# Arc complex and strip deformations of decorated polygons 

Pallavi Panda

Université de Luxembourg

## Arc complex

$\mathcal{P}_{n}$ : a convex Euclidean polygon with $n \geq 4$ vertices.
$\mathcal{A}\left(\mathcal{P}_{n}\right)$ : a flag, pure simplicial complex constructed in the following way:

- 0-simplices $\longleftrightarrow$ diagonals,
- For $k \geq 1, k$-simplices $\longleftrightarrow(k+1)$ pairwise disjoint and distinct diagonals.


## Examples



$\mathbb{S}^{1}$

## Examples



## A classical result

A classical result from combinatorics about the topology of the arc complex of a polygon.

## Theorem

The arc complex $\mathcal{A}\left(\mathcal{P}_{n}\right)(n \geq 4)$ is a sphere of dimension $n-4$.

## Crash course on hyperbolic 2-space

The upper half plane model


$$
\mathbb{H}^{2}=\{z \in \mathbb{C} \mid \mathfrak{I m} z>0\}
$$

- Hyperbolic metric: $d s^{2}=\frac{d x^{2}+d y^{2}}{y^{2}}$
- The boundary: $\partial_{\infty} \mathbb{H}^{2}=\mathbb{R} \cup\{\infty\}$
- Orientation-preserving isometry group:
$\operatorname{PSL}(2, \mathbb{R})=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a d-b c= \pm 1\right\}, \quad z \mapsto \frac{a z+b}{c z+d}$.


## Other models

## Poincaré disk model



$$
\mathbb{H}^{2}:=\{z \in \mathbb{C} \mid\|z\|<1\}
$$

## Other models



Klein's projective model


$$
\mathbb{H}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=-1, z>0\right\}
$$

$R \mathbb{P}^{2}$
$\mathbb{H}^{2}=\mathbb{P}\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}<0\right\}$

## Types of Isometries: Elliptic

Elliptic transformations


$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

## Types of Isometries: Parabolic

Parabolic Transformations and their orbits

$\left[\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right], t \in \mathbb{R}$

## Types of Isometries: Hyperbolic

Hyperbolic transformations


## Ideal polygons

An ideal $n$-gon $\Pi_{n}^{\diamond}, n \geq 3$ is the convex hull in $\mathbb{H}^{2}$ of $n$ points in $\partial_{\infty} \mathbb{H}^{2}$.


Fact: $G$ acts triply transitively on $\partial_{\infty} \mathbb{H}^{2}$.
Thus, the deformation space

$$
\begin{aligned}
\mathfrak{D}\left(\Pi_{n}^{\diamond}\right) & \simeq\{(\text { induced }) \text { complete finite-area metrics }\} \\
& \simeq \mathbb{B}^{n-3}
\end{aligned}
$$

## Once-punctured polygons



A fundamental domain

$\Pi_{3}^{\diamond}$

A once-punctured $n$-gon $\Pi_{n}^{\diamond}$ : Glue two consecutive edges of a $(n+2)$-gon, using a parabolic isometry. Thus, $\mathfrak{D}\left(\Pi_{n}^{\diamond}\right) \simeq \mathbb{B}^{n-1}$.

## Arcs and arc complex

## Definition

Arcs (up to isotopy): $\alpha:[0,1] \hookrightarrow S$ s.t $\alpha(0), \alpha(1) \in \partial S$.

## Definition

The arc complex is a simplicial complex $\mathcal{A}(S)$ :

- $\mathcal{A}(S)^{(0)}=$ \{isotopy classes of arcs\}
- $\mathcal{A}(S)^{(k)}=\{(k+1)$-tuple of pairwise disjoint isotopy classes $\}$

disjoint!

not disjeint!


## Ideal polygons to Euclidean polygons



## Arc complex of $\Pi_{n}^{\diamond}$



Figure: The arcs and the arc complex of $\Pi_{4}^{\otimes}$

## Penner's sphericity results

## Theorem (Penner)

- The arc complex $\mathcal{A}\left(\Pi_{n}^{\diamond}\right)$ of an ideal polygon $\Pi_{n}^{\diamond}(n \geq 4)$ is a PL-sphere of dimension $n-4$.
- The arc complex $\mathcal{A}\left(\Pi_{n}^{\diamond}\right)$ of an once-punctured polygon $\Pi_{n}^{\diamond}(n \geq 2)$ is a PL-sphere of dimension $n-2$.


