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2 Pólya-Eggenberger urn models

3 Network models

2 / 59
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Discrete parking problems: Parking scheme

The parking scheme:

Consider one-way street

m parking spaces are in a row

n drivers wish to park in these spaces

Each driver has preferred parking space to which he drives

If parking space is empty ⇒ he parks there

If not, he drives on and parks in the next free parking space
if there is one

If all remaining parking spaces are occupied
⇒ leaves without parking
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Discrete parking problems: Example

Example: 8 parking spaces, 8 cars
Parking sequence: 3, 6, 3, 8, 6, 7, 4, 5

1 2 3 4 5 6 7 8

⇒ 2 cars are unsuccessful
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Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars
Parking sequence: 3, 6, 3, 8, 6, 7, 4, 5

1 2 3 4 5 6 7 8

⇒ 2 cars are unsuccessful

5 / 59
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Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars
Parking sequence: 3, 6, 3, 8, 6, 7, 4, 5

1 2 3 4 5 6 7 8

⇒ 2 cars are unsuccessful

5 / 59
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Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars
Parking sequence: 3, 6, 3, 8, 6, 7, 4, 5

1 2 3 4 5 6 7 8

⇒ 2 cars are unsuccessful

5 / 59
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Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence a1, . . . , an ∈ {1, . . . ,m}n
⇒ k unsuccessful cars (max(n −m, 0) ≤ k ≤ n − 1)

Parking functions: special instance k = 0
⇒ all cars can be parked

Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

m places at a round table
(∼= memory addresses)

n guests arriving sequentially at
certain places (∼= data elements)

each guest goes clockwise to
first empty place
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Discrete parking problems: Enumeration results

Enumeration result for parking sequences:
Konheim and Weiss [1966]

g(m, n): number of parking functions
for m parking spaces and n cars

g(m, n) = (m − n + 1)(m + 1)n−1

Questions for general parking sequences:
“Combinatorial question”:

What is the number g(m, n, k) of parking sequences
a1, . . . , an ∈ {1, . . . ,m}n such that exactly k drivers are
unsuccessful?

Exact formulæ for g(m, n, k) ?
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Discrete parking problems: Enumeration results

“Probabilistic question”:

What is the probability that for a randomly chosen
parking sequence a1, . . . , an ∈ {1, . . . ,m}n exactly k
drivers are unsuccessful ?

r.v. Xm,n: counts number of unsuccessful cars for a randomly
chosen parking sequence

Probability distribution of Xm,n ?

Limiting distribution results (depending on growth of m, n) ?
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Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Enumeration results

Cameron, Johannsen, Prellberg and Schweitzer [2008];
Panholzer [2008]

Number g(m, n, k) of parking sequences for m parking spaces and
n drivers such that exactly k drivers are unsuccessful (n ≤ m + k):

g(m, n, k) = (m − n + k)
n−k∑
`=0

(
n

`

)
(m − n + k + `)`−1(n − k − `)n−`

− (m − n + k + 1)
n−k−1∑
`=0

(
n

`

)
(m − n + k + 1 + `)`−1(n − k − 1− `)n−`
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Discrete parking problems: Enumeration results

Abel’s generalization of the binomial theorem:

(x + y)n =
n∑
`=0

(
n

`

)
x(x − `z)`−1(y + `z)n−`

⇒ alternative expression for g(m, n, k) useful for k small

Examples for small numbers k of unsuccessful cars:

g(m, n, 0) = (m − n + 1)(m + 1)n−1

g(m, n, 1) = (m − n + 2)(m + 2)n−1 + (n2 − n −m2 − 2m − 1)(m + 1)n−2

g(m, n, 2) = (m − n + 3)(m + 3)n−1

+ (2n2 −mn −m2 − 4n − 4m − 4)(m + 2)n−2

+
1

2
n(−n2 −mn + 2m2 + 2n − 5m + 1)(m + 1)n−3
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Discrete parking problems: Limiting distribution results

Exact probability distribution of Xm,n:

P{Xm,n = k} = g(m,n,k)
mn

Expectation of Xm,n: Gonnet and Munro [1984]
Studied in analysis of algorithm “linear probing sort”

Limiting distribution results for Xm,n: Panholzer [2008]

Depending on growth of m, n ⇒
nine regions with different limiting behaviour
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Discrete parking problems: Limiting distribution results

