Counting with tiles

Igor Pak, UCLA

Journée-séminaire de combinatoire, Paris Nord

June 2, 2020

OEIS

OEIS now has over 300,000 sequences!

Our policy has been to include all interesting sequences, no matter how obscure the reference. [N.J.A. Sloane and S. Plouffe, EIS, 1995]
[The EIS contains] the unrelenting cascade of numbers, [..] lists Hard, Disallowed and Silly sequences. [Richard Guy, 1997]

Question 1: What makes an integer sequence combinatorial?
Question 2: What makes a combinatorial sequence nice?

Traditional Answers:

(1) A sequence is combinatorial if it counts combinatorial objects.
(2) Combinatorial sequence is nice if it is given by a nice formula.
(2') The nicer the formula the nicer the sequence.
(2") Nice formulas can be efficiently computed.

Our Answers:

(1) A sequence is combinatorial if it counts combinatorial objects.
(1') Objects are combinatorial if they can be verified by an algorithm.
(2) Combinatorial sequence is nice if the corresponding algorithm is efficient.
(2') The algorithm efficient if it requires Const memory space.

More Precisely:

(3) A sequence $\left\{a_{n}\right\}$ is combinatorial and nice if there exists a finite set T of Wang tiles, so that $a_{n}=\#$ tilings of an n-rectangle.

Note: Here nice $=$ algorithmically efficient.
Efficient means restrictions on the model of computation.

Motivation: Think of this as a special combinatorial interpretation.
When such an interpretation is found, it in itself can lead to better understanding AND new algorithmic solutions.

Counting with Wang tiles

Fibonacci numbers:

12112
More generally: Wang tilings of a rectangle

Let $a_{n}(T)=$ the number of tilings of $[1 \times n]$ with T.
Transfer matrix method:

$$
\mathcal{A}(t)=\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{P(t)}{Q(t)}
$$

\mathbb{N}-Rational Functions \mathcal{R}_{1}

Definition: Let \mathcal{R}_{1} be the smallest set of functions $F(x)$ which satisfies
(1) $0, x \in \mathcal{R}_{1}$,
(2) $F, G \in \mathcal{R}_{1} \Longrightarrow F+G, F \cdot G \in \mathcal{R}_{k}$,
(3) $F \in \mathcal{R}_{1}, F(0)=0 \Longrightarrow 1 /(1-F) \in \mathcal{R}_{1}$.

Note that all $F \in \mathcal{R}_{1}$ satisfy: $F \in \mathbb{N}[[x]]$, and $F=P / Q$, for some $P, Q \in \mathbb{Z}[x]$.
For example,

$$
\frac{1}{1-x-x^{2}} \quad \text { and } \quad \frac{x^{3}}{(1-x)^{4}} \in \mathcal{R}_{1}
$$

Theorem [Schützenberger + folklore]
For every finite set T of Wang tiles, we have $\mathcal{A}_{T}(x) \in \mathcal{R}_{1}$.
Conversely, for every $F(x) \in \mathcal{R}_{1}$ there is a rational T, s.t. $F(x)=\mathcal{A}_{T}(x)$.

\mathbb{N}-rational functions of one variable:

Word of caution: \mathcal{R}_{1} is already quite complicated, see [Gessel, 2003].
For example, take the following $F, G \in \mathbb{N}[t]]$:

$$
F(t)=\frac{t+5 t^{2}}{1+t-5 t^{2}-125 t^{3}}, \quad G(t)=\frac{1+t}{1+t-2 t^{2}-3 t^{3}}
$$

Then $F \notin \mathcal{R}_{1}$ and $G \in \mathcal{R}_{1}$; neither of these are obvious.

The proof follows from results in [Berstel, 1971] and [Soittola, 1976], who completely characterized class \mathcal{R}_{1}, see also [Katayama-Okamoto-Enomoto, 1978].

Wang tilings of a square

Let $a_{n}(T)=$ the number of tilings of $[n \times n]$ with T.