## New Rule: Coloured vertices and permissible arcs

Consider the subcomplex $\mathcal{Y}\left(\mathcal{P}_{n}\right)$ generated by $G-G, R-G$ diagonals.


## Examples



Rejected R-R diagonals


The subcomplex $\mathcal{Y}\left(\mathcal{P}_{6}\right)$

## Examples



## Conjecture

## Conjecture

Let $\mathcal{P}_{n}\left(\right.$ resp. $\left.\mathcal{P}_{n}^{\times}\right)$be a polygon with bicoloured vertices. Then the sub complex $\mathcal{Y}\left(\mathcal{P}_{n}\right)\left(\right.$ resp. $\left.\mathcal{Y}\left(\mathcal{P}_{n}^{\times}\right)\right)$is a closed ball of dimension $2 n-4$ (resp. $2 n-2)$.

A partial solution: Use decorated hyperbolic (once-punctured) polygons to show that the interior is an open ball of right dimension.

## Decorated polygons

## Decorate each vertex with a horoball.

Undecorated

Decorated with horoballs

$\Pi_{2}^{\ominus}$

$\widehat{\Pi_{2}^{\ominus}}$

## Horoball connections



The geodesic joining two decorated vertices $\mathbf{v}_{1}, \mathbf{v}_{2}$ is called their horoball connection. Its length is given by the hyperbolic length of the intercepted geodesic segment.

## Decorated metrics

- The deformation space of decorated polygons $\mathfrak{D}\left(\widehat{\Pi_{n}^{\diamond}}\right)=\mathfrak{D}\left(\Pi_{n}^{\diamond}\right) \times \mathbb{R}^{n}=\mathbb{B}^{2 n-3}$.
- The deformation space of once-punctured decorated polygons $\mathfrak{D}\left(\widehat{\Pi_{n}^{\diamond}}\right)=\mathfrak{D}\left(\Pi_{n}^{\diamond}\right) \times \mathbb{R}^{n}=\mathbb{B}^{2 n-1}$.


## Permitted arcs in decorated polygons



Arcs in a decorated ideal triangle $\widehat{\Pi_{3}^{\circ}}$
G-G and R-G diagonals in $\mathcal{P}_{6}$ with alternate $\mathrm{G}, \mathrm{R}$ partitioning

$$
\mathcal{A}\left(\Pi_{n}^{\diamond}\right)=\mathcal{Y}\left(\mathcal{P}_{2 n}\right)
$$

## Pruned arc complex

- The interior of the arc complex is called the pruned arc complex.
- Simplices not contained in the boundary decompose the polygon into disks with at most one decorated vertex. These are called filling simplices.



## Admissible cone

## Definition

The admissible cone of a decorated possibly punctured polygon $\Pi$ is defined to be the set of all infinitesimal deformations of the decorated metric $m \in \mathfrak{D}(\Pi)$ that uniformly lengthen all horoball connections. It is denoted by $\wedge(m)$.

## Lemma

The admissible cone of a decorated (possibly punctured) polygon $\Pi$, endowed with a metric $m$, is an open convex subset of $T_{m} \mathfrak{D}(\Pi)$.

## Hyperbolic strip deformations

Hyperbolic strip deformation along a finite arc $\alpha$ with strip template $\left(\alpha_{g}, p_{\alpha}, w_{\alpha}\right)$.


## Parabolic strip deformations

Parabolic strip deformation along an infinite arc.