Weak convergence of Xm,n (m parking spaces, n cars):

n� m : Xm,n
(d)−−→ X

P{X = 0} = 1

degenerate limit law
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Discrete parking problems: Limiting distribution results

Weak convergence of Xm,n (m parking spaces, n cars):

n ∼ ρm, 0 < ρ < 1 : Xm,n
(d)−−→ Xρ

P{Xρ ≤ k} = (1− ρ)
k∑
`=0

(−1)k−` (`+ 1)k−`

(k − `)!
ρk−`e(`+1)ρ

discrete limit law
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Discrete parking problems: Limiting distribution results

Weak convergence of Xm,n (m parking spaces, n cars):

√
m� ∆ := m − n� m : ∆

m Xm,n
(d)−−→ X

(d)
= EXP(2)

survival function: P{X ≥ x} = e−2x , x ≥ 0

asymptotically exponential distributed
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Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Limiting distribution results

Weak convergence of Xm,n (m parking spaces, n cars):

0 ≤ ∆ := n −m�
√

n :
Xm,n+m−n√

n

(d)−−→ X
(d)
= RAYLEIGH(2)

survival function: P{X ≥ x} = e−2x2
, x ≥ 0

asymptotically Rayleigh distributed

12 / 59



Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Limiting distribution results

Weak convergence of Xm,n (m parking spaces, n cars):

∆ := n −m ∼ ρ
√

n, ρ > 0 :
Xm,n+m−n√

n

(d)−−→ Xρ
(d)
= LINEXP(2, ρ)

survival function: P{X ≥ x} = e−2x(x+ρ), x ≥ 0

asymptotically linear-exponential distributed

12 / 59
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Discrete parking problems: Analysis

Few words on analysis:

Derivation of exact enumeration results:

Recursive description of parameter via block decomposition

∗ Case n < m + k: decomposition after first empty space j :

j1 m

∗ Case n = m + k: all parking spaces are occupied:

1 m

Generating functions approach

13 / 59
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Discrete parking problems: Analysis

Exact formula for suitable generating function:

G (z , u, v) =
1− T (zu)

zv(
1− T (zu)

z

)
·
(
1− u

v ezv
)

Special function “tree function” is appearing:

T (z) :=
∑
n≥1

nn−1 zn

n!

T (z): satisfies functional equation T (z) = zeT (z)

14 / 59
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Discrete parking problems: Analysis

Exact generating function useful for analysing Xm,n

via analytic combinatorics (applying complex-analytic techniques)

Example: special instance: m (parking spaces) = n (cars)

Contour integral for GF of diagonal: F (u, v) = 1
2πi

∮ G(t, u
t
,v)

t dt

Applying “method of moments”:

Studying derivatives of F (u, v) evaluated at v = 1:

local expansion around dominant singularity u = 1
e

Singularity analysis, Flajolet and Odlyzko [1990]

⇒ r -th moments converge to moments of Rayleigh r.v.

Theorem of Fréchet and Shohat:
Xm,m√

m

(d)−−→ RAYLEIGH(2)
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Theorem of Fréchet and Shohat:
Xm,m√

m

(d)−−→ RAYLEIGH(2)

15 / 59
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Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

a + (m − 1)b addresses
m parking spaces
parking permitted only at addresses
a, a + b, a + 2b, . . . , a + (m − 1)b

Example: a = 5, b = 3

a a+b a+2b a+3b
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Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

a + (m − 1)b addresses
m parking spaces
parking permitted only at addresses
a, a + b, a + 2b, . . . , a + (m − 1)b

Example: a = 5, b = 3

a a+b a+2b a+3b

16 / 59
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Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

a + (m − 1)b addresses
m parking spaces
parking permitted only at addresses
a, a + b, a + 2b, . . . , a + (m − 1)b

Example: a = 5, b = 3

a a+b a+2b a+3b

16 / 59



Discrete parking problems Pólya-Eggenberger urn models Network models

Discrete parking problems: Further research

Question for generalized parking scheme:

What is the number g (a,b)(m, n, k) of parking sequences
a1, . . . , an ∈ {1, . . . , a + (m − 1)b}n such that exactly k
drivers are unsuccessful?

