

Exact and asymptotic enumeration results for combinatorial objects

Alois Panholzer

Institute of Discrete Mathematics and Geometry Vienna University of Technology
Alois.Panholzer@tuwien.ac.at

Universite de Paris-Nord, 9.2.2010

Outline of the talk

(1) Discrete parking problems
(2) Pólya-Eggenberger urn models
(3) Network models

Discrete parking problems

(partially together with Georg Seitz, TU Wien)

Discrete parking problems: Parking scheme

The parking scheme:

- Consider one-way street
- m parking spaces are in a row
- n drivers wish to park in these spaces
- Each driver has preferred parking space to which he drives
- If parking space is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking space if there is one
- If all remaining parking spaces are occupied \Rightarrow leaves without parking

Discrete parking problems: Parking scheme

The parking scheme:

- Consider one-way street
- m parking spaces are in a row
- n drivers wish to park in these spaces
- Each driver has preferred parking space to which he drives
- If parking space is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking space if there is one
- If all remaining parking spaces are occupied \Rightarrow leaves without parking

Discrete parking problems: Parking scheme

The parking scheme:

- Consider one-way street
- m parking spaces are in a row
- n drivers wish to park in these spaces
- Each driver has preferred parking space to which he drives
- If parking space is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking space if there is one
- If all remaining parking spaces are occupied \Rightarrow leaves without parking

Discrete parking problems: Parking scheme

The parking scheme:

- Consider one-way street
- m parking spaces are in a row
- n drivers wish to park in these spaces
- Each driver has preferred parking space to which he drives
- If parking space is empty \Rightarrow he parks there
- If not, he drives on and parks in the next free parking space if there is one
- If all remaining parking spaces are occupied
\Rightarrow leaves without parking

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars
Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

Discrete parking problems: Example

Example: 8 parking spaces, 8 cars Parking sequence: $3,6,3,8,6,7,4,5$

$\Rightarrow 2$ cars are unsuccessful

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]
in analysis of linear probing hashing algorithm

- m places at a round table
(\cong memory addresses)
- n guests arriving sequentially at
certain places (\cong data elements)
- each guest goes clockwise to
first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table
(\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Parking functions

Number of unsuccessful cars:

Parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$
$\Rightarrow k$ unsuccessful cars $(\max (n-m, 0) \leq k \leq n-1)$
Parking functions: special instance $k=0$
\Rightarrow all cars can be parked
Introduced by Konheim and Weiss [1966]:
in analysis of linear probing hashing algorithm

- m places at a round table (\cong memory addresses)
- n guests arriving sequentially at certain places (\cong data elements)
- each guest goes clockwise to first empty place

Discrete parking problems: Enumeration results

Enumeration result for parking sequences:

Konheim and Weiss [1966]
$g(m, n)$: number of parking functions for m parking spaces and n cars

$$
g(m, n)=(m-n+1)(m+1)^{n-1}
$$

Questions for general parking sequences:
"Combinatorial question":
What is the number $g(m, n, k)$ of parking sequences
$a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$ such that exactly k drivers are
unsuccessful?

- Exact formulæ for $g(m, n, k)$?

Discrete parking problems: Enumeration results

Enumeration result for parking sequences:
Konheim and Weiss [1966]
$g(m, n)$: number of parking functions for m parking spaces and n cars

$$
g(m, n)=(m-n+1)(m+1)^{n-1}
$$

Questions for general parking sequences:
"Combinatorial question":
What is the number $g(m, n, k)$ of parking sequences
$a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$ such that exactly k drivers are unsuccessful?

- Exact formulæ for $g(m, n, k)$?

Discrete parking problems: Enumeration results

"Probabilistic question":
What is the probability that for a randomly chosen parking sequence $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$ exactly k drivers are unsuccessful ?
r.v. $X_{m, n}$: counts number of unsuccessful cars for a randomly chosen parking sequence

- Probability distribution of $X_{m, n}$?
- Limiting distribution results (depending on growth of m, n) ?

Discrete parking problems: Enumeration results

Cameron, Johannsen, Prellberg and Schweitzer [2008]; Panholzer [2008]

Number $g(m, n, k)$ of parking sequences for m parking spaces and n drivers such that exactly k drivers are unsuccessful ($n \leq m+k$):

$$
\begin{aligned}
& g(m, n, k)=(m-n+k) \sum_{\ell=0}^{n-k}\binom{n}{\ell}(m-n+k+\ell)^{\ell-1}(n-k-\ell)^{n-\ell} \\
& -(m-n+k+1) \sum_{\ell=0}^{n-k-1}\binom{n}{\ell}(m-n+k+1+\ell)^{\ell-1}(n-k-1-\ell)^{n-\ell}
\end{aligned}
$$

Discrete parking problems: Enumeration results

Abel's generalization of the binomial theorem:

$$
(x+y)^{n}=\sum_{\ell=0}^{n}\binom{n}{\ell} x(x-\ell z)^{\ell-1}(y+\ell z)^{n-\ell}
$$

\Rightarrow alternative expression for $g(m, n, k)$ useful for k small

Discrete parking problems: Enumeration results

Abel's generalization of the binomial theorem:

$$
(x+y)^{n}=\sum_{\ell=0}^{n}\binom{n}{\ell} x(x-\ell z)^{\ell-1}(y+\ell z)^{n-\ell}
$$

\Rightarrow alternative expression for $g(m, n, k)$ useful for k small
Examples for small numbers k of unsuccessful cars:

$$
\begin{aligned}
g(m, n, 0)= & (m-n+1)(m+1)^{n-1} \\
g(m, n, 1)= & (m-n+2)(m+2)^{n-1}+\left(n^{2}-n-m^{2}-2 m-1\right)(m+1)^{n-2} \\
g(m, n, 2)= & (m-n+3)(m+3)^{n-1} \\
& +\left(2 n^{2}-m n-m^{2}-4 n-4 m-4\right)(m+2)^{n-2} \\
& +\frac{1}{2} n\left(-n^{2}-m n+2 m^{2}+2 n-5 m+1\right)(m+1)^{n-3}
\end{aligned}
$$

Discrete parking problems: Limiting distribution results

Exact probability distribution of $X_{m, n}$:

$$
\mathbb{P}\left\{X_{m, n}=k\right\}=\frac{g(m, n, k)}{m^{n}}
$$

Expectation of $X_{m, n}$: Gonnet and Munro [1984]
 Studied in analysis of algorithm "linear probing sort"

Limiting distribution results for $X_{m, n}$: Panholzer [2008]

Depending on growth of $m, n \Rightarrow$
nine regions with different limiting behaviour

Discrete parking problems: Limiting distribution results

Exact probability distribution of $X_{m, n}$:

$$
\mathbb{P}\left\{X_{m, n}=k\right\}=\frac{g(m, n, k)}{m^{n}}
$$

Expectation of $X_{m, n}$: Gonnet and Munro [1984]
Studied in analysis of algorithm "linear probing sort"

Limiting distribution results for $X_{m, n}$: Panholzer [2008]
Depending on growth of $m, n \rightarrow$
nine regions with different limiting behaviour

Discrete parking problems: Limiting distribution results

Exact probability distribution of $X_{m, n}$:

$$
\mathbb{P}\left\{X_{m, n}=k\right\}=\frac{g(m, n, k)}{m^{n}}
$$

Expectation of $X_{m, n}$: Gonnet and Munro [1984]
Studied in analysis of algorithm "linear probing sort"

Limiting distribution results for $X_{m, n}$: Panholzer [2008]
Depending on growth of $m, n \Rightarrow$
nine regions with different limiting behaviour