Theorem [Mennen-P., 2018+]
Number of tilings $a_{n}(T)$ is \#EXP-complete.

In other words, essentially any function can be the number of tilings.

Catalan numbers

An example Catalan number matrix, and the corresponding lattice path.
Note: Can be implemented with (at most) 169 Wang tiles.

Note: Permutations and alternating permutations can be implemented with at most 405 and 146410 Wang tiles, respectively.

Theorem (Garrabrant, P.)
The following functions count Wang Tilings of a square:
(1) The number of integer partitions of n,
(2) The number of set partitions of an n element set (ordered Bell numbers),
(3) The Catalan number C_{n},
(4) The Motzkin number M_{n}.
(5) The number of Gessel walks of length n,
(6) $n!$,
(7) The number of alternating permutations $\operatorname{Alt}(n)$ of length n,
(8) The number of permutations of length n whose assents and descents follow a given periodic sequence,
(9) The number $D(n)$ of derangements of length n,
(10) The ménage numbers A_{n},
(11) The Menger number $L(k, n)$ of n by k Latin squares for any fixed k,
(12) The number $\operatorname{Pat}_{k}(n)$ of permutations of length n with no increasing subsequence of length k,
(13) The number $B(n)$ of Baxter permutations of length n,
(14) The number $\operatorname{Alt}(n)$ of alternating sign matrices of size n,
(15) The number $G(n)$ of labeled connected graphs on n vertices.

Integer Partitions:

The matrix corresponding to the partition 42211.

Irrational Tilings of $[1 \times n]$ rectangles

Fix $\varepsilon \geq 0$ and a finite set $T=\left\{\tau_{1}, \ldots, \tau_{k}\right\}$ of irrational tiles of height 1 .
Let $a_{n}=a_{n}(T, \varepsilon)$ the number of tilings of $[1 \times(n+\varepsilon)]$ with T.
Observe: we can get algebraic g.f.'s $\mathcal{A}_{T}(t)$.

$$
\varepsilon=0
$$

$\alpha \notin \mathbb{Q}$

Here $a_{n}=\binom{2 n}{n}, \quad \mathcal{A}(t)=\frac{1}{\sqrt{1-4 t}}$.
Question: What else can we get?

Diagonals of Rational Functions

Let $G \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{k}\right]\right]$. A diagonal is a g.f. $\mathcal{B}(t)=\sum_{n} b_{n} t^{n}$, where

$$
b_{n}=\left[x_{1}^{n} \cdots x_{k}^{n}\right] G\left(x_{1}, \ldots, x_{k}\right)
$$

Theorem: Every $\mathcal{A}_{T}(t) \in \mathcal{F}$ is a diagonal of a rational function P / Q,
for some polynomials $P, Q \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$.
For example,

$$
\binom{2 n}{n}=\left[x^{n} y^{n}\right] \frac{1}{1-x-y}
$$

Proof idea: Say, $\tau_{i}=\left[1 \times \alpha_{i}\right], \alpha_{i} \in \mathbb{R}$. Let $V=\mathbb{Q}\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle, d=\operatorname{dim}(V)$.
We have natural maps $\varepsilon \mapsto\left(c_{1}, \ldots, c_{d}\right), \alpha_{i} \mapsto v_{i} \in \mathbb{Z}^{d} \subset V$.
Interpret irrational tilings as walks $O \rightarrow\left(n+c_{1}, \ldots, n+c_{d}\right)$ with steps $\left\{v_{1}, \ldots, v_{k}\right\}$.