Exact formula for g (a,b)(m, n, k):

g (a,b)(m, n, k) =

(a + b(m − n + k − 1))
n−k∑
`=0

(
n

`

)
(a + b(m − n + k − 1 + `))`−1(b(n − k − `))n−`

− (a + b(m − n + k))
n−k−1∑
`=0

(
n

`

)
(a + b(m − n + k + `))`−1(b(n − k − 1− `))n−`
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Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

Each parking space can hold up to r cars
Related to analysis of bucket hashing algorithms

r
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Discrete parking problems: Further research

Question for bucket parking scheme:

What is the number g (r)(m, n, k) of parking sequences
a1, . . . , an ∈ {1, . . . ,m}n such that exactly k drivers are
unsuccessful?

Exact expression for suitable generating function Gr (z , u, v):

Gr (z , u, v) =
1

1− u
v r ezv

∏r−1
j=0

(
1− r

zv T ( 1
r ω

j
r zu1/r )

)∏r−1
j=0

(
1− r

z T ( 1
r ω

j
r zu1/r )

)
ωr := e

2πi
r : primitive r -th root of unity

Problems for analysis:

no suitable explicit expression for coefficients available

asymptotic analysis based on generating fct. more involved
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Discrete parking problems: Further research

Joint study with “terminal block size”

Refinement in analysis:

k: number of unsuccessful drivers

`: size of terminal block of occupied parking spaces

l
k
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Discrete parking problems: Further research

Exact enumeration result:

Numbers g(m, n, `, k) of parking sequences for m parking spaces
and n drivers such that exactly k drivers are unsuccessful and the
size of the terminal block is `:

g(m, n, `, k) =

(
n

k + `

)
(m − n + k)(m − `)n−`−k−1

×

`k+` −
`−1∑
q=0

(
k + `

q

)
(q + 1)q−1(`− 1− q)k+`−q
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Pólya-Eggenberger urn models

(together with H.-K. Hwang, Academia Sinica, Taipei
and M. Kuba, TU Wien)

22 / 59
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Pólya-Eggenberger urn models: Definition

Pólya-Eggenberger urn models:

two types of balls: urn contains n white balls and m black balls

evolution of urn occurs in discrete time steps

at every step: ball is drawn at random from urn

color of ball is inspected and then ball is reinserted into urn

according to observed color of ball, balls are added/removed
due to following rules:

white ball drawn ⇒ a white balls and b black balls are added

black ball drawn ⇒ c white balls and d black balls are added

Ball replacement matrix specifies urn model:

M =
(

a b
c d

)
, a, b, c, d ∈ Z
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Pólya-Eggenberger urn models: Example

Example:

ball replacement matrix M =
(

2 1
1 −1

)
initial configuration:

n = 7 yellow (white) balls and m = 6 black balls
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ball replacement matrix M =
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initial configuration:
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pblack = 6/13
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Pólya-Eggenberger urn models: Example

Example:

ball replacement matrix M =
(

2 1
1 −1

)
initial configuration:

n = 7 yellow (white) balls and m = 6 black balls

Inspected color:
yellow
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Example:

ball replacement matrix M =
(

2 1
1 −1

)
initial configuration:

n = 7 yellow (white) balls and m = 6 black balls

2 x 1 x
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Pólya-Eggenberger urn models: Example

Example:

ball replacement matrix M =
(

2 1
1 −1

)
initial configuration:

n = 7 yellow (white) balls and m = 6 black balls

pyellow = 9/16

pblack = 7/16
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Pólya-Eggenberger urn models: Example

Example:

ball replacement matrix M =
(

2 1
1 −1

)
initial configuration:

n = 7 yellow (white) balls and m = 6 black balls

Inspected color:
black
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ball replacement matrix M =
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1 −1

)
initial configuration:

n = 7 yellow (white) balls and m = 6 black balls
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1 −1
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Pólya-Eggenberger urn models: Diminishing urns

Diminishing urn models:

Pólya-Eggenberger urn model with ball replacement matrix M

in addition: set of absorbing states A ⊂ N0 × N0.
state = (i , j) =̂ urn contains i black balls, j white balls

urn evolves according to matrix M until absorbing state
(i , j) ∈ A is reached

consider only well defined urns:
urn always ends in absorbing state of A
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Pólya-Eggenberger urn model with ball replacement matrix M

in addition: set of absorbing states A ⊂ N0 × N0.
state = (i , j) =̂ urn contains i black balls, j white balls

urn evolves according to matrix M until absorbing state
(i , j) ∈ A is reached

consider only well defined urns:
urn always ends in absorbing state of A

25 / 59
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Pólya-Eggenberger urn models: Diminishing urns

Why should we study such urn models?