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):
$n \ll m: \quad X_{m, n} \xrightarrow{(d)} X$

$$
\mathbb{P}\{X=0\}=1
$$

degenerate limit law

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):
$n \sim \rho m, \quad 0<\rho<1: \quad X_{m, n} \xrightarrow{(d)} X_{\rho}$

$$
\mathbb{P}\left\{X_{\rho} \leq k\right\}=(1-\rho) \sum_{\ell=0}^{k}(-1)^{k-\ell} \frac{(\ell+1)^{k-\ell}}{(k-\ell)!} \rho^{k-\ell} e^{(\ell+1) \rho}
$$

discrete limit law

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):
$\sqrt{m} \ll \Delta:=m-n \ll m: \quad \frac{\Delta}{m} X_{m, n} \xrightarrow{(d)} X \stackrel{(d)}{=} \operatorname{EXP}(2)$

$$
\text { survival function: } \mathbb{P}\{X \geq x\}=e^{-2 x}, \quad x \geq 0
$$

asymptotically exponential distributed

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):
$\Delta:=m-n \sim \rho \sqrt{m}, \quad \rho>0: \quad \frac{1}{\sqrt{m}} X_{m, n} \xrightarrow{(d)} X_{\rho} \stackrel{(d)}{=} \operatorname{LINEXP}(2, \rho)$
survival function: $\mathbb{P}\left\{X_{\rho} \geq x\right\}=e^{-2 x(x+\rho)}, \quad x \geq 0$
asymptotically linear-exponential distributed

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):

$$
0 \leq \Delta:=m-n \ll \sqrt{m}: \quad \frac{1}{\sqrt{m}} X_{m, n} \xrightarrow{(d)} X \stackrel{(d)}{=} \text { RAYLEIGH(2) }
$$

survival function: $\mathbb{P}\{X \geq x\}=e^{-2 x^{2}}, \quad x \geq 0$

asymptotically Rayleigh distributed

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):

$$
0 \leq \Delta:=n-m \ll \sqrt{n}: \quad \frac{x_{m, n}+m-n}{\sqrt{n}} \xrightarrow{(d)} X \stackrel{(d)}{=} \text { RAYLEIGH(2) }
$$

survival function: $\mathbb{P}\{X \geq x\}=e^{-2 x^{2}}, \quad x \geq 0$

asymptotically Rayleigh distributed

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):
$\Delta:=n-m \sim \rho \sqrt{n}, \quad \rho>0: \quad \frac{X_{m, n}+m-n}{\sqrt{n}} \xrightarrow{(d)} X_{\rho} \stackrel{(d)}{=} \operatorname{LINEXP}(2, \rho)$
survival function: $\mathbb{P}\{X \geq x\}=e^{-2 x(x+\rho)}, \quad x \geq 0$
asymptotically linear-exponential distributed

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):

$$
\sqrt{n} \ll \Delta:=n-m \ll n: \quad \frac{\Delta}{n}\left(X_{m, n}+m-n\right) \xrightarrow{(d)} X \stackrel{(d)}{=} \operatorname{EXP}(2)
$$

$$
\text { survival function: } \mathbb{P}\{X \geq x\}=e^{-2 x}, \quad x \geq 0
$$

asymptotically exponential distributed

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):

$$
n \sim \rho m, \quad \rho>1: \quad X_{m, n}+m-n \xrightarrow{(d)} X_{\rho}
$$

$$
\mathbb{P}\left\{X_{\rho} \geq k\right\}=k e^{-\rho k} \sum_{\ell=0}^{\infty} \frac{(\ell+k)^{\ell-1}}{\ell!}\left(\rho e^{-\rho}\right)^{\ell}, \quad k \geq 1
$$

discrete limit law

Discrete parking problems: Limiting distribution results

Weak convergence of $X_{m, n}$ (m parking spaces, n cars):
$n \gg m: \quad X_{m, n}+m-n \xrightarrow{(d)} X$

$$
\mathbb{P}\{X=0\}=1
$$

degenerate limit law

Discrete parking problems: Analysis

Few words on analysis:
Derivation of exact enumeration results:

- Recursive description of parameter via block decomposition

- Generating functions approach

Discrete parking problems: Analysis

Few words on analysis:
Derivation of exact enumeration results:

- Recursive description of parameter via block decomposition
* Case $n<m+k$: decomposition after first empty space j :

- Generating functions approach

Discrete parking problems: Analysis

Few words on analysis:
Derivation of exact enumeration results:

- Recursive description of parameter via block decomposition
* Case $n<m+k$: decomposition after first empty space j :

* Case $n=m+k$: all parking spaces are occupied:

1
- Generating functions approach

Discrete parking problems: Analysis

Few words on analysis:
Derivation of exact enumeration results:

- Recursive description of parameter via block decomposition
* Case $n<m+k$: decomposition after first empty space j :

* Case $n=m+k$: all parking spaces are occupied:


```
1
m
- Generating functions approach
```


蚂 明

Discrete parking problems: Analysis

- Exact formula for suitable generating function:

$$
G(z, u, v)=\frac{1-\frac{T(z u)}{z v}}{\left(1-\frac{T(z u)}{z}\right) \cdot\left(1-\frac{u}{v} e^{z v}\right)}
$$

- Special function "tree function" is appearing:

$$
T(z):=\sum_{n \geq 1} n^{n-1} \frac{z^{n}}{n!}
$$

$T(z)$: satisfies functional equation $T(z)=z e^{T(z)}$

Discrete parking problems: Analysis

Exact generating function useful for analysing $X_{m, n}$ via analytic combinatorics (applying complex-analytic techniques)

Example: special instance: m (parking spaces) $=n$ (cars)
Contour integral for GF of diagonal:

Applying "method of moments":

- Studying derivatives of $F(u, v)$ evaluated at $v=1$
- local expansion around dominant singularity $u=\frac{1}{e}$ - Singularity analysis, Flajolet and Odlyzko [1990]
- $\Rightarrow r$-th moments converge to moments of Rayleigh r.v

Theorem of Fréchet and Shohat:

Discrete parking problems: Analysis

Exact generating function useful for analysing $X_{m, n}$ via analytic combinatorics (applying complex-analytic techniques)

Example: special instance: m (parking spaces) $=n$ (cars)
Contour integral for GF of diagonal: $\quad F(u, v)=\frac{1}{2 \pi i} \oint \frac{G\left(t, \frac{u}{t}, v\right)}{t} d t$
Applying "method of moments":

- Studying derivatives of $F(u, v)$ evaluated at $v=1$
- local expansion around dominant singularity $u=\frac{1}{e}$
- Singularity analysis, Flajolet and Odlyzko [1990]
- $\Rightarrow r$-th moments converge to moments of Rayleigh r.v.

Theorem of Fréchet and Shohat:

Discrete parking problems: Analysis

Exact generating function useful for analysing $X_{m, n}$ via analytic combinatorics (applying complex-analytic techniques)

Example: special instance: m (parking spaces) $=n$ (cars)
Contour integral for GF of diagonal: $\quad F(u, v)=\frac{1}{2 \pi i} \oint \frac{G\left(t, \frac{u}{t}, v\right)}{t} d t$
Applying "method of moments":

- Studying derivatives of $F(u, v)$ evaluated at $v=1$:
- local expansion around dominant singularity $u=\frac{1}{e}$
- Singularity analysis, Flajolet and Odlyzko [1990]
- $\Rightarrow r$-th moments converge to moments of Rayleigh r.v.

Theorem of Fréchet and Shohat:

Discrete parking problems: Analysis

Exact generating function useful for analysing $X_{m, n}$ via analytic combinatorics (applying complex-analytic techniques)

Example: special instance: m (parking spaces) $=n$ (cars)
Contour integral for GF of diagonal: $\quad F(u, v)=\frac{1}{2 \pi i} \oint \frac{G\left(t, \frac{u}{t}, v\right)}{t} d t$
Applying "method of moments":

- Studying derivatives of $F(u, v)$ evaluated at $v=1$:
- local expansion around dominant singularity $u=\frac{1}{e}$
- Singularity analysis, Flajolet and Odlyzko [1990]
- $\Rightarrow r$-th moments converge to moments of Rayleigh r.v.

