Counting with tiles

Igor Pak, UCLA

Journée-séminaire de combinatoire, Paris Nord

June 2, 2020

OEIS

OEIS now has over 300,000 sequences!

Our policy has been to include all interesting sequences, no matter how obscure the reference. [N.J.A. Sloane and S. Plouffe, EIS, 1995]

[The EIS contains] the unrelenting cascade of numbers, [..] lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]

Question 1: What makes an integer sequence *combinatorial*?

Question 2: What makes a combinatorial sequence *nice*?

Traditional Answers:

- (1) A sequence is combinatorial if it counts combinatorial objects.
- (2) Combinatorial sequence is nice if it is given by a nice formula.
- (2') The nicer the formula the nicer the sequence.
- (2'') Nice formulas can be efficiently computed.

Our Answers:

- (1) A sequence is combinatorial if it counts combinatorial objects.
- (1') Objects are *combinatorial* if they can be verified by an algorithm.
- (2) Combinatorial sequence is nice if the corresponding algorithm is efficient.
- (2') The algorithm *efficient* if it requires *Const* memory space.

More Precisely:

(3) A sequence $\{a_n\}$ is *combinatorial* and *nice* if there exists a finite set T of Wang tiles, so that $a_n = \#$ tilings of an n-rectangle.

Note: Here nice = algorithmically efficient.

Efficient means restrictions on the model of computation.

Motivation: Think of this as a special *combinatorial interpretation*. When such an interpretation is found, it in itself can lead to better understanding AND new algorithmic solutions.

Counting with Wang tiles

Fibonacci numbers:

12112

More generally: Wang tilings of a rectangle

						n
--	--	--	--	--	--	---

Let $a_n(T)$ = the number of tilings of $[1 \times n]$ with T.

Transfer matrix method:

$$\mathcal{A}(t) = \sum_{n=0}^{\infty} a_n t^n = \frac{P(t)}{Q(t)}$$

\mathbb{N} -Rational Functions \mathcal{R}_1

Definition: Let \mathcal{R}_1 be the smallest set of functions F(x) which satisfies

(1)
$$0, x \in \mathcal{R}_1$$
,
(2) $F, G \in \mathcal{R}_1 \implies F + G, F \cdot G \in \mathcal{R}_k$,
(3) $F \in \mathcal{R}_1, F(0) = 0 \implies 1/(1 - F) \in \mathcal{R}_1$.

Note that all $F \in \mathcal{R}_1$ satisfy: $F \in \mathbb{N}[[x]]$, and F = P/Q, for some $P, Q \in \mathbb{Z}[x]$.

For example,

$$\frac{1}{1-x-x^2}$$
 and $\frac{x^3}{(1-x)^4} \in \mathcal{R}_1.$

Theorem [Schützenberger + folklore]

For every finite set T of Wang tiles, we have $\mathcal{A}_T(x) \in \mathcal{R}_1$.

Conversely, for every $F(x) \in \mathcal{R}_1$ there is a rational T, s.t. $F(x) = \mathcal{A}_T(x)$.

\mathbb{N} -rational functions of one variable:

Word of caution: \mathcal{R}_1 is already quite complicated, see [Gessel, 2003].

For example, take the following $F, G \in \mathbb{N}[[t]]$:

$$F(t) = \frac{t + 5t^2}{1 + t - 5t^2 - 125t^3}, \qquad G(t) = \frac{1 + t}{1 + t - 2t^2 - 3t^3}.$$

Then $F \notin \mathcal{R}_1$ and $G \in \mathcal{R}_1$; neither of these are obvious.

The proof follows from results in [Berstel, 1971] and [Soittola, 1976], who completely characterized class \mathcal{R}_1 , see also [Katayama–Okamoto–Enomoto, 1978].

Wang tilings of a square

Let $a_n(T)$ = the number of tilings of $[n \times n]$ with T.

```
Theorem [Mennen–P., 2018+]
Number of tilings a_n(T) is #EXP-complete.
```

In other words, essentially any function can be the number of tilings.

Catalan numbers

An example Catalan number matrix, and the corresponding lattice path.

Note: Can be implemented with (at most) 169 Wang tiles.

Note: Permutations and alternating permutations can be implemented with at most 405 and 146410 Wang tiles, respectively.

Theorem (Garrabrant, P.)

The following functions count Wang Tilings of a square:

- (1) The number of integer partitions of n,
- (2) The number of set partitions of an n element set (ordered Bell numbers),
- (3) The Catalan number C_n ,
- (4) The Motzkin number M_n .
- (5) The number of Gessel walks of length n,

(6) n!,

- (7) The number of alternating permutations Alt(n) of length n,
- (8) The number of permutations of length n whose assents and descents follow a given periodic sequence,
- (9) The number D(n) of derangements of length n,
- (10) The ménage numbers A_n ,
- (11) The Menger number L(k, n) of n by k Latin squares for any fixed k,
- (12) The number $Pat_k(n)$ of permutations of length n with no increasing subsequence of length k,
- (13) The number B(n) of Baxter permutations of length n,
- (14) The number Alt(n) of alternating sign matrices of size n,
- (15) The number G(n) of labeled connected graphs on n vertices.

