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Multiple zeta values



Riemann zeta function

The Riemann zeta function ζ(s), is a function of a complex

variable s that analytically continues the sum of the Dirichlet

series

ζ(s) =
∞∑
n=1

1

ns

When Re(s) > 1.
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Riemann zeta function at even positive integers

We know that

ζ(2n) =
(−1)n+1B2n(2π)2n

2(2n)!

For odd positive integers, no such simple expression is known
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Euler’s classical formula

Euler’s classical formula

ζ(2) = 3
∞∑

m=1

m−2
(

2m

m

)−1
Apéry like function

σ(s) =
∞∑
n=1

(
2n1
n1

)−1
1

ns

We have the classical results

ζ(2) = 3σ(2), ζ(4) =
36

17
σ(4)
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Question?

Weather we can generalization of Euler’s

classical formula for positive integers > 2
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Answer: yes we can

In My papper

Double tails of multiple zeta values, Journal of Number

Theory 170 (2017) 228-249

I have a generalization of Euler’s classical formula

ζ(2) = 3
∑∞

m=1m
−2 (2m

m

)−1
to all multiple zeta values

This work I have done under the guidence of Professor

J. Oesterlé
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Notations

N denotes the set of non-negative integers

A finite sequence a = (a1, . . . , ar ) of positive integers is called

a composition

The integer r is called the depth of a and the integer

k = a1 + . . . + ar the weight of a
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Admissible Composition

Composition a is said to be admissible if either r > 1 and

a1 > 2, or a is the empty composition denoted ∅
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Multiple zeta values

To each admissible composition a = (a1, . . . , ar ), one

associates a real number ζ(a). It is defined by the convergent

series

ζ(a) =
∑

n1>...>nr>0

n−a11 . . . n−arr . (1)

when r > 1, and by ζ(∅) = 1 when r = 0. These numbers are

called multiple zeta values or Euler-Zagier numbers.
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Binary word

A binary word is by definition a word w constructed on the

alphabet {0, 1}. Its letters are called bits

The number of bits of w is called the weight of w and denoted

by |w |

The number of bits of w equal to 1 is called the depth of w
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Composition to Binary word

To any composition a = (a1, . . . , ar ), one associates the binary

word

w(a) = {0}a1−11 . . . {0}ar−11 (2)

where for each integer u > 0, {0}u denotes the binary word

consisting of u bits equal to 0, and where w(a) is the empty

word if a is the empty composition
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Binary word

We shall denote by W the set of binary words. When

ε, ε′ ∈ {0, 1}, εW and Wε′ denote the sets of binary words

starting by ε and ending by ε′ respectively, and εWε′ their

intersection.
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Admissible word

The map w is a bijection from the set of compositions onto

the set of binary words not ending by 0. Non empty

compositions correspond to words in W1, and non empty

admissible compositions to words in 0W1. Therefore a binary

word will be called admissible if either it belongs to 0W1, or it

is empty.
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Maxim Kontsevich’s iterated

integral expression for MZV



Maxim Kontsevich has discovered that for each admissible

composition a, the multiple zeta value ζ(a) can be written as

an iterated integral.

More precisely, if w = ε1 . . . εk denotes the associated binary

word w(a), we have

ζ(a) = It

∫ 1

0

(ωε1 , . . . , ωεk ) (3)

=

∫
1>t1>...>tk>0

fε1(t1) . . . fεk (tk)dt1 . . . dtk

where ωi = fi(t)dt, with f0(t) = 1
t

and f1(t) = 1
1−t .
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Duality relations



Dual word and dual composition

Let w = ε1 . . . εk be a binary word. Its dual word is defined to

be w = εk . . . ε1, where 0 = 1 and 1 = 0.

When w is admissible, so is w . We can therefore define the

dual composition of an admissible composition a to be the

admissible composition a such that w(a) is dual to w(a).