Properties of Diagonals of Rational Functions

(1) must be D-finite, see [Stanley, 1980], [Gessel, 1981].
(2) when $k=2$, must be algebraic, and
(2') every algebraic $\mathcal{B}(t)$ is a diagonal of $P(x, y) / Q(x, y)$, see [Furstenberg, 1967].
No surprise now that Catalan g.f. $C(t), t C(t)^{2}-C(t)+1=0$, is a diagonal:

$$
C_{n}=\left[x^{n} y^{n}\right] \frac{y\left(1-2 x y-2 x y^{2}\right)}{1-x-2 x y-x y^{2}}, \quad C_{n}=\left[x^{n} y^{n}\right] \frac{1-x / y}{1-x-y}
$$

For the first formula, see [Rowland-Yassawi, 2014].

\mathbb{N}-Rational Functions in many variables

Definition: Let \mathcal{R}_{k} be the smallest set of functions $F\left(x_{1}, \ldots, x_{k}\right)$ which satisfies
(1) $0, x_{1}, \ldots, x_{k} \in \mathcal{R}_{k}$,
(2) $F, G \in \mathcal{R}_{k} \Longrightarrow F+G, F \cdot G \in \mathcal{R}_{k}$,
(3) $F \in \mathcal{R}_{k}, F(0)=0 \Longrightarrow 1 /(1-F) \in \mathcal{R}_{k}$.

Note that all $F \in \mathcal{R}_{k}$ satisfy: $F \in \mathbb{N}\left[\left[x_{1}, \ldots, x_{k}\right]\right]$, and $F=P / Q$,
for some $P, Q \in \mathbb{Z}\left[x_{1}, \ldots, x_{k}\right]$.
Let \mathcal{N} be a class of diagonals of $F \in \mathcal{R}_{k}$, for some $k \geq 1$. For example,

$$
\sum_{n}\binom{2 n}{n} t^{n} \in \mathcal{N} \quad \text { because } \quad \frac{1}{1-x-y} \in \mathcal{R}_{2}
$$

Main Theorem: $\mathcal{F}=\mathcal{N} \quad[G a r r a b r a n t, ~ P ., ~ 2014] ~$
Here \mathcal{F} denote the class of g.f. $\mathcal{A}_{T}(t)$ enumerating irrational tilings.
In other words, every tile counting function $\mathcal{A}_{T} \in \mathcal{F}$ is a diagonal of an \mathbb{N}-rational function $F \in \mathcal{R}_{k}, k \geq 1$, and vice versa.

Key Lemma:

Both \mathcal{F} and \mathcal{N} coincide with a class \mathcal{B} of g.f. $F(t)=\sum_{n} f(n) t^{n}$,
where $f: \mathbb{N} \rightarrow \mathbb{N}$ is given as finite sums $f=\sum g_{j}$, and each g_{j} is of the form

$$
g_{j}(m)=\left\{\begin{array}{rll}
\sum_{v \in \mathbb{Z}^{d_{j}}} \prod_{i=1}^{r_{j}}\binom{\alpha_{i j}(v, n)}{\beta_{i j}(v, n)} & \text { if } & m=p_{j} n+k_{j}, \\
& 0 & \text { otherwise },
\end{array}\right.
$$

for some $\alpha_{i j}=a_{i j} v+a_{i j}^{\prime} n+a_{i j}^{\prime \prime}, \beta_{i j}=b_{i j} v+b_{i j}^{\prime} n+b_{i j}^{\prime \prime}$, and $p_{j}, k_{j}, r_{j}, d_{j} \in \mathbb{N}$.

Asymptotic applications

Corollary: There exist $\sum_{n} f_{n}, \sum_{n} g_{n} \in \mathcal{F}$, s.t.

$$
f_{n} \sim \frac{\sqrt{\pi}}{\Gamma\left(\frac{5}{8}\right) \Gamma\left(\frac{7}{8}\right)} 128^{n}, \quad g_{n} \sim \frac{\Gamma\left(\frac{3}{4}\right)^{3}}{\sqrt[3]{2} \pi^{5 / 2}} n^{-3 / 2} 384^{n}
$$