Motivation:

such models appear in various contexts

often have different nature compared to “usually” studied urns

different question arising:

What is the terminal configuration of urn when
starting with m black and n white balls?

Examples of urns arising in applications:

Pill’s problem urn and generalizations

Cannibal urn problem

OK Corral urn problem
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Examples

OK Corral urn: introduced as model in theory of warfare

two groups A and B of gunmen are fighting

one gunmen is selected uniformly at random and shoots (kills)
then a member of the opposing group

fight ends if all members of one group are killed

Main questions:

Which group will survive?

How many survivors, say of group A, are there when the fight
is over?

Historical remark: 1881 Wyatt Earp, Morgan Earp, Virgil
Earp, and Doc Holliday were fighting against Frank
McLaury, Tom McLaury, Ike Clanton, Billy Clanton, Billy
Claiborne, and Wes Fuller the OK Corral ranch.
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Examples

OK Corral urn: described via diminishing urn model

ball replacement matrix M =
(

0 −1
−1 0

)
absorbing states A = {(0, n)|n ∈ N0} ∪ {(m, 0)|m ∈ N0}

Mathematical description:

Xm,n: r.v. counting number of white balls (survivors) when all
black balls have been drawn

probability gen. function: hm,n(v) =
∑

k≥0 P{Xm,n = k}vk

Recurrence for hm,n(v):

hm,n(v) =
n

n + m
hm−1,n(v) +

m

n + m
hm,n−1(v), n ≥ 1,m ≥ 1

boundary values: h0,n(v) = vn, hm,0(v) = 1
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Examples

Generalized OK Corral urn:
Arms of group A have power α ∈ N
Arms of group B have power β ∈ N

ball replacement matrix M =
( 0 −α
−β 0

)
absorbing states A = {(0, βn)|n ∈ N0} ∪ {(αm, 0)|m ∈ N0}

Cannibal urn: model for behavior of cannibals in biological
population

ball replacement matrix M =
(

0 −1
1 −2

)
absorbing states A = {(0, n)|n ∈ N0} ∪ {(1, n)|n ∈ N0}

Pills problem urn: (introduced by Knuth and Mc Carthy [1991])

ball replacement matrix M =
(−1 0

1 −1

)
absorbing states A = {(0, n)|n ∈ N0}
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Discrete parking problems Pólya-Eggenberger urn models Network models
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Examples

Evolution of urn: can be described via weighted lattice paths

Example: OK Corral urn

(4,4)

State (0, 2) is reached!

30 / 59
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Analysis

Outline of analytic approach:

generating function approach
recurrences for prob. gen. fct. hn,m(v) translated into
first order linear partial differential equations
applying method of characteristics

Problems where all boundary behaviors are known:

use ordinary generating function H(z ,w) = H(z ,w , v):

H(z ,w) :=
∑
n≥1

∑
m≥1

hn,m(v)znwm

Problems with unknown boundary values:

use suitably modified generating functions to get rid of the
unknown boundary values hm,0(v)
E.g., for cannibal urn we use

H(z ,w) :=
∑
n≥0

∑
m≥1

1

m

(
n + m − 1

m − 1

)
hn,m(v)znwm.
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Pólya-Eggenberger urn models: Analysis

In short we proceed as follows:

Recurrence relation

linear first
order PDE

ordinary GF modified GF.

boundaries known unknown boundary

linear first
order PDE

method of
characteristics

explicit solution
for GF

probabilities method of
moments

Limit laws

32 / 59
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Pólya-Eggenberger urn models: Analysis

Can we find a “handy” first integral?

Recurrence relation

linear first
order PDE

ordinary GF modified GF.

boundaries known unknown boundary

linear first
order PDE

method of
characteristics

explicit solution
for GF

probabilities method of
moments

Limit laws
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Analysis

For many interesting urn models we
obtain explicit solutions!