Theorem of Fréchet and Shohat:

$$
\frac{X_{m, m}}{\sqrt{m}} \xrightarrow{(d)} \text { RAYLEIGH(2) }
$$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Generalized parking scheme

Stanley [1996], Yan [1997]: (a, b)-parking scheme

- $a+(m-1) b$ addresses
- m parking spaces
- parking permitted only at addresses

$$
a, a+b, a+2 b, \ldots, a+(m-1) b
$$

Example: $a=5, b=3$

Discrete parking problems: Further research

Question for generalized parking scheme:
What is the number $g^{(a, b)}(m, n, k)$ of parking sequences $a_{1}, \ldots, a_{n} \in\{1, \ldots, a+(m-1) b\}^{n}$ such that exactly k drivers are unsuccessful?

Exact formula for $g^{(a, b)}(m, n, k)$:

Discrete parking problems: Further research

Question for generalized parking scheme:
What is the number $g^{(a, b)}(m, n, k)$ of parking sequences $a_{1}, \ldots, a_{n} \in\{1, \ldots, a+(m-1) b\}^{n}$ such that exactly k drivers are unsuccessful?

Exact formula for $g^{(a, b)}(m, n, k)$:

$$
\begin{aligned}
& g^{(a, b)}(m, n, k)= \\
& (a+b(m-n+k-1)) \sum_{\ell=0}^{n-k}\binom{n}{\ell}(a+b(m-n+k-1+\ell))^{\ell-1}(b(n-k-\ell))^{n-\ell} \\
& -(a+b(m-n+k)) \sum_{\ell=0}^{n-k-1}\binom{n}{\ell}(a+b(m-n+k+\ell))^{\ell-1}(b(n-k-1-\ell))^{n-\ell}
\end{aligned}
$$

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Bucket parking scheme

Blake and Konheim [1976]:

- Each parking space can hold up to r cars
- Related to analysis of bucket hashing algorithms

Discrete parking problems: Further research

Question for bucket parking scheme:
What is the number $g^{(r)}(m, n, k)$ of parking sequences $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$ such that exactly k drivers are unsuccessful?

Exact expression for suitable generating function $G_{r}(z, u, v)$:

primitive r-th root of unity
Problems for analysis:

- no suitable explicit expression for coefficients available
- asymptotic analysis based on generating fct. more involved

Discrete parking problems: Further research

Question for bucket parking scheme:
What is the number $g^{(r)}(m, n, k)$ of parking sequences $a_{1}, \ldots, a_{n} \in\{1, \ldots, m\}^{n}$ such that exactly k drivers are unsuccessful?

Exact expression for suitable generating function $G_{r}(z, u, v)$:

$$
G_{r}(z, u, v)=\frac{1}{1-\frac{u}{v^{r}}} z^{z v} \frac{\prod_{j=0}^{r-1}\left(1-\frac{r}{z v} T\left(\frac{1}{r} \omega_{r}^{j} z u^{1 / r}\right)\right)}{\prod_{j=0}^{r-1}\left(1-\frac{r}{z} T\left(\frac{1}{r} \omega_{r}^{j} z u^{1 / r}\right)\right)}
$$

$\omega_{r}:=e^{\frac{2 \pi i}{r}}:$ primitive r-th root of unity
Problems for analysis:

- no suitable explicit expression for coefficients available
- asymptotic analysis based on generating fct. more involved

Discrete parking problems: Further research

Joint study with "terminal block size"

Refinement in analysis:

- k : number of unsuccessful drivers
- ℓ : size of terminal block of occupied parking spaces

Discrete parking problems: Further research

Joint study with "terminal block size"

Refinement in analysis:

- k : number of unsuccessful drivers
- ℓ : size of terminal block of occupied parking spaces

Discrete parking problems: Further research

Exact enumeration result:

Numbers $g(m, n, \ell, k)$ of parking sequences for m parking spaces and n drivers such that exactly k drivers are unsuccessful and the size of the terminal block is ℓ :

$$
\begin{aligned}
g(m, n, \ell, k)= & \binom{n}{k+\ell}(m-n+k)(m-\ell)^{n-\ell-k-1} \\
& \times\left(\ell^{k+\ell}-\sum_{q=0}^{\ell-1}\binom{k+\ell}{q}(q+1)^{q-1}(\ell-1-q)^{k+\ell-q}\right)
\end{aligned}
$$

Pólya-Eggenberger urn models

(together with H.-K. Hwang, Academia Sinica, Taipei and M. Kuba, TU Wien)

Pólya-Eggenberger urn models: Definition

Pólya-Eggenberger urn models:

- two types of balls: urn contains n white balls and m black balls
- evolution of urn occurs in discrete time steps
- at every step: ball is drawn at random from urn
- color of ball is inspected and then ball is reinserted into urn
- according to observed color of ball, balls are added/removed due to following rules:
- white ball drawn $\Rightarrow a$ white balls and b black balls are added - black ball drawn $\Rightarrow c$ white balls and d black balls are added

Ball replacement matrix specifies urn model:

Pólya-Eggenberger urn models: Definition

Pólya-Eggenberger urn models:

- two types of balls: urn contains n white balls and m black balls
- evolution of urn occurs in discrete time steps
- at every step: ball is drawn at random from urn
- color of ball is inspected and then ball is reinserted into urn
- according to observed color of ball, balls are added/removed due to following rules:
- white ball drawn $\Rightarrow a$ white balls and b black balls are added - black ball drawn $\Rightarrow c$ white balls and d black balls are added

Ball replacement matrix specifies urn model:

Pólya-Eggenberger urn models: Definition

Pólya-Eggenberger urn models:

- two types of balls: urn contains n white balls and m black balls
- evolution of urn occurs in discrete time steps
- at every step: ball is drawn at random from urn
- color of ball is inspected and then ball is reinserted into urn
- according to observed color of ball, balls are added/removed due to following rules:
- white ball drawn $\Rightarrow a$ white balls and b black balls are added
- black ball drawn $\Rightarrow c$ white balls and d black balls are added

Ball replacement matrix specifies urn model:

Pólya-Eggenberger urn models: Definition

Pólya-Eggenberger urn models:

- two types of balls: urn contains n white balls and m black balls
- evolution of urn occurs in discrete time steps
- at every step: ball is drawn at random from urn
- color of ball is inspected and then ball is reinserted into urn
- according to observed color of ball, balls are added/removed due to following rules:
- white ball drawn $\Rightarrow a$ white balls and b black balls are added
- black ball drawn $\Rightarrow c$ white balls and d black balls are added

Ball replacement matrix specifies urn model:

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad a, b, c, d \in \mathbb{Z}
$$

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Example

Example:

- ball replacement matrix $M=\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)$
- initial configuration:
$n=7$ yellow (white) balls and $m=6$ black balls

Pólya-Eggenberger urn models: Diminishing urns

Diminishing urn models:

- Pólya-Eggenberger urn model with ball replacement matrix M
- in addition: set of absorbing states $\mathcal{A} \subset \mathbb{N}_{0} \times \mathbb{N}_{0}$ state $=(i, j) \quad \hat{=} \quad$ urn contains i black balls, j white balls
- urn evolves according to matrix M until absorbing state $(i, j) \in \mathcal{A}$ is reached
- consider only well defined urns:
urn always ends in absorbing state of \mathcal{A}

Pólya-Eggenberger urn models: Diminishing urns

Diminishing urn models:

- Pólya-Eggenberger urn model with ball replacement matrix M
- in addition: set of absorbing states $\mathcal{A} \subset \mathbb{N}_{0} \times \mathbb{N}_{0}$.
state $=(i, j) \quad \hat{=} \quad$ urn contains i black balls, j white balls
- urn evolves according to matrix M until absorbing state $(i, j) \in \mathcal{A}$ is reached
- consider only well defined urns:
urn always ends in absorbing state of \mathcal{A}

Pólya-Eggenberger urn models: Diminishing urns

Diminishing urn models:

- Pólya-Eggenberger urn model with ball replacement matrix M
- in addition: set of absorbing states $\mathcal{A} \subset \mathbb{N}_{0} \times \mathbb{N}_{0}$. state $=(i, j) \quad \hat{=} \quad$ urn contains i black balls, j white balls
- urn evolves according to matrix M until absorbing state $(i, j) \in \mathcal{A}$ is reached
- consider only well defined urns:
urn always ends in absorbing state of \mathcal{A}

Pólya-Eggenberger urn models: Diminishing urns

Diminishing urn models:

- Pólya-Eggenberger urn model with ball replacement matrix M
- in addition: set of absorbing states $\mathcal{A} \subset \mathbb{N}_{0} \times \mathbb{N}_{0}$. state $=(i, j) \quad \hat{=} \quad$ urn contains i black balls, j white balls
- urn evolves according to matrix M until absorbing state $(i, j) \in \mathcal{A}$ is reached
- consider only well defined urns:
urn always ends in absorbing state of \mathcal{A}

Pólya-Eggenberger urn models: Diminishing urns

Why should we study such urn models?