When a has weight k and depth r , a has weight k and

depth k − r .
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duality relation

For any admissible composition a, we have

ζ(a) = ζ(a) (4)

This we can prove by By the change of variables

ti 7→ 1− tk+1−i in the integral (3),

15



Tail and double tail of multiple

zeta values



Tail of multiple zeta values

When a is a non empty admissible composition, we can define

for each integer n > 0 the n-tail of the series (1) to be the

sum of the series ∑
n1>...>nr>n

n−a11 . . . n−arr . (5)
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Integral formula for tail of multiple zeta values

This n-tail can be written as the iterated integral

It

∫ 1

0

(ωε1 , . . . , t
nωεk ) =

∫
1>t1>...>tk>0

fε1(t1) . . . fεk (tk)tnkdt1 . . . dtk

(6)

where ε1 . . . εk is the binary word w(a)
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Double tail of multiple zeta values

Definition

— When a is a non empty admissible composition, we define

for m and n in N the (m, n)-double tail ζ(a)m,n of ζ(a) as the

iterated integral

ζ(a)m,n = It

∫ 1

0

((1− t)mωε1 , . . . , t
nωεk ) (7)

=

∫
1>t1>...>tk>0

(1− t1)mfε1(t1) . . . fεk (tk)tnkdt1 . . . dtk ,

where ε1 . . . εk is the binary word w(a).
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Series expression for Double tail of MZV

Theorem

— Let a = (a1, . . . , ar ) be a non empty admissible

composition. For all m and n in N, the (m, n)-double tail of

ζ(a) is given by the convergent series

ζ(a)m,n =
∑

n1>...>nr>n

(
n1 + m

m

)−1
n−a11 . . . n−arr . (8)
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Duality relation for double tails

Theorem

— Let a be a non empty admissible composition and a

denote its dual composition. For any m and n in N, we have

ζ(a)m,n = ζ(a)n,m (9)
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Conceptually very simple, Example

Note that ζ(a)0,n is nothing but the usual n-tail of ζ(a).

Formula (9) tells us that it is equal ζ(a)n,0.

This equality is in fact the main theorem of a recent paper by

J. M. Borwein and O-Yeat Chan ( Duality in tails of multiple

zeta values, th. 14,Int. J. Number Theory 6 (2010), 501-514),

for which Theorem 2 therefore provides a conceptually very

simple proof.
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Upper bounds of double tails of

multiple zeta values



Upper bounds double tails

Theorem

— Let a be a non empty admissible composition. For all m

and n in N, we have

ζ(a)m,n 6
mmnn

(m + n)m+n
ζ(a), (10)

and ζ(a) 6 π2

6
. We have in particular

ζ(a)n,n 6 2−2nζ(a) 6 2−2n
π2

6
. (11)
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Upper bound comparison - Tail and double tail

ζ(a)n is equivalent to

nr−(a1+...+ar )

(a1 − 1)(a1 + a2 − 2) . . . (a1 + . . . + ar − r)
(12)

when n tends to +∞.

Now we can understand symmetric double tail is much smaller

than tail
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Double tail Definition

Definition

— Let w = ε1 . . . εk be a binary word and let m, n ∈ N.

Assume m > 1 when w ∈ 1W, and n > 1 when w ∈W0. We

define a real number ζ(w)m,n by the convergent iterated

integral

ζ(w)m,n = It

∫ 1

0

((1− t)mωε1 , . . . , t
nωεk ), (13)

when k > 2,
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Double tail Definition

and in the remaining cases by

ζ(0)m,n =

∫ 1

0

(1− t)mtn
dt

t
=

m!(n − 1)!

(m + n)!
, (14)

ζ(1)m,n =

∫ 1

0

(1− t)mtn
dt

1− t
=

(m − 1)!n!

(m + n)!
, (15)

ζ(∅)m,n =
m! n!