Example: generalized OK Corral urn

Linear first-order PDE with H(z , 0) = H(0,w) = 0:

βz(1−w)Hz(z ,w) +αw(1− z)Hw (z ,w) =
βwzvβ

(1− vβz)2
+

αwz

(1− w)2

System of characteristic differential equations:

ż = βz(1− w), ẇ = αw(1− z)
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Analysis

⇒ first integral:

ξ(z ,w) :=
zα/β

w
ew−zα/β = const.

Using transformation:

ξ =
zα/β

w
ew−zα/β and η = z

⇒ explicit GF solution involving tree function T (z):

H(z ,w) = z

∫ 1

0

vβT (wqα/βeβz(1−q)/α−w )dq

(1− vβzq)2(1− T (wqα/βeβz(1−q)/α−w ))

+ z

∫ 1

0

αT (wqα/βeβz(1−q)/α−w )dq

β(1− T (wqα/βeβz(1−q)/α−w ))3
.
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Results

As a consequence:

For many interesting urn models
we obtain explicit formulæ for
probabilities, probability generating
functions, moments, etc.

Explicit formulæ useful for
describing limiting behaviour of
random variables.
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Discrete parking problems Pólya-Eggenberger urn models Network models
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Results

Example: Generalized OK Corral urn

Theorem

Starting with βn white balls and αm black balls.

pαm,βn: probability that all black balls are removed
(group of white balls “survive”):

pαm,βn =
1

m!n!

βm

αm

n∑
`=1

(−1)n−`
(n
`

)(m+ β
α
`

m

)`n+m

P{Xαm,βn = βk}: probability that exactly βk white balls “survive”:

P{Xαm,βn = βk} =
k

(n − k)!m!

βm

αm

n∑
`=0

(−1)n−`
(n−k
`−k

)(m+ β
α
`

m

)`m+n−1−k
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Pólya-Eggenberger urn models: Results

Limiting distribution results:

model very sensitive to relative sizes of initial groups

influence of “power of arms”: according to the square roots of
powers

If
√
αm ∼

√
βn does not hold then fight is unfair!

results dependend on behaviour of quantities

A1(n,m) = β
n(n + 1)

2
− αm(m + 1)

2

and

A2(n,m) = β2 n(n + 1)(2n + 1)

6
+ α2 m(m + 1)(2m + 1)

6
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Pólya-Eggenberger urn models: Results

Theorem

Which group will survive?

Region “Black balls survive”: A1(n,m)√
A2(n,m)

→ −∞:

pαm,βn → 0

“Fair” region: A1(n,m)√
A2(n,m)

→ θ ∈ R:

pαm,βn → F (θ), function F (θ) can be described explicitly.

Region “White balls survive”: A1(n,m)√
A2(n,m)

→∞:

pαm,βn → 1
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Pólya-Eggenberger urn models: Results

Theorem

How many survivors in group of white balls?

Region “No survivors”: A1(n,m)√
A2(n,m)

→ −∞:

Xαm,βn
(d)−−→ X with P{X = 0} = 1

“Fair” region: A1(n,m)√
A2(n,m)

→ θ ∈ R:

Xαm,βn√
A2(n,m)

(d)−−→ X , with P{X ≤ x} = Φ
(βx2

2 − θ
)
, x ≥ 0

Φ(x) = 1√
2π

∫ x
−∞ e−

u2

2 du: standard normal distribution

function

Region “White group of balls survive”: A1(n,m)√
A2(n,m)

→∞:

various subregions with different behaviour
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Pólya-Eggenberger urn models: Higher dimensions

Higher dimensional urn models: approach applicable to several
urns

Example: r-dimensional Pills problem urn:

ball replacement matrix:

M =



−1 0 0 ··· 0 0 0

1 −1 0
. . .

. . .
. . . 0

0 1 −1
. . .

. . .
. . . 0...

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . . −1 0 0

0
. . .

. . .
. . . 1 −1 0

0 0 0 ··· 0 1 −1


absorbing states: hyperplane
A = {(n1, . . . , nr−1, 0)|n1, . . . , nr−1 ∈ N0}
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Discrete parking problems Pólya-Eggenberger urn models Network models
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Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill’s problem:

ball replacement matrix M =
(−1 0

1 −1

)
absorbing states A = {(0, n)|n ∈ N0}
start with 6 large pills and one small pill

(6,1)

⇒ The state (0, 2) ∈ A is reached.
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Discrete parking problems Pólya-Eggenberger urn models Network models
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Higher dimensions

First order linear PDE:

r−1∑
j=1

(zj − z1zj − zj+1)Hzj (z) + (zr − z1zr )Hzr (z)− z1H(z)

=
vr−1zr

(1− v1z1 − v2z2 − · · · − vr−1zr−1)2
.