Motivation:

- such models appear in various contexts
- often have different nature compared to "usually" studied urns
- different question arising:

```
What is the terminal configuration of urn when
starting with m black and n white balls?
```

Examples of urns arising in applications:

- Pill's problem urn and generalizations
- Cannibal urn problem
- OK Corral urn problem

Pólya-Eggenberger urn models: Diminishing urns

Why should we study such urn models?

Motivation:

- such models appear in various contexts
- often have different nature compared to "usually" studied urns
- different question arising:

What is the terminal configuration of urn when
starting with m black and n white balls?

Examples of urns arising in applications:

- Pill's problem urn and generalizations
- Cannibal urn problem
- OK Corral urn problem

Pólya-Eggenberger urn models: Diminishing urns

Why should we study such urn models?

Motivation:

- such models appear in various contexts
- often have different nature compared to "usually" studied urns
- different question arising:

What is the terminal configuration of urn when starting with m black and n white balls?

Examples of urns arising in applications:

- Pill's problem urn and generalizations
- Cannibal urn problem
- OK Corral urn problem

Pólya-Eggenberger urn models: Examples

OK Corral urn: introduced as model in theory of warfare

- two groups A and B of gunmen are fighting
- one gunmen is selected uniformly at random and shoots (kills) then a member of the opposing group
- fight ends if all members of one group are killed

Main questions:

- Which group will survive?
- How many survivors, say of group A, are there when the fight is over?

Pólya-Eggenberger urn models: Examples

OK Corral urn: introduced as model in theory of warfare

- two groups A and B of gunmen are fighting
- one gunmen is selected uniformly at random and shoots (kills) then a member of the opposing group
- fight ends if all members of one group are killed

Main questions:

- Which group will survive?
- How many survivors, say of group A, are there when the fight is over?

Pólya-Eggenberger urn models: Examples

OK Corral urn: introduced as model in theory of warfare

- two groups A and B of gunmen are fighting
- one gunmen is selected uniformly at random and shoots (kills) then a member of the opposing group
- fight ends if all members of one group are killed

Main questions:

- Which group will survive?
- How many survivors, say of group A, are there when the fight is over?

Historical remark: 1881 Wyatt Earp, Morgan Earp, Virgil Earp, and Doc Holliday were fighting against Frank McLaury, Tom McLaury, Ike Clanton, Billy Clanton, Billy Claiborne, and Wes Fuller the OK Corral ranch.

Pólya-Eggenberger urn models: Examples

OK Corral urn: described via diminishing urn model

- ball replacement matrix $M=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(m, 0) \mid m \in \mathbb{N}_{0}\right\}$

Mathematical description:

- $X_{m n}$: r.v. counting number of white balls (survivors) when all black balls have been drawn
- probability gen. function: $h_{m, n}(v)=\sum_{k \geq 0} \mathbb{P}\left\{X_{m, n}=k\right\} v^{k}$

Recurrence for $h_{m, n}(v)$:

boundary values: $h_{0, n}(v)=v^{n}, h_{m, 0}(v)=1$

Pólya-Eggenberger urn models: Examples

OK Corral urn: described via diminishing urn model

- ball replacement matrix $M=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(m, 0) \mid m \in \mathbb{N}_{0}\right\}$

Mathematical description:

- $X_{m, n}$: r.v. counting number of white balls (survivors) when all black balls have been drawn
- probability gen. function: $h_{m, n}(v)=\sum_{k \geq 0} \mathbb{P}\left\{X_{m, n}=k\right\} v^{k}$

Recurrence for $h_{m, n}(v)$:

boundary values: $h_{0, n}(v)=v^{n}, h_{m, 0}(v)=1$

Pólya-Eggenberger urn models: Examples

OK Corral urn: described via diminishing urn model

- ball replacement matrix $M=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(m, 0) \mid m \in \mathbb{N}_{0}\right\}$

Mathematical description:

- $X_{m, n}$: r.v. counting number of white balls (survivors) when all black balls have been drawn
- probability gen. function: $h_{m, n}(v)=\sum_{k \geq 0} \mathbb{P}\left\{X_{m, n}=k\right\} v^{k}$

Recurrence for $h_{m, n}(v)$:

$$
h_{m, n}(v)=\frac{n}{n+m} h_{m-1, n}(v)+\frac{m}{n+m} h_{m, n-1}(v), \quad n \geq 1, m \geq 1
$$

boundary values: $h_{0, n}(v)=v^{n}, h_{m, 0}(v)=1$

Pólya-Eggenberger urn models: Examples

Generalized OK Corral urn:

Arms of group A have power $\alpha \in \mathbb{N}$
Arms of group B have power $\beta \in \mathbb{N}$

- ball replacement matrix $M=\left(\begin{array}{cc}0 & -\alpha \\ -\beta & 0\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, \beta n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(\alpha m, 0) \mid m \in \mathbb{N}_{0}\right\}$

Cannibal urn: model for behavior of cannibals in biological

population

- ball replacement matrix $M=\left(\begin{array}{ll}0 & -1 \\ 1 & -2\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(1, n) \mid n \in \mathbb{N}_{0}\right\}$

Pills problem urn: (introduced by Knuth and Mc Carthy [1991])

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$

Pólya-Eggenberger urn models: Examples

Generalized OK Corral urn:

Arms of group A have power $\alpha \in \mathbb{N}$
Arms of group B have power $\beta \in \mathbb{N}$

- ball replacement matrix $M=\left(\begin{array}{cc}0 & -\alpha \\ -\beta & 0\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, \beta n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(\alpha m, 0) \mid m \in \mathbb{N}_{0}\right\}$

Cannibal urn: model for behavior of cannibals in biological population

- ball replacement matrix $M=\left(\begin{array}{ll}0 & -1 \\ 1 & -2\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(1, n) \mid n \in \mathbb{N}_{0}\right\}$

Pills problem urn: (introduced by Knuth and Mc Carthy [1991])

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$

Pólya-Eggenberger urn models: Examples

Generalized OK Corral urn:

Arms of group A have power $\alpha \in \mathbb{N}$
Arms of group B have power $\beta \in \mathbb{N}$

- ball replacement matrix $M=\left(\begin{array}{cc}0 & -\alpha \\ -\beta & 0\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, \beta n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(\alpha m, 0) \mid m \in \mathbb{N}_{0}\right\}$

Cannibal urn: model for behavior of cannibals in biological population

- ball replacement matrix $M=\left(\begin{array}{ll}0 & -1 \\ 1 & -2\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\} \cup\left\{(1, n) \mid n \in \mathbb{N}_{0}\right\}$

Pills problem urn: (introduced by Knuth and Mc Carthy [1991])

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$

Pólya-Eggenberger urn models: Examples

Evolution of urn: can be described via weighted lattice paths

Example: OK Corral urn

Pólya-Eggenberger urn models: Examples

Evolution of urn: can be described via weighted lattice paths

Example: OK Corral urn

Pólya-Eggenberger urn models: Examples

Evolution of urn: can be described via weighted lattice paths

Example: OK Corral urn

Pólya-Eggenberger urn models: Examples

Evolution of urn: can be described via weighted lattice paths

Example: OK Corral urn

Pólya-Eggenberger urn models: Examples

Evolution of urn: can be described via weighted lattice paths

Example: OK Corral urn

Pólya-Eggenberger urn models: Examples

Evolution of urn: can be described via weighted lattice paths

Example: OK Corral urn

Pólya-Eggenberger urn models: Examples

Evolution of urn: can be described via weighted lattice paths

Example: OK Corral urn

Pólya-Eggenberger urn models: Analysis

Outline of analytic approach:

- generating function approach
- recurrences for prob. gen. fct. $h_{n, m}(v)$ translated into first order linear partial differential equations
- applying method of characteristics

Problems where all boundary behaviors are known:

- use ordinary generating function $H(z, w)=H(z, w, v)$

Problems with unknown boundary values:
 - use suitably modified renerating functions to get rid of the
 - E.g., for cannibal urn we use

Pólya-Eggenberger urn models: Analysis

Outline of analytic approach:

- generating function approach
- recurrences for prob. gen. fct. $h_{n, m}(v)$ translated into first order linear partial differential equations
- applying method of characteristics

Problems where all boundary behaviors are known:

- use ordinary generating function $H(z, w)=H(z, w, v)$:

$$
H(z, w):=\sum_{n \geq 1} \sum_{m \geq 1} h_{n, m}(v) z^{n} w^{m}
$$

Problems with unknown boundary values:

- use suitably modified generating functions to get rid of the
- E.g., for cannibal urn we use

Pólya-Eggenberger urn models: Analysis

Outline of analytic approach:

- generating function approach
- recurrences for prob. gen. fct. $h_{n, m}(v)$ translated into first order linear partial differential equations
- applying method of characteristics

Problems where all boundary behaviors are known:

- use ordinary generating function $H(z, w)=H(z, w, v)$:

$$
H(z, w):=\sum_{n \geq 1} \sum_{m \geq 1} h_{n, m}(v) z^{n} w^{m}
$$

Problems with unknown boundary values:

- use suitably modified generating functions to get rid of the unknown boundary values $h_{m, 0}(v)$
- E.g., for cannibal urn we use

$$
H(z, w):=\sum_{n \geq 0} \sum_{m \geq 1} \frac{1}{m}\binom{n+m-1}{m-1} h_{n, m}(v) z^{n} w^{m}
$$

Pólya-Eggenberger urn models: Analysis

In short we proceed as follows:

Pólya-Eggenberger urn models: Analysis

Can we manage to find a suitably modified GF?

Pólya-Eggenberger urn models: Analysis

Can we find a "handy" first integral?

Pólya-Eggenberger urn models: Analysis

For many interesting urn models we obtain explicit solutions!

Example: generalized OK Corral urn
Linear first-order PDE with $H(z, 0)=H(0, w)=0$:
\square

System of characteristic differential equations:

$$
\dot{z}=\beta z(1-w), \quad \dot{w}=\alpha w(1-z)
$$

Pólya-Eggenberger urn models: Analysis

For many interesting urn models we obtain explicit solutions!

Example: generalized OK Corral urn
Linear first-order PDE with $H(z, 0)=H(0, w)=0$:

$$
\beta z(1-w) H_{z}(z, w)+\alpha w(1-z) H_{w}(z, w)=\frac{\beta w z v^{\beta}}{\left(1-v^{\beta} z\right)^{2}}+\frac{\alpha w z}{(1-w)^{2}}
$$

System of characteristic differential equations:

$$
\dot{z}=\beta z(1-w), \quad \dot{w}=\alpha w(1-z)
$$

Pólya-Eggenberger urn models: Analysis

For many interesting urn models we obtain explicit solutions!

Example: generalized OK Corral urn
Linear first-order PDE with $H(z, 0)=H(0, w)=0$:

$$
\beta z(1-w) H_{z}(z, w)+\alpha w(1-z) H_{w}(z, w)=\frac{\beta w z v^{\beta}}{\left(1-v^{\beta} z\right)^{2}}+\frac{\alpha w z}{(1-w)^{2}}
$$

System of characteristic differential equations:

$$
\dot{z}=\beta z(1-w), \quad \dot{w}=\alpha w(1-z)
$$

Pólya-Eggenberger urn models: Analysis

\Rightarrow first integral:

$$
\xi(z, w):=\frac{z^{\alpha / \beta}}{w} e^{w-z \alpha / \beta}=\mathrm{const}
$$

Using transformation:

\Rightarrow explicit GF solution involving tree function $T(z)$:

Pólya-Eggenberger urn models: Analysis

\Rightarrow first integral:

$$
\xi(z, w):=\frac{z^{\alpha / \beta}}{w} e^{w-z \alpha / \beta}=\text { const. }
$$

Using transformation:

$$
\xi=\frac{z^{\alpha / \beta}}{w} e^{w-z \alpha / \beta} \quad \text { and } \quad \eta=z
$$

\Rightarrow explicit GF solution involving tree function $T(z)$:

Pólya-Eggenberger urn models: Analysis

\Rightarrow first integral:

$$
\xi(z, w):=\frac{z^{\alpha / \beta}}{w} e^{w-z \alpha / \beta}=\text { const. }
$$

Using transformation:

$$
\xi=\frac{z^{\alpha / \beta}}{w} e^{w-z \alpha / \beta} \quad \text { and } \quad \eta=z
$$

\Rightarrow explicit GF solution involving tree function $T(z)$:

$$
\begin{aligned}
H(z, w) & =z \int_{0}^{1} \frac{v^{\beta} T\left(w q^{\alpha / \beta} e^{\beta z(1-q) / \alpha-w}\right) d q}{\left(1-v^{\beta} z q\right)^{2}\left(1-T\left(w q^{\alpha / \beta} e^{\beta z(1-q) / \alpha-w}\right)\right)} \\
& +z \int_{0}^{1} \frac{\alpha T\left(w q^{\alpha / \beta} e^{\beta z(1-q) / \alpha-w}\right) d q}{\beta\left(1-T\left(w q^{\alpha / \beta} e^{\beta z(1-q) / \alpha-w}\right)\right)^{3}} .
\end{aligned}
$$

Pólya-Eggenberger urn models: Results

As a consequence:

- For many interesting urn models we obtain explicit formulæ for probabilities, probability generating functions, moments, etc.

Pólya-Eggenberger urn models: Results

As a consequence:

- For many interesting urn models we obtain explicit formulæ for probabilities, probability generating functions, moments, etc.
- Explicit formulæ useful for describing limiting behaviour of random variables.

Pólya-Eggenberger urn models: Results

Example: Generalized OK Corral urn

Theorem

Starting with βn white balls and αm black balls.
$p_{\alpha m, \beta n}$: probability that all black balls are removed
(group of white balls "survive"):

$$
p_{\alpha m, \beta n}=\frac{1}{m!n!} \frac{\beta^{m}}{\alpha^{m}} \sum_{\ell=1}^{n}(-1)^{n-\ell} \frac{\binom{n}{\ell}}{\binom{m+\frac{\beta}{\alpha} \ell}{m}} \ell^{n+m}
$$

$\mathbb{P}\left\{X_{\alpha m, \beta n}=\beta k\right\}:$ probability that exactly βk white balls "survive":

$$
\mathbb{P}\left\{X_{\alpha m, \beta n}=\beta k\right\}=\frac{k}{(n-k)!m!} \frac{\beta^{m}}{\alpha^{m}} \sum_{\ell=0}^{n}(-1)^{n-\ell} \frac{\binom{n-k}{\ell-k}}{\binom{m+\frac{\beta}{\alpha} \ell}{m}} \ell^{m+n-1-k}
$$

Pólya-Eggenberger urn models: Results

Limiting distribution results:

- model very sensitive to relative sizes of initial groups
- influence of "power of arms": according to the square roots of
powers
- If $\sqrt{\alpha} m \sim \sqrt{\beta n}$ does not hold then fight is unfair!
- results dependend on behaviour of quantities

and

Pólya-Eggenberger urn models: Results

Limiting distribution results:

- model very sensitive to relative sizes of initial groups
- influence of "power of arms" : according to the square roots of powers
- If $\sqrt{\alpha} m \sim \sqrt{\beta} n$ does not hold then fight is unfair!
- results dependend on behaviour of quantities

and

Pólya-Eggenberger urn models: Results

Limiting distribution results:

- model very sensitive to relative sizes of initial groups
- influence of "power of arms" : according to the square roots of powers
- If $\sqrt{\alpha} m \sim \sqrt{\beta} n$ does not hold then fight is unfair!
- results dependend on behaviour of quantities

$$
A_{1}(n, m)=\beta \frac{n(n+1)}{2}-\alpha \frac{m(m+1)}{2}
$$

and

$$
A_{2}(n, m)=\beta^{2} \frac{n(n+1)(2 n+1)}{6}+\alpha^{2} \frac{m(m+1)(2 m+1)}{6}
$$

Pólya-Eggenberger urn models: Results

Theorem

Which group will survive?

