_{1}=\left[r_{a}+r_{b}, r_{a}+r_{b}+2 s\right] e_{2}=\left[r_{c}+r_{b}, r_{c}+r_{b}+2 s\right] e_{3}=\left[r_{a}+r_{c}, r_{a}+r_{c}+2 s\right]
\end{gathered}
$$

Not precise enough \rightarrow dichotomy

What was done and what will be done...

- 14 cases proved
- 133 cases to prove (Connelly's conjecture)
- maximal density for other disc sizes
(which do not allow triangulated packings)
various techniques: computer-assisted proofs, interval arithmetic, optimisation, combinatorics, discrete geometry
for this: good comprehension of the density redistribution, more optimisation
deformations of triangulated packings keep the density high \rightarrow good lower bound on the maximal density