Chracteristic system of DEs:

ż1 = z1 − z2
1 − z2, ż2 = z2 − z1z2 − z3, . . . ,

żr−1 = zr−1 − z1zr−1 − zr , żr = zr − z1zr .
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Discrete parking problems Pólya-Eggenberger urn models Network models

Pólya-Eggenberger urn models: Higher dimensions

Independent first integrals ξ1, . . . , ξr−2: characterized as
solution of system of linear equations

zr−2

zr
=

( zr−1

zr

)2

2!
+ ξr−2,

zr−3

zr
=

( zr−1

zr

)3

3!
+ ξr−2

( zr−1

zr

)
1!

+ ξr−3,

zr−4

zr
=

( zr−1

zr

)4

4!
+ ξr−2

( zr−1

zr

)2

2!
+ ξr−3

( zr−1

zr

)
1!

+ ξr−4,

... =
...

z1

zr
=

( zr−1

zr

)r−1

(r − 1)!
+ ξr−2

( zr−1

zr

)r−3

(r − 3)!
+ ξr−3

( zr−1

zr

)r−4

(r − 4)!
+ · · ·+ ξ2

( zr−1

zr

)
1!

+ ξ1.

(r − 1)-th independent first integral:

ξr−1 =
zr

1− z1 − · · · − zr
e

zr−1
zr .
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Pólya-Eggenberger urn models: Higher dimensions

Theorem

Explicit generating functions solution:

H(z) = vr−1zr

∫ 1

0

dq(
f (z, v, q)

)2
,

with

f (z, v, q) = 1−
r−1∑
`=1

z`
(
1− q

∑̀
k=1

(1− vk)(−1)`−k log`−k q

(`− k)!

)
− zr

(
1− q − q

r−1∑
k=1

(1− vk)(−1)r−k logr−k q

(r − k)!

)
.

Exact and asymptotic results follow from that!
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models

(partially together with M. Kuba, TU Wien
partially together with M. Drmota and B. Gittenberger, TU Wien

partially together with G. Seitz, TU Wien)
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: Introduction

Experimental study of real networks:
(e.g., Watts and Strogatz [1998])

neural networks
collaboration graphs
power grid of US
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: Introduction

Occuring phenomena:

“small-world”-phenomen:
diameters are smaller than regularly constructed graphs

degree-distribution follows “power-law”:
probability pk that node has degree k satisfies

pk ∼ k−γ , γ ∈ R+

⇒ Scale-free networks
(e.g., protein networks, citation networks, some social
networks)

⇒ different behaviour than “classical” graph models
(e.g., G (n, p): Erdős-Rényi-graphs)
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: Introduction

Occuring phenomena:

“small-world”-phenomen:
diameters are smaller than regularly constructed graphs

degree-distribution follows “power-law”:
probability pk that node has degree k satisfies

pk ∼ k−γ , γ ∈ R+

⇒ Scale-free networks
(e.g., protein networks, citation networks, some social
networks)

⇒ different behaviour than “classical” graph models
(e.g., G (n, p): Erdős-Rényi-graphs)
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: Introduction

Of interest:

Modelling scale-free networks by random graphs defined by
simple rules

Precise mathematical analysis of models

Famous model: Barabasi-Albert model [1999]:

Start with small number of vertices

At each time step:
add new vertex and connect it to m different existing vertices

Special rule “Preferential attachement”:
probability p(v) that new vertex will be connected to vertex v
is proportional to connectivity of v
⇒ “success breeds success”
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: PORTs

Special case: m = 1 ⇒ family of random trees:

Plane-oriented recursive trees (PORTs)
(introduced by Prodinger and Urbanek [1983]; Szymansky [1985])

The order of the subtrees is important!

1

2 3

4

6=
1

3 2

4
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: PORTs

Special case: m = 1 ⇒ family of random trees:

Plane-oriented recursive trees (PORTs)
(introduced by Prodinger and Urbanek [1983]; Szymansky [1985])

The order of the subtrees is important!