- Region "Black balls survive": $\frac{A_{1}(n, m)}{\sqrt{A_{2}(n, m)}} \rightarrow-\infty$:

$$
p_{\alpha m, \beta n} \rightarrow 0
$$

- "Fair" region: $\frac{A_{1}(n, m)}{\sqrt{A_{2}(n, m)}} \rightarrow \theta \in \mathbb{R}$:
$p_{\alpha m, \beta n} \rightarrow F(\theta), \quad$ function $F(\theta)$ can be described explicitly.
- Region "White balls survive": $\frac{A_{1}(n, m)}{\sqrt{A_{2}(n, m)}} \rightarrow \infty$: $p_{\alpha m, \beta n} \rightarrow 1$

Pólya-Eggenberger urn models: Results

Theorem

How many survivors in group of white balls?

- Region "No survivors": $\frac{A_{1}(n, m)}{\sqrt{A_{2}(n, m)}} \rightarrow-\infty$:
$X_{\alpha m, \beta n} \xrightarrow{(d)} X$ with $\mathbb{P}\{X=0\}=1$
- "Fair" region: $\frac{A_{1}(n, m)}{\sqrt{A_{2}(n, m)}} \rightarrow \theta \in \mathbb{R}$:
$\frac{X_{\alpha m, \beta n}}{\sqrt{A_{2}(n, m)}} \xrightarrow{(d)} X$, with $\mathbb{P}\{X \leq x\}=\Phi\left(\frac{\beta x^{2}}{2}-\theta\right), x \geq 0$
$\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{u^{2}}{2}} d u:$ standard normal distribution function
- Region "White group of balls survive": $\frac{A_{1}(n, m)}{\sqrt{A_{2}(n, m)}} \rightarrow \infty$: various subregions with different behaviour

Pólya-Eggenberger urn models: Higher dimensions

Higher dimensional urn models: approach applicable to several urns

Example: r-dimensional Pills problem urn: - ball replacement matrix:

- absorbing states: hyperplane
\square

Pólya-Eggenberger urn models: Higher dimensions

Higher dimensional urn models: approach applicable to several urns

Example: r-dimensional Pills problem urn:

- ball replacement matrix:

$$
M=\left(\begin{array}{ccccccc}
-1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
1 & -1 & 0 & \ddots & \ddots & \ddots & 0 \\
0 & 1 & -1 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & -1 & 0 & 0 \\
0 & \ddots & \ddots & \ddots & 1 & -1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & -1
\end{array}\right)
$$

- absorbing states: hyperplane

$$
\mathcal{A}=\left\{\left(n_{1}, \ldots, n_{r-1}, 0\right) \mid n_{1}, \ldots, n_{r-1} \in \mathbb{N}_{0}\right\}
$$

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

Pólya-Eggenberger urn models: Higher dimensions

Example of two-dimensional pill's problem:

- ball replacement matrix $M=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1\end{array}\right)$
- absorbing states $\mathcal{A}=\left\{(0, n) \mid n \in \mathbb{N}_{0}\right\}$
- start with 6 large pills and one small pill

\Rightarrow the state $(0,2) \in \mathcal{A}$ is reached

Pólya-Eggenberger urn models: Higher dimensions

First order linear PDE:

$$
\begin{gathered}
\sum_{j=1}^{r-1}\left(z_{j}-z_{1} z_{j}-z_{j+1}\right) H_{z_{j}}(\mathbf{z})+\left(z_{r}-z_{1} z_{r}\right) H_{z_{r}}(\mathbf{z})-z_{1} H(\mathbf{z}) \\
=\frac{v_{r-1} z_{r}}{\left(1-v_{1} z_{1}-v_{2} z_{2}-\cdots-v_{r-1} z_{r-1}\right)^{2}} .
\end{gathered}
$$

Chracteristic system of DEs:

$$
\dot{z}_{r-1}=z_{r-1}-z_{1} z_{r-1}-z_{r}, \quad \dot{z}_{r}=z_{r}-z_{1} z_{r} .
$$

Pólya-Eggenberger urn models: Higher dimensions

First order linear PDE:

$$
\begin{gathered}
\sum_{j=1}^{r-1}\left(z_{j}-z_{1} z_{j}-z_{j+1}\right) H_{z_{j}}(\mathbf{z})+\left(z_{r}-z_{1} z_{r}\right) H_{z_{r}}(\mathbf{z})-z_{1} H(\mathbf{z}) \\
=\frac{v_{r-1} z_{r}}{\left(1-v_{1} z_{1}-v_{2} z_{2}-\cdots-v_{r-1} z_{r-1}\right)^{2}} .
\end{gathered}
$$

Chracteristic system of DEs:

$$
\begin{aligned}
\dot{z}_{1}= & z_{1}-z_{1}^{2}-z_{2}, \quad \dot{z}_{2}=z_{2}-z_{1} z_{2}-z_{3}, \quad \ldots \\
& \dot{z}_{r-1}=z_{r-1}-z_{1} z_{r-1}-z_{r}, \quad \dot{z}_{r}=z_{r}-z_{1} z_{r}
\end{aligned}
$$

Pólya-Eggenberger urn models: Higher dimensions

Independent first integrals $\xi_{1}, \ldots, \xi_{r-2}$: characterized as solution of system of linear equations
$\frac{z_{r-2}}{z_{r}}=\frac{\left(\frac{z_{r-1}}{z_{r}}\right)^{2}}{2!}+\xi_{r-2}$,
$\frac{z_{r-3}}{z_{r}}=\frac{\left(\frac{z_{r-1}}{z_{r}}\right)^{3}}{3!}+\xi_{r-2} \frac{\left(\frac{\left(z_{r-1}\right.}{z_{r}}\right)}{1!}+\xi_{r-3}$,
$\frac{z_{r-4}}{z_{r}}=\frac{\left(\frac{z_{r-1}}{z_{r}}\right)^{4}}{4!}+\xi_{r-2} \frac{\left(\frac{z_{r-1}}{z_{r}}\right)^{2}}{2!}+\xi_{r-3} \frac{\left(\frac{z_{r-1}}{z_{r}}\right)}{1!}+\xi_{r-4}$,
$\vdots=\vdots$
$\frac{z_{1}}{z_{r}}=\frac{\left(\frac{z_{r-1}}{z_{r}}\right)^{r-1}}{(r-1)!}+\xi_{r-2} \frac{\left(\frac{\left(\frac{z_{r-1}}{z_{r}}\right)^{r-3}}{(r-3)!}+\xi_{r-3} \frac{\left(\frac{z_{r-1}}{z_{r}}\right)^{r-4}}{(r-4)!}+\cdots+\xi_{2} \frac{\left(\frac{z_{r-1}}{z_{r}}\right)}{1!}+\xi_{1} . ~ . ~ . ~ . ~\right.}{1!}$
($r-1$)-th independent first integral:

$$
\xi_{r-1}=\frac{z_{r}}{1-z_{1}-\cdots-z_{r}} e^{\frac{z_{r-1}}{z_{r}}} .
$$

Pólya-Eggenberger urn models: Higher dimensions

Theorem

Explicit generating functions solution:

$$
H(\mathbf{z})=v_{r-1} z_{r} \int_{0}^{1} \frac{d q}{(f(\mathbf{z}, \mathbf{v}, q))^{2}}
$$

with

$$
\begin{aligned}
f(\mathbf{z}, \mathbf{v}, q)= & 1-\sum_{\ell=1}^{r-1} z_{\ell}\left(1-q \sum_{k=1}^{\ell} \frac{\left(1-v_{k}\right)(-1)^{\ell-k} \log ^{\ell-k} q}{(\ell-k)!}\right) \\
& -z_{r}\left(1-q-q \sum_{k=1}^{r-1} \frac{\left(1-v_{k}\right)(-1)^{r-k} \log ^{r-k} q}{(r-k)!}\right) .
\end{aligned}
$$

Exact and asymptotic results follow from that!