Proof idea: Take

$$
f_{n}:=\sum_{k=0}^{n} 128^{n-k}\binom{4 k}{k}\binom{3 k}{k} .
$$

Note: We have $b_{n} \sim K n^{\beta} \gamma^{n}$, where $\beta \in \mathbb{N}$, and $K, \gamma \in \overline{\mathbb{Q}}$, for all $\sum_{n} b_{n} t^{n}=P / Q$.
Conjecture: For every $\sum_{n} f_{n} \in \mathcal{F}$, we have $f_{n} \sim K n^{\beta} \gamma^{n}$, where $\beta \in \mathbb{Z} / 2, \gamma \in \overline{\mathbb{Q}}$, and K is a generalized period, see. [Kontsevich-Zagier, 2001].

Curious Conjecture on Catalan numbers:

We have:

$$
C(t) \notin \mathcal{F}, \quad \text { where } \quad C(t)=\frac{1-\sqrt{1-4 t}}{2 t} .
$$

In other words, there is no set T of irrational tiles and $\varepsilon \geq 0$, s.t.

$$
a_{n}(T, \varepsilon)=C_{n} \quad \text { for all } n \geq 1, \quad \text { where } \quad C_{n}=\frac{1}{n+1}\binom{2 n}{n} .
$$

More on Catalan numbers

Recall

$$
C_{n} \sim \frac{1}{\sqrt{\pi}} n^{-3 / 2} 4^{n}
$$

Corollary: (from Main theorem) There exists

$$
\sum_{n} f_{n} t^{n} \in \mathcal{F} \quad \text { such that } \quad f_{n} \sim \frac{3 \sqrt{3}}{\pi} C_{n}
$$

Furthermore, $\forall \epsilon>0$, there exists

$$
\sum_{n} f_{n} t^{n} \in \mathcal{F} \quad \text { such that } \quad f_{n} \sim \lambda C_{n}
$$

for some $\lambda \in[1-\epsilon, 1+\epsilon]$.
Moral: Curious Conjecture cannot be proved via rough asymptotics.
Conjecture: There is no $\sum_{n} f_{n} t^{n} \in \mathcal{F}$, s.t. $f_{n} \sim C_{n}$.
Warning: This conjecture probably involves deep number theory.

More applications

Proposition: For every $m \geq 2$, there is $\sum_{n} f_{n} t^{n} \in \mathcal{F}$, s.t.

$$
f_{n}=C_{n} \quad \bmod m, \quad \text { for all } n \geq 1 .
$$

Proposition For every prime $p \geq 2$, there is $\sum_{n} g_{n} t^{n} \in \mathcal{F}$, s.t.

$$
\operatorname{ord}_{p}\left(g_{n}\right)=\operatorname{ord}_{p}\left(C_{n}\right), \quad \text { for all } n \geq 1,
$$

where $\operatorname{ord}_{p}(N)$ is the largest power of p which divides N.
Moral: Elementary number theory does not help to prove the Curious Conjecture.
Note: For ord ${ }_{p}\left(C_{n}\right)$, see [Kummer, 1852], [Deutsch-Sagan, 2006].
Proof idea: Take

$$
f_{n}=\binom{2 n}{n}+(m-1)\binom{2 n}{n-1} .
$$

Schützenberger's principle

There is a general metamathematical principle that goes back to M.-P. Schützenberger and that states the following: whenever a rational series in one variable counts a class of objects, then the series is \mathbb{N}-rational. This phenomenon has been observed on a large number of examples: generating series and zeta functions in combinatorics, Hilbert series of graded or filtered algebras, growth series of monoids or of groups.

[Berstel, Reutenauer; 2008]

Open Problem: Suppose $F \in \mathcal{F}$ is rational. Does this imply that $F \in \mathcal{R}_{1}$?
If NO, this implies that Schützenberger's principle is FALSE, i.e. there is a set of irrational tiles which gives a combinatorial interpretation to a non-negative rational functions, which nonetheless is not \mathbb{N}-rational.

Thank you!