## The strip map

## Infinitesimal strip deformation:

$$
\begin{aligned}
f_{\alpha}: \quad \mathfrak{D}(\Pi) & \longrightarrow T \mathfrak{D}(\Pi) \\
m & \mapsto f_{\alpha}(m) \in T_{m} \mathfrak{D}(\Pi)
\end{aligned}
$$

## The strip map

## Infinitesimal strip deformation:

$$
\begin{aligned}
& f_{\alpha}: \mathcal{D}(\Pi) \longrightarrow T \mathbb{D}(\Pi) \\
& m \quad \mapsto \quad f_{\alpha}(m) \in T_{m} \mathfrak{D}(\Pi)
\end{aligned}
$$

The strip map:

$$
\begin{array}{rlll}
f: \mathcal{A}(\Pi) & \longrightarrow T_{[\rho]} \mathfrak{D}(\Pi) \\
& & & \operatorname{dim}(\square) \\
\sum_{i=1}^{N} c_{i} \alpha_{i} & \mapsto & \sum_{i=1}^{\operatorname{din}} c_{i} f_{\alpha_{i}}(m)
\end{array}
$$

## The strip map

## Infinitesimal strip deformation:

$$
\begin{array}{rlll}
f_{\alpha}: ~ & \mathfrak{D}(\Pi) & \longrightarrow T \mathfrak{D}(\Pi) \\
m & \mapsto & f_{\alpha}(m) \in T_{m} \mathfrak{D}(\Pi)
\end{array}
$$

The projectivised strip map:

$$
\begin{array}{rlllll}
\mathbb{P} f: & \mathcal{A}(\Pi) & \xrightarrow{f} & T_{m} \mathfrak{D}(\Pi) & \xrightarrow{\mathbb{P}^{+}} & \mathbb{P}^{+} T_{m} \mathfrak{D}(\Pi) \\
x=\sum_{i=1}^{N} c_{i} \alpha_{i} & & \mapsto & \sum_{i=1}^{\operatorname{dim}(\Pi)} c_{i} f_{\alpha_{i}}(m) & \mapsto & {[f(x)]}
\end{array}
$$

## Main theorems

## Theorem (P.)

Let $\widehat{\Pi_{n}^{\diamond}}(n \geq 3)$ be a decorated $n$-gon with a metric $m \in \mathbb{D}\left(\widehat{\Pi_{n}^{\diamond}}\right)$. Fix a choice of strip template. Then the projectivised strip map $\mathbb{P f}$, when restricted to the pruned arc complex $\mathcal{P} \mathcal{A}(\Pi)$, is a homeomorphism onto the projectivised admissible cone $\mathbb{P}^{+}(\Lambda(m))$.

## Theorem (P.)

Let $\widehat{\Pi_{n}^{\diamond}}(n \geq 2)$ be a decorated once-punctured polygon with a metric $m \in \mathfrak{D}\left(\Pi_{n}^{\diamond}\right)$. Fix a choice of strip template. Then the infinitesimal strip map $\mathbb{P} f$, when restricted to the pruned arc complex $\mathcal{P} \mathcal{A}\left(\Pi_{n}^{\diamond}\right)$, is a homeomorphism onto the projectivised admissible cone $\mathbb{P}^{+}(\Lambda(m))$.

## Motivation

## Theorem (Danciger-Guéritaud-Kassel)

Let $S=S_{g, n}$ or $T_{h, n}$ be a compact hyperbolic surface with totally geodesic boundary. Let $m=([\rho]) \in \mathfrak{D}(S)$ be a metric. Fix a choice of strip template $\left\{\left(\alpha_{g}, p_{\alpha}, w_{\alpha}\right)\right\}_{\alpha \in \mathcal{K}}$ with respect to $m$. Then the restriction of the projectivised infinitesimal strip map $\mathbb{P f}: \mathcal{P} \mathcal{A}(S) \longrightarrow \mathbb{P}^{+}\left(T_{m} \mathfrak{D}(S)\right)$ is a homeomorphism on its image $\mathbb{P}^{+}(\Lambda(m))$.

Here the admissible cone $\Lambda(m)$ consists of all infinitesimal deformations that uniformly lengthen every non-trivial closed geodesic.

## Illustration


$\widehat{\Pi_{n}^{\diamond}}:$ a decorated ideal triangle.

## Illustration


$\widehat{\Pi_{n}^{\diamond}}:$ a decorated ideal triangle.

- $\mathfrak{D}\left(\widehat{\Pi_{3}^{\diamond}}\right) \simeq \mathbb{B}^{3}$,


## Illustration


$\widehat{\Pi_{n}^{\diamond}}$ : a decorated ideal triangle.