Pólya-Eggenberger urn models: Higher dimensions

Theorem

Explicit generating functions solution:

$$
H(\mathbf{z})=v_{r-1} z_{r} \int_{0}^{1} \frac{d q}{(f(\mathbf{z}, \mathbf{v}, q))^{2}}
$$

with

$$
\begin{aligned}
f(\mathbf{z}, \mathbf{v}, q)= & 1-\sum_{\ell=1}^{r-1} z_{\ell}\left(1-q \sum_{k=1}^{\ell} \frac{\left(1-v_{k}\right)(-1)^{\ell-k} \log ^{\ell-k} q}{(\ell-k)!}\right) \\
& -z_{r}\left(1-q-q \sum_{k=1}^{r-1} \frac{\left(1-v_{k}\right)(-1)^{r-k} \log ^{r-k} q}{(r-k)!}\right)
\end{aligned}
$$

Exact and asymptotic results follow from that!

Network models

(partially together with M. Kuba, TU Wien partially together with M. Drmota and B. Gittenberger, TU Wien partially together with G. Seitz, TU Wien)

Network models: Introduction

Experimental study of real networks:

(e.g., Watts and Strogatz [1998])

- neural networks
- collaboration graphs
- power grid of US

Network models: Introduction

Occuring phenomena:

- "small-world"-phenomen: diameters are smaller than regularly constructed graphs
- degree-distribution follows "power-law": probability p_{k} that node has degree k satisfies \Rightarrow Scale-free networks (e.g., protein networks, citation networks, some social networks)
\Rightarrow different behaviour than "classical" graph models
(e.g., G(n, p): Erdős-Rényi-graphs)

Network models: Introduction

Occuring phenomena:

- "small-world"-phenomen: diameters are smaller than regularly constructed graphs
- degree-distribution follows "power-law": probability p_{k} that node has degree k satisfies

$$
p_{k} \sim k^{-\gamma}, \quad \gamma \in \mathbb{R}^{+}
$$

\Rightarrow Scale-free networks
(e.g., protein networks, citation networks, some social networks)
\Rightarrow different behaviour than "classical" graph models
(e.g., G(n, p): Erdős-Rényi-graphs)

Network models: Introduction

Occuring phenomena:

- "small-world"-phenomen: diameters are smaller than regularly constructed graphs
- degree-distribution follows "power-law": probability p_{k} that node has degree k satisfies

$$
p_{k} \sim k^{-\gamma}, \quad \gamma \in \mathbb{R}^{+}
$$

\Rightarrow Scale-free networks
(e.g., protein networks, citation networks, some social networks)
\Rightarrow different behaviour than "classical" graph models
(e.g., $G(n, p)$: Erdős-Rényi-graphs)

Network models: Introduction

Of interest:

- Modelling scale-free networks by random graphs defined by simple rules
- Precise mathematical analysis of models

Famous model: Barabasi-Albert model [1999]:

Network models: Introduction

Of interest:

- Modelling scale-free networks by random graphs defined by simple rules
- Precise mathematical analysis of models

Famous model: Barabasi-Albert model [1999]:

- Start with small number of vertices
- At each time step:
add new vertex and connect it to m different existing vertices
- Special rule "Preferential attachement":
probability $p(v)$ that new vertex will be connected to vertex v is proportional to connectivity of v
\Rightarrow "success breeds success"

Network models: Introduction

Of interest:

- Modelling scale-free networks by random graphs defined by simple rules
- Precise mathematical analysis of models

Famous model: Barabasi-Albert model [1999]:

- Start with small number of vertices
- At each time step:
add new vertex and connect it to m different existing vertices
- Special rule "Preferential attachement":
probability $p(v)$ that new vertex will be connected to vertex v is proportional to connectivity of v
\Rightarrow "success breeds success"

Network models: PORTs

Special case: $m=1 \Rightarrow$ family of random trees:
Plane-oriented recursive trees (PORTs)
(introduced by Prodinger and Urbanek [1983]; Szymansky [1985])
The order of the subtrees is important!

4
4

Network models: PORTs

Special case: $m=1 \Rightarrow$ family of random trees:
Plane-oriented recursive trees (PORTs)
(introduced by Prodinger and Urbanek [1983]; Szymansky [1985])
The order of the subtrees is important!

Network models: PORTs

Special case: $m=1 \Rightarrow$ family of random trees:
Plane-oriented recursive trees (PORTs)
(introduced by Prodinger and Urbanek [1983]; Szymansky [1985])
The order of the subtrees is important!

Network models: PORTs

Generated via "preferential attachment"-rule: probability that new node is attached to v is proportional to $d^{+}(v)+1$

Network models: PORTs

Generated via "preferential attachment"-rule: probability that new node is attached to v is proportional to $d^{+}(v)+1$

Network models: PORTs

Generated via "preferential attachment"-rule: probability that new node is attached to v is proportional to $d^{+}(v)+1$

Network models: PORTs

Generated via "preferential attachment"-rule: probability that new node is attached to v is proportional to $d^{+}(v)+1$

Network models: PORTs

Generated via "preferential attachment"-rule: probability that new node is attached to v is proportional to $d^{+}(v)+1$

Network models: PORTs

Kuba and Panholzer [2006, 2007]:
precise analysis of various parameters in PORTs and generalizations

Exact and asymptotic results for:

- Depth of specified nodes
- Distance between specified nodes
- Subtree-size of specified nodes
- Out-degree of specified nodes
- Number of Leaves in subtree rooted at specified, node

Network models: PORTs

Kuba and Panholzer [2006, 2007]:
precise analysis of various parameters in PORTs and generalizations

Exact and asymptotic results for:

- Depth of specified nodes
- Distance between specified nodes
- Subtree-size of specified nodes
- Out-degree of specified nodes
- Number of Leaves in subtree rooted at specified, node

Network models: PORTs

Kuba and Panholzer [2006, 2007]:

precise analysis of various parameters in PORTs and generalizations

Exact and asymptotic results for:

- Depth of specified nodes
- Distance between specified nodes
- Subtree-size of specified nodes
- Out-degree of specified nodes
- Number of Leaves in subtree rooted at specified, node

Network models: PORTs

Kuba and Panholzer [2006, 2007]:

precise analysis of various parameters in PORTs and generalizations

Exact and asymptotic results for:

- Depth of specified nodes
- Distance between specified nodes
- Subtree-size of specified nodes
- Out-degree of specified nodes
- Number of Leaves in subtree rooted at specified, node

Network models: PORTs

Kuba and Panholzer [2006, 2007]:

precise analysis of various parameters in PORTs and generalizations

Exact and asymptotic results for:

- Depth of specified nodes
- Distance between specified nodes
- Subtree-size of specified nodes
- Out-degree of specified nodes
- Number of Leaves in subtree rooted at specified, node

Network models: PORTs

Kuba and Panholzer [2006, 2007]:

precise analysis of various parameters in PORTs and generalizations

Exact and asymptotic results for:

- Depth of specified nodes
- Distance between specified nodes
- Subtree-size of specified nodes
- Out-degree of specified nodes
- Number of Leaves in subtree rooted at specified node

Network models: Thickened trees

But after all: PORTs are trees!
Richer structures:
"Thickened trees": Drmota, Gittenberger and Panholzer [2008], Drmota, Gittenberger and Kutzelnigg [2009]

Network models: Thickened trees

But after all: PORTs are trees!
Richer structures:
"Thickened trees": Drmota, Gittenberger and Panholzer [2008],
Drmota, Gittenberger and Kutzelnigg [2009]