Integer Partitions:

The matrix corresponding to the partition 42211.

Irrational Tilings of $[1 \times n]$ rectangles

Fix $\varepsilon \geq 0$ and a finite set $T = \{\tau_1, \ldots, \tau_k\}$ of *irrational tiles* of height 1.

Let $a_n = a_n(T, \varepsilon)$ the number of tilings of $[1 \times (n + \varepsilon)]$ with T.

Observe: we can get *algebraic* g.f.'s $\mathcal{A}_T(t)$.

Here $a_n = \binom{2n}{n}$, $\mathcal{A}(t) = \frac{1}{\sqrt{1-4t}}$.

Question: What else can we get?

Diagonals of Rational Functions

Let $G \in \mathbb{Z}[[x_1, \dots, x_k]]$. A diagonal is a g.f. $\mathcal{B}(t) = \sum_n b_n t^n$, where $b_n = [x_1^n \cdots x_k^n] G(x_1, \dots, x_k).$

Theorem: Every $\mathcal{A}_T(t) \in \mathcal{F}$ is a diagonal of a rational function P/Q, for some polynomials $P, Q \in \mathbb{Z}[x_1, \ldots, x_k]$.

For example,

$$\binom{2n}{n} = [x^n y^n] \frac{1}{1 - x - y}.$$

Proof idea: Say, $\tau_i = [1 \times \alpha_i], \alpha_i \in \mathbb{R}$. Let $V = \mathbb{Q}\langle \alpha_1, \ldots, \alpha_k \rangle, d = \dim(V)$. We have natural maps $\varepsilon \mapsto (c_1, \ldots, c_d), \alpha_i \mapsto v_i \in \mathbb{Z}^d \subset V$. Interpret irrational tilings as walks $O \to (n + c_1, \ldots, n + c_d)$ with steps $\{v_1, \ldots, v_k\}$.

Properties of Diagonals of Rational Functions

- (1) must be D-finite, see [Stanley, 1980], [Gessel, 1981].
- (2) when k = 2, must be *algebraic*, and
- (2') every algebraic $\mathcal{B}(t)$ is a diagonal of P(x, y)/Q(x, y), see [Furstenberg, 1967].

No surprise now that Catalan g.f. C(t), $tC(t)^2 - C(t) + 1 = 0$, is a diagonal:

$$C_n = [x^n y^n] \frac{y(1 - 2xy - 2xy^2)}{1 - x - 2xy - xy^2}, \qquad C_n = [x^n y^n] \frac{1 - x/y}{1 - x - y}.$$

For the first formula, see [Rowland–Yassawi, 2014].

\mathbb{N} -Rational Functions in many variables

Definition: Let \mathcal{R}_k be the smallest set of functions $F(x_1, \ldots, x_k)$ which satisfies

(1)
$$0, x_1, \dots, x_k \in \mathcal{R}_k$$
,
(2) $F, G \in \mathcal{R}_k \implies F + G, F \cdot G \in \mathcal{R}_k$,
(3) $F \in \mathcal{R}_k, F(0) = 0 \implies 1/(1 - F) \in \mathcal{R}_k$.

Note that all $F \in \mathcal{R}_k$ satisfy: $F \in \mathbb{N}[[x_1, \dots, x_k]]$, and F = P/Q, for some $P, Q \in \mathbb{Z}[x_1, \dots, x_k]$.

Let \mathcal{N} be a class of diagonals of $F \in \mathcal{R}_k$, for some $k \geq 1$. For example,

$$\sum_{n} \binom{2n}{n} t^{n} \in \mathcal{N} \quad \text{because} \quad \frac{1}{1 - x - y} \in \mathcal{R}_{2}$$

Main Theorem: $\mathcal{F} = \mathcal{N}$ [Garrabrant, P., 2014]

Here \mathcal{F} denote the class of g.f. $\mathcal{A}_T(t)$ enumerating irrational tilings. In other words, every tile counting function $\mathcal{A}_T \in \mathcal{F}$ is a diagonal of an N-rational function $F \in \mathcal{R}_k$, $k \ge 1$, and vice versa.