- $\mathfrak{D}\left(\widehat{\Pi_{3}^{\diamond}}\right) \simeq \mathbb{B}^{3}$,
- Finite arc complex; $\mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right) \simeq \mathbb{B}^{2}$,


## Illustration


$\widehat{\Pi_{n}^{\diamond}}:$ a decorated ideal triangle.

- $\mathfrak{D}\left(\widehat{\Pi_{3}^{\diamond}}\right) \simeq \mathbb{B}^{3}$,
- Finite arc complex; $\mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right) \simeq \mathbb{B}^{2}$,
- three edges of the triangle $\leftrightarrow 3$ horoball connections


## Steps of the proof

## Theorem

The projectivised strip map $\mathbb{P} f: \mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right) \longrightarrow \mathbb{P}^{+} \Lambda(m)$ is a homeomorphism.

## Idea of the proof:

## Steps of the proof

## Theorem

The projectivised strip map $\mathbb{P} f: \mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right) \longrightarrow \mathbb{P}^{+} \Lambda(m)$ is a homeomorphism.

## Idea of the proof:

(1) $\mathbb{P f}$ is a local homeomorphism.

## Steps of the proof

## Theorem

The projectivised strip map $\mathbb{P} f: \mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right) \longrightarrow \mathbb{P}^{+} \Lambda(m)$ is a homeomorphism.

## Idea of the proof:

(1) $\mathbb{P f}$ is a local homeomorphism.
(2) $\mathbb{P} f$ is proper.

## Steps of the proof

## Theorem

The projectivised strip map $\mathbb{P} f: \mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right) \longrightarrow \mathbb{P}^{+} \Lambda(m)$ is a homeomorphism.

## Idea of the proof:

(1) $\mathbb{P f}$ is a local homeomorphism.
(2) $\mathbb{P} f$ is proper.
(3) Steps (1) and (2) imply that $\mathbb{P} f$ is a covering map.

## Steps of the proof

## Theorem

The projectivised strip map $\mathbb{P} f: \mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right) \longrightarrow \mathbb{P}^{+} \Lambda(m)$ is a homeomorphism.

## Idea of the proof:

(1) $\mathbb{P} f$ is a local homeomorphism.
(2) $\mathbb{P} f$ is proper.
(3) Steps (1) and (2) imply that $\mathbb{P} f$ is a covering map.
(4) Domain, codomain are simply connected. Conclude.

## Step 1: Local homeomorphism

Remark: Every point $x \in \mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right)$ is contained in the interior of a unique filling simplex $\sigma_{x}$.


Figure: $\operatorname{codim}\left(\sigma_{x}\right)=0, \operatorname{codim}\left(\sigma_{x^{\prime}}\right)=1$

## Step 1: Local homeomorphism

Case 1: Local homeomorphism around $x$, with $\operatorname{codim}\left(\sigma_{x}\right)=0$.


It is enough to show

## Theorem

Let $\sigma$ be a codimension zero simplex of the arc complex. Then the set $B=\left\{f_{\alpha}(m) \mid \alpha \in \sigma^{(0)}\right\}$ forms a basis of $T_{m} \mathfrak{D}\left(\widehat{\Pi_{3}^{\diamond}}\right)$.

## Step 1: Local homeomorphism

Case 2: Local homeomorphism around $x$, with $\operatorname{codim}\left(\sigma_{x}\right)=1$.


It is enough to show that

## Theorem

Let $\sigma_{1}, \sigma_{2} \in \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right)$ s.t $\operatorname{codim}\left(\sigma_{i}\right)=0$ for $i=1,2, \operatorname{codim}\left(\sigma_{1} \cap \sigma_{2}\right)=1$ and $\operatorname{int}\left(\sigma_{1} \cap \sigma_{2}\right) \subset \mathcal{P} \mathcal{A}\left(\widehat{\Pi_{3}^{\diamond}}\right)$. Then,

$$
\operatorname{int}\left(\mathbb{P} f\left(\sigma_{1}\right)\right) \cap \operatorname{int}\left(\mathbb{P} f\left(\sigma_{2}\right)\right)=\varnothing
$$