- Substitution process:
- inspired from some real networks:
local structure: clusters, olohal structure: tree-like

Network models: Thickened trees

But after all: PORTs are trees!
Richer structures:
"Thickened trees": Drmota, Gittenberger and Panholzer [2008],
Drmota, Gittenberger and Kutzelnigg [2009]

- Substitution process: start with PORTs,

replace nodes by certain graphs

- inspired from some real networks:
local structure: clusters, global structure: tree-like

Network models: k-trees

Processes generating other graph families:
Panholzer and Seitz [2009+]
\Rightarrow "Ordered k-trees" by attaching nodes to existing k-cliques

Network models: k-trees

Processes generating other graph families:
Panholzer and Seitz [2009+]
\Rightarrow "Ordered k-trees" by attaching nodes to existing k-cliques

> Example of a rooted 2-tree:

Network models: k-trees

Ordered k-trees:

- Start with k-clique
- At each time sten:
add new vertex and connect it to all nodes of existing k-clique
- "Preferential attachment"-rule: probability $p(C)$ that new vertex will be connected to k-clique C is proportional to $1+\#$ already attached nodes of C
\Rightarrow "success breeds success"

Network models: k-trees

Ordered k-trees:

- Start with k-clique
- At each time step:
add new vertex and connect it to all nodes of existing k-clique
- "Preferential attachment"-rule: probability $p(C)$ that new vertex will be connected to k-clique C is proportional to $1+\#$ already attached nodes of C
\Rightarrow "success breeds success"

Network models: k-trees

Ordered k-trees:

- Start with k-clique
- At each time step:
add new vertex and connect it to all nodes of existing k-clique
- "Preferential attachment"-rule:
probability $p(C)$ that new vertex will be connected to k-clique C is proportional to $1+\#$ already attached nodes of C
\Rightarrow "success breeds success"

Network models: k-trees

Order of attached nodes is important!

Example: 2-trees

Network models: k-trees

Order of attached nodes is important!
Example: 2-trees

Network models: k-trees

Order of attached nodes is important!
Example: 2-trees

Network models: k-trees

Order of attached nodes is important!
Example: 2-trees

Network models: k-trees

Analysis of parameters in k-trees:
Two descriptions:

- bottom-up: insertion process
- top-down: decomposition according to root k-clique

Exact and asymptotic results for analysed parameters:
Panholzer and Seitz [2009+]:

- Degree of nodes (specified nodes, random nodes)
- Number of descendants
- Root+o node distance of specified nodes

Network models: k-trees

Analysis of parameters in k-trees:
Two descriptions:

- bottom-up: insertion process
- top-down: decomposition according to root k-clique

Exact and asymptotic results for analysed parameters:
Panholzer and Seitz [2009+]:

- Degree of nodes (specified nodes, random nodes)
- Number of descendants
- Root-to-node-distance of specified nodes

Network models: k-trees

Theorem (Panholzer and Seitz, 2009)

D_{n} : Distance between node 1 and node n in ordered k-tree Expectation and Variance of D_{n} :

$$
\begin{aligned}
\mathbb{E}\left(D_{n}\right) & =\frac{1}{(k+1) H_{k}} \log n+\mathcal{O}(1), \\
\mathbb{V}\left(D_{n}\right) & =\frac{H_{k}^{(2)}}{(k+1) H_{k}^{3}} \log n+\mathcal{O}(1) .
\end{aligned}
$$

Normalized random variable asympotically Gaussian distributed:

Network models: k-trees

Theorem (Panholzer and Seitz, 2009)

D_{n} : Distance between node 1 and node n in ordered k-tree Expectation and Variance of D_{n} :

$$
\begin{aligned}
\mathbb{E}\left(D_{n}\right) & =\frac{1}{(k+1) H_{k}} \log n+\mathcal{O}(1), \\
\mathbb{V}\left(D_{n}\right) & =\frac{H_{k}^{(2)}}{(k+1) H_{k}^{3}} \log n+\mathcal{O}(1) .
\end{aligned}
$$

Normalized random variable asympotically Gaussian distributed:

Network models: k-trees

Theorem (Panholzer and Seitz, 2009)

D_{n} : Distance between node 1 and node n in ordered k-tree Expectation and Variance of D_{n} :

$$
\begin{aligned}
\mathbb{E}\left(D_{n}\right) & =\frac{1}{(k+1) H_{k}} \log n+\mathcal{O}(1), \\
\mathbb{V}\left(D_{n}\right) & =\frac{H_{k}^{(2)}}{(k+1) H_{k}^{3}} \log n+\mathcal{O}(1) .
\end{aligned}
$$

Normalized random variable asympotically Gaussian distributed:

$$
\sup _{x \in \mathbb{R}}\left|\mathbb{P}\left\{\frac{D_{n}-\mathbb{E}\left(D_{n}\right)}{\sqrt{\mathbb{V}\left(D_{n}\right)}} \leq x\right\}-\Phi(x)\right|=\mathcal{O}\left(\frac{1}{\sqrt{\log n}}\right) .
$$

Network models: k-trees

Top-down approach: \Rightarrow system of ordinary DE for generating functions $S_{1}(z, v), \ldots, S_{k}(z, v)$:

$$
\begin{aligned}
\frac{\partial}{\partial z} S_{1}(z, v) & =\frac{k-1}{1-(k+1) z}\left(S_{1}(z, v)+S_{2}(z, v)\right) \\
\frac{\partial}{\partial z} S_{2}(z, v) & =\frac{k-2}{1-(k+1) z}\left(S_{2}(z, v)+S_{3}(z, v)\right), \\
\frac{\partial}{\partial z} S_{3}(z, v) & =\frac{k-3}{1-(k+1) z}\left(S_{3}(z, v)+S_{4}(z, v)\right), \\
\vdots & = \\
\frac{\partial}{\partial z} S_{k-1}(z, v) & =\frac{1}{1-(k+1) z}\left(S_{k-1}(z, v)+S_{k}(z, v)\right), \\
\frac{\partial}{\partial z} S_{k}(z, v) & =\frac{k v}{1-(k+1) z} S_{1}(z, v) .
\end{aligned}
$$

Network models: k-trees

System of DEs can be solved explicitly:

$A_{j}^{(\ell)}(v)$: certain functions analytic in v

$a_{j}(v), 1 \leq j \leq k:$ different solutions of equation

Results follow immediately by applying methods from analytic combinatorics!

Network models: k-trees

System of DEs can be solved explicitly:

$$
S_{\ell}(z, v)=\sum_{j=1}^{k} \frac{A_{j}^{(\ell)}(v)}{(1-(k+1) z)^{\alpha_{j}(v)}}, \quad 1 \leq \ell \leq k .
$$

$A_{j}^{(\ell)}(v)$: certain functions analytic in v
$\alpha_{j}(v), 1 \leq j \leq k$: different solutions of equation

$$
\alpha \cdot\left(\alpha-\frac{1}{k+1}\right) \cdot\left(\alpha-\frac{2}{k+1}\right) \cdots\left(\alpha-\frac{k-1}{k+1}\right)=\frac{k!}{(k+1)^{k}} v .
$$

Results follow immediately by applying methods from analytic combinatorics!

Network models: k-trees

System of DEs can be solved explicitly:

$$
S_{\ell}(z, v)=\sum_{j=1}^{k} \frac{A_{j}^{(\ell)}(v)}{(1-(k+1) z)^{\alpha_{j}(v)}}, \quad 1 \leq \ell \leq k .
$$

$A_{j}^{(\ell)}(v)$: certain functions analytic in v
$\alpha_{j}(v), 1 \leq j \leq k$: different solutions of equation

$$
\alpha \cdot\left(\alpha-\frac{1}{k+1}\right) \cdot\left(\alpha-\frac{2}{k+1}\right) \cdots\left(\alpha-\frac{k-1}{k+1}\right)=\frac{k!}{(k+1)^{k}} v .
$$

Results follow immediately by applying methods from analytic combinatorics!