(m + n)!
· (16)
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Recurrence formula



Recurrence formula

Theorem

— Let w be a binary word and and let m, n ∈ N.

a) Assume n > 1. Then we haveζ(w0)m,n = n−1ζ(w)m,n ifm > 1 or w /∈ 1W,

ζ(w1)m,n−1 = ζ(w1)m,n + n−1ζ(w)m,n if m > 1 or w ∈ 0W

(17)
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Recurrence formula

Theorem

b) Assume m > 1. Then we haveζ(1w)m,n = m−1ζ(w)m,n if n > 1 or w /∈W0

ζ(0w)m−1,n = ζ(0w)m,n + n−1ζ(w)m,n if n > 1 or w ∈W1

(18)
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Recurrence relations



Initial, Middle, Final words

Let w be an non empty admissible binary word. There exists a

unique triple (v , a, b), where v is an admissible binary word,

empty or not, and a, b are positive integers, such that

w = 0{1}b−1v{0}a−11.

w init = 0{1}b−1v , wfin = v{0}a−11 and wmid = v .
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Recurrence relations

Theorem

— Let w be an non empty admissible binary word. Then we

have

ζ(w)n−1,n−1 = ζ(w)n,n + n−aζ(w init)n,n + n−bζ(wfin)n,n

+ n−a−bζ(wmid)n,n (19)
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An algorithm to compute

multiple zeta values



An algorithm to compute multiple zeta values

• Let w = ε1 . . . εk be a non empty admissible binary word.

• Let V denote the set of non empty admissible subwords

of w .

• We set uN(v) = 0 for all v ∈ V.
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An algorithm to compute multiple zeta values

• Compute inductively un(v) for v ∈ V, when n is

decreasing from N to 0, by using the recurrence relation

un−1(v) = un(v) + n−a(v)un(v init) + n−b(v)un(vfin)

+ n−a(v)−b(v)un(vmid) (20)

• a(v) = |v | − |v init|, b(v) = |v | − |vfin|,
• in case v init = 0, vfin = 1 or vmid = ∅, the corresponding

value un(0), un(1) or un(∅) is taken to be ζ(0)n,n, ζ(1)n,n
orζ(∅)n,n, as defined by formula (14), (15) or (16)

respectively
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implementation details

I first implemented this algorithm in the language Python

2.7.5 on my personal computer. As an example, computing

the 127 multiple zeta values corresponding to admissible

compositions of weight 6 8 with 1000 exact decimal digits

took 5 minutes and 9 seconds. With only 100 exact decimal

digits, it took 5.8 seconds. The same computations have been

implemented by Henri Cohen in Pari/GP and in C , which

have the advantage of being interpreted languages. They then

take 0.9 seconds and 0.006 seconds respectively.
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Error Estimates

Proposition

The theoretical error |ζ(v)− u0(v)| in the previous algorithm

is bounded above by 2−2N(N + 1)2 π
2

6
for each v ∈ V. If at

each step of the algorithm the right hand side of (35) is

computed to an accuracy at most α, the total error

(theoretical error plus rounding errors) is bounded above by

2−2N(N + 1)2 π
2

6
+ N(N+1)(2N+1)

6
α.
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Some examples

In weight 2

w = 01, corresponding to the composition (2).

w init = 0, wfin = 1 and wmid = ∅, and for each integer n > 1,

the recurrence relation expressed in terms of words

ζ(01)n−1,n−1 = ζ(01)n,n + n−1ζ(0)n,n + n−1ζ(1)n,n + n−2ζ(∅)n,n

= ζ(01)n,n + 3n−2ζ(∅)n,n , (21)
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Some examples

or equivalently, in term of compositions,

ζ(2)n−1,n−1 = ζ(2)n,n + 3n−2ζ(∅)n,n , (22)

where ζ(∅)n,n =
(
2n
n

)−1
. We therefore have, for all integers

n > 0,

ζ(2)n,n = 3
∞∑

m=n+1

m−2
(

2m

m

)−1
. (23)

This yields in particular for n = 0 the following formula, due to

Euler :

ζ(2) = 3
∞∑

m=1

m−2
(

2m

m

)−1
. (24)
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Some examples

In weight 4

Xn−1 = Xn + AYn, (25)

where

Xn =

 ζ(4)n,n
ζ(3, 1)n,n
ζ(2, 2)n,n

 , A =

1 0 2

2 1 0

0 2 1

 , Yn =

n−1ζ(3)n,n
n−2ζ(2)n,n
n−4ζ(∅)n,n

 .
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Some examples

In weight 6

Xn =



ζ(6)n,n
ζ(5, 1)n,n
ζ(4, 2)n,n
ζ(4, 1, 1)n,n
ζ(3, 3)n,n
ζ(3, 2, 1)n,n
ζ(3, 1, 2)n,n
ζ(2, 4)n,n
ζ(2, 2, 2)n,n
ζ(2, 1, 3)n,n