Key Lemma:

Both \mathcal{F} and \mathcal{N} coincide with a class \mathcal{B} of g.f. $F(t) = \sum_{n} f(n)t^{n}$, where $f : \mathbb{N} \to \mathbb{N}$ is given as finite sums $f = \sum g_{j}$, and each g_{j} is of the form

$$g_j(m) = \begin{cases} \sum_{v \in \mathbb{Z}^{d_j}} \prod_{i=1}^{r_j} \begin{pmatrix} \alpha_{ij}(v,n) \\ \beta_{ij}(v,n) \end{pmatrix} & \text{if } m = p_j n + k_j, \\ 0 & \text{otherwise,} \end{cases}$$

for some $\alpha_{ij} = a_{ij}v + a'_{ij}n + a''_{ij}$, $\beta_{ij} = b_{ij}v + b'_{ij}n + b''_{ij}$, and $p_j, k_j, r_j, d_j \in \mathbb{N}$.

Asymptotic applications

Corollary: There exist $\sum_{n} f_n$, $\sum_{n} g_n \in \mathcal{F}$, s.t.

$$f_n \sim \frac{\sqrt{\pi}}{\Gamma(\frac{5}{8})\Gamma(\frac{7}{8})} 128^n, \qquad g_n \sim \frac{\Gamma(\frac{3}{4})^3}{\sqrt[3]{2}\pi^{5/2}} n^{-3/2} 384^n$$

Proof idea: Take

$$f_n := \sum_{k=0}^n 128^{n-k} \binom{4k}{k} \binom{3k}{k}.$$

Note: We have $b_n \sim K n^{\beta} \gamma^n$, where $\beta \in \mathbb{N}$, and $K, \gamma \in \overline{\mathbb{Q}}$, for all $\sum_n b_n t^n = P/Q$.

Conjecture: For every $\sum_{n} f_n \in \mathcal{F}$, we have $f_n \sim Kn^{\beta}\gamma^n$, where $\beta \in \mathbb{Z}/2, \gamma \in \overline{\mathbb{Q}}$, and K is a generalized period, see. [Kontsevich–Zagier, 2001].

Curious Conjecture on Catalan numbers:

We have:

$$C(t) \notin \mathcal{F}$$
, where $C(t) = \frac{1 - \sqrt{1 - 4t}}{2t}$.

In other words, there is no set T of irrational tiles and $\varepsilon \geq 0$, s.t.

$$a_n(T,\varepsilon) = C_n$$
 for all $n \ge 1$, where $C_n = \frac{1}{n+1} {\binom{2n}{n}}.$

More on Catalan numbers

Recall

$$C_n \sim \frac{1}{\sqrt{\pi}} n^{-3/2} 4^n.$$

Corollary: (from Main theorem) There exists

$$\sum_{n} f_{n} t^{n} \in \mathcal{F} \qquad such that \qquad f_{n} \sim \frac{3\sqrt{3}}{\pi} C_{n}.$$

Furthermore, $\forall \epsilon > 0$, there exists

$$\sum_{n} f_{n} t^{n} \in \mathcal{F} \quad such that \quad f_{n} \sim \lambda C_{n}$$
for some $\lambda \in [1 - \epsilon, 1 + \epsilon].$

Moral: Curious Conjecture cannot be proved via rough asymptotics.

Conjecture: There is no $\sum_n f_n t^n \in \mathcal{F}$, s.t. $f_n \sim C_n$.

Warning: This conjecture probably involves deep number theory.

More applications

Proposition: For every $m \ge 2$, there is $\sum_n f_n t^n \in \mathcal{F}$, s.t.

 $f_n = C_n \mod m$, for all $n \ge 1$.

Proposition For every prime $p \ge 2$, there is $\sum_n g_n t^n \in \mathcal{F}$, s.t.

$$\operatorname{ord}_p(g_n) = \operatorname{ord}_p(C_n), \text{ for all } n \ge 1,$$

where $\operatorname{ord}_p(N)$ is the largest power of p which divides N.

Moral: Elementary number theory does not help to prove the Curious Conjecture. Note: For $\operatorname{ord}_p(C_n)$, see [Kummer, 1852], [Deutsch–Sagan, 2006]. *Proof idea:* Take

$$f_n = \binom{2n}{n} + (m-1)\binom{2n}{n-1}.$$

Schützenberger's principle

There is a general metamathematical principle that goes back to M.-P. Schützenberger and that states the following: whenever a rational series in one variable counts a class of objects, then the series is \mathbb{N} -rational. This phenomenon has been observed on a large number of examples: generating series and zeta functions in combinatorics, Hilbert series of graded or filtered algebras, growth series of monoids or of groups.

[Berstel, Reutenauer; 2008]

Open Problem: Suppose $F \in \mathcal{F}$ is rational. Does this imply that $F \in \mathcal{R}_1$?

If NO, this implies that Schützenberger's principle is FALSE, i.e. there is a set of *irrational tiles* which gives a combinatorial interpretation to a non-negative rational functions, which nonetheless is not \mathbb{N} -rational.

Thank you!