1

2 3

4

6=
1

3 2

4

49 / 59



Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: PORTs

Generated via “preferential attachment”-rule:
probability that new node is attached to v is proportional to
d+(v) + 1
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Network models: PORTs

Generated via “preferential attachment”-rule:
probability that new node is attached to v is proportional to
d+(v) + 1

1

1

2

1

23

p = 1

p = 1/3p = 1/3

p = 1/3

1

2

3

1

32

p = 1/5
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: PORTs

Kuba and Panholzer [2006, 2007]:
precise analysis of various parameters in PORTs and generalizations

1

52 3

6 10 8

11 13

49

12

1 14

Exact and asymptotic results for:

Depth of specified nodes

Distance between specified nodes

Subtree-size of specified nodes

Out-degree of specified nodes

Number of Leaves in subtree rooted at specified node
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: Thickened trees

But after all: PORTs are trees!

Richer structures:
“Thickened trees”: Drmota, Gittenberger and Panholzer [2008],
Drmota, Gittenberger and Kutzelnigg [2009]

Substitution process:
start with PORTs, replace nodes by certain graphs

−→

inspired from some real networks:
local structure: clusters, global structure: tree-like

52 / 59
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: k-trees

Processes generating other graph families:
Panholzer and Seitz [2009+]
⇒ “Ordered k-trees” by attaching nodes to existing k-cliques

Example of a rooted 2-tree:
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: k-trees

Ordered k-trees:

Start with k-clique

At each time step:
add new vertex and connect it to all nodes of existing k-clique

“Preferential attachment”-rule:
probability p(C ) that new vertex will be connected to k-clique C
is proportional to 1 + # already attached nodes of C
⇒ “success breeds success”
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Network models: k-trees

Ordered k-trees:

Start with k-clique

At each time step:
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“Preferential attachment”-rule:
probability p(C ) that new vertex will be connected to k-clique C
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Network models: k-trees

Order of attached nodes is important!

Example: 2-trees
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: k-trees

Analysis of parameters in k-trees:

Two descriptions:

bottom-up: insertion process

top-down: decomposition according to root k-clique

Exact and asymptotic results for analysed parameters:
Panholzer and Seitz [2009+]:

Degree of nodes (specified nodes, random nodes)

Number of descendants

Root-to-node-distance of specified nodes
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: k-trees

Theorem (Panholzer and Seitz, 2009)

Dn: Distance between node 1 and node n in ordered k-tree
Expectation and Variance of Dn:

E(Dn) =
1

(k + 1)Hk
log n +O(1),

V(Dn) =
H

(2)
k

(k + 1)H3
k

log n +O(1).

Normalized random variable asympotically Gaussian distributed:

sup
x∈R

∣∣∣∣∣ P
{

Dn − E(Dn)√
V(Dn)

≤ x

}
− Φ(x)

∣∣∣∣∣ = O
( 1√

log n

)
.

57 / 59
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Discrete parking problems Pólya-Eggenberger urn models Network models

Network models: k-trees

Top-down approach: ⇒ system of ordinary DE for generating
functions S1(z , v), . . . ,Sk(z , v):

∂

∂z
S1(z , v) =

k − 1

1− (k + 1)z

(
S1(z , v) + S2(z , v)

)
,

∂

∂z
S2(z , v) =

k − 2

1− (k + 1)z

(
S2(z , v) + S3(z , v)

)
,

∂

∂z
S3(z , v) =

k − 3

1− (k + 1)z

(
S3(z , v) + S4(z , v)

)
,

... =
...,

∂

∂z
Sk−1(z , v) =

1

1− (k + 1)z

(
Sk−1(z , v) + Sk(z , v)

)
,

∂

∂z
Sk(z , v) =

kv

1− (k + 1)z
S1(z , v).
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Network models: k-trees

System of DEs can be solved explicitly:

S`(z , v) =
k∑

j=1

A
(`)
j (v)

(1− (k + 1)z)αj (v)
, 1 ≤ ` ≤ k .

A
(`)
j (v): certain functions analytic in v

αj(v), 1 ≤ j ≤ k : different solutions of equation

α ·
(
α− 1

k + 1

)
·
(
α− 2

k + 1

)
· · ·
(
α− k − 1

k + 1

)
=

k!

(k + 1)k
v .

Results follow immediately by applying methods from
analytic combinatorics!
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