, A =



1 0 0 0 0 0 0 0 0 2

1 1 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 1 0 0

0 2 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1 1 0

0 0 2 0 0 0 1 0 0 0

0 0 0 1 0 1 0 1 0 0

0 0 0 0 1 0 0 0 1 1

0 0 0 0 0 0 2 0 1 0

0 0 0 0 0 0 0 2 0 1



, Yn =



n−1ζ(5)n,n
n−1ζ(4, 1)n,n
n−1ζ(3, 2)n,n
n−1ζ(2, 3)n,n
n−2ζ(4)n,n
n−2ζ(3, 1)n,n
n−2ζ(2, 2)n,n
n−3ζ(3)n,n
n−4ζ(2)n,n
n−6ζ(∅)n,n



.
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Further notations

we extend these types of formulas to all multiple zeta values.

To state our result, we shall need some further notations. For

any non empty composition a = (a1, . . . , ar ) (admissible or

not) and any integer m > 1, we define a real number ϕm(a)

by the finite sum

ϕm(a) = m−a1
∑

m>n2>...>nr>0

n−a22 . . . n−arr , (26)
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Further notations

λ(ε, ε′) =


1 if (ε, ε′) is equal to (1, 0),

2 if (ε, ε′) is equal to (0, 0) or (1, 1)

3 if (ε, ε′) is equal to (0, 1),

(27)
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Further notations

Let a be a non empty admissible composition. Let ε1 . . . εk
denote the corresponding binary word w(a). For any index i

such that 1 6 i 6 k − 1, let ai and bi denote the

compositions corresponding to the binary words εi+1 . . . εk and

εi . . . ε1 respectively
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Generalization of Euler’s classical formula

Theorem

— Let a be a non empty admissible composition. Then We

have

ζ(a) =
∞∑

m=1

ψm(a)

(
2m

m

)−1
(28)

where for each m > 1

ψm(a) =
k−1∑
i=1

λ(εi , εi+1)ϕm(ai)ϕm(bi). (29)
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faster than the standard algorithm

It is faster than the first one when one is only interested in

computing a single multiple zeta value.

It is also faster than the standard algorithm, based on

evaluations of multiple polylogarithms at 1
2
, which has been for

example implemented by J. Borwein, P. Lisonek, P. Irvine and

C. Chan on their website EZ-Face

http://wayback.cecm.sfu.ca/projects/EZFace/Java/index.html
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Generalization of this formula

As Henri Cohen pointed us in a private communication, our

algorithms can be extended to compute values of multiple

polylogarithms (in many variables). We are most grateful to

him for providing us with this possible extension of our work

and we hope to address this question in depth in the future.
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Implementation Details

This algorithm, implemented in Python 2.7.5 on my personal

computer took for example 10.1 seconds to compute

ζ(2, 1, 3, 2) with 1000 exact decimal places and 0.24 seconds

with only 100 exact decimal places. Implemented later by

Henri Cohen in C it took 0.08 and 0.001 seconds respectively.
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Another algorithm previously used to compute ζ(a), and for

example implemented on the site EZ-face quoted in the

introduction, is based on the following identity

ζ(a) =
k∑

i=0

Liai (
1

2
)Libi

(
1

2
) (30)

where ai and bi are defined as before and

Li(a1,...,ar )(z) =
∑

n1>...>nr>0

zn1

na11 . . . n
ar
r
·

for any composition (a1, . . . , ar ) and any z ∈ C such that

|z | < 1.
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our algorithm requires only half as many steps as the old one

to achieve the same precision, and implemented on the same

computer, it takes roughly a third of the time. Moreover, the

old algorithm looks somewhat artificial, because it involves

splitting the iterated integral from 0 to 1 at 1
2
, whereas one

could also choose any other intermediate element between 0

and 1.
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Multiple Apéry-Like Sums
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