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Introduction

Graphs (labeled undirected graphs)

m g, = #{graphs with n vertices}

m cg, = #{connected graphs with n vertices}

6 2 6 .2
1 3 lq /3
4 5 4 5
connected graph disconnected graph

(cg,) = 1,1,4,38,728,26704, 1866256, . . .
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Introduction

Digraphs (labeled directed graphs)

m 0, = #{digraphs with n vertices}

digraph

0, = 22(5)
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Introduction

Digraphs (labeled directed graphs)

m 0, = #{digraphs with n vertices}
m 500, = #{strongly connected digraphs with n vertices}

6 2 6 42
4 3 1le / 3
4 6 2 s
strongly connected digraph
digraph
0, = 22(2)

(scd,) = 1,1, 18,1606, 565080, 734774776, . ..
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Introduction

Digraphs (labeled directed graphs)

m 0, = #{digraphs with n vertices}
m 500, = #{strongly connected digraphs with n vertices}
m 550, = #{semi-strong digraphs with n vertices}

6 2 6 2 6 2

— S
1 3 1e / 3 1 o—f 3
J \/

4 5 4 5 4 5

strongly connected digraph semi-strong
digraph digraph

0, = 22(2)

(scd,) = 1,1, 18, 1606, 565080, 734774776, . . .
(s50,) = 1,2,22, 1688, 573496, 738218192, . ..
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Introduction

Tournaments (labeled tournaments)

m t, = #{tournaments with n vertices}

YN A
W %

¢, = 20(2)
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Introduction

Tournaments (labeled tournaments)

m t, = #{tournaments with n vertices}
m it, = #{irreducible tournaments with n vertices}

6

b Vi N
Rty ;

4 4

6

reducible tournament irreducible tournament
¢, = 20(2)
(itn) = 1,0,2,24,544,22320, 1677488, . ..
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Introduction

Tournaments (labeled tournaments)

m t, = #{tournaments with n vertices}

_2 2
LN Aavary
A 7
4 5 4 5
reducible tournament irreducible tournament

¢, = 20(2)
(ity) = 1,0, 2,24, 544, 22320, 1677488, . . .
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Introduction

Probability of a graph to be connected

Question. What is the probability p, = n that a random graph

n
with n vertices is connected, as n — 0o?
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Introduction

Probability of a graph to be connected

Question. What is the probability p, = n that a random graph

n
with n vertices is connected, as n — 0o?

m Wright, 1970:

n\ 2 n\ 2° n\ 210 n®
o (1) 25 4 (0) 2w 0 ()
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Introduction

Probability of a graph to be connected

Question. What is the probability p, = n that a random graph

n
with n vertices is connected, as n — 0o?

m Wright, 1970:
n\ 2 n\ 20 n\ 210 n°
o (1) 25 4 (0) 2w 0 ()
m Monteil, N., 2021:

r—1
. n ok(k+1)/2 n'
k=1
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Introduction

Probability of a tournament to be irreducible

. . . it
Question. What is the probability g, = t—” that a random

n
tournament with n vertices is irreducible as n — oco?
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Introduction

Probability of a tournament to be irreducible

. . . it
Question. What is the probability g, = t—” that a random

n
tournament with n vertices is irreducible as n — oco?

m Wright, 1970:
_ n\ 22 n\ 2% n\ 28 n\ 215 0 n°
n=1"11)2n " \2) 22~ \3)23 " \4)2n 7O\ 20
m Monteil, N., 2021:

1 k(k+1)/2 r
, (2) ny 2 n
(21tk — 1tk ) . <k> . T + O <2nr> N

r—
k=1

qn:]-_

where itf) = #{tournaments of size n with 2 irreducible parts}.
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Probability of a digraph to be strongly connected

Question. What is the probability r, that a random directed graph
with n vertices is strongly connected, as n — oo?
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Introduction

Probability of a digraph to be strongly connected

Question. What is the probability r, that a random directed graph
with n vertices is strongly connected, as n — oo?

: =L wi(n) n! < n’ )
Wright, 1071:  r, — - o),
Vvneht, 1971 d kgo 2k (n+ [k/2] — k)! o

where

[k/2] ok(k+1)/2
wk(n) = Z %gk_QVW(n +[k/2] = k)...(n+v+1—k),
v=0

v—1 Yen 00 o n 7S 2
. _ sMv—s v o__ o s~
70_1) VV_Z(I/—S)!’ quz - (1 225(5—1)/2 S|> ’
s=0 v=0 s=0
s—1 s
m=1 no=25"D_3%" (t) 2= D=0y,

t=1
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Probability of a digraph to be strongly connected

Question. What is the probability r, that a random directed graph
with n vertices is strongly connected, as n — oo?

: ' L we(n) n! n"
Wright, 1971: = kgo T (5 (k)2 — k)] +0 <2m>,
where

(k/2] ok(k+1)/2
wk(n) = Z %gk_QVW(n +[k/2] = k)...(n+v+1-—k),
v=0
v—1 Yo o) o) n e 2
sllv—s v s
Yo = 1) VV:Z(I/—S)!’ quz - (1_225(5—1)/25|> ’
s=0 v=0 s=0
s—1 s
m=1, n=20"1D_3" (t) 2(s= N1y,

t=1
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Introduction

Motivation

Summary. The probability r, has an expansion of the form

r—1 l
1 T ¢ o n"
=D 5 D Mame+ 0 (5 )
m=0 =0

where nt = n(n—1)...(n — £+ 1) are falling factorials.

Observation. The array of coefficients (a} ;)7 ,_, can be
assembled into a (bivariate) generation function.

Questions. Can we express this bivariate generating function
explicitly in terms of other known generating functions?
What is the structure of the asymptotics?
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Asymptotic transfer

Outline

B Asymptotic transfer
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Asymptotic transfer

Graphically divergent series

macR.; and B € Zw,
[ Qig is the set of graphically divergent series, i.e.

oo
Zn
=D g
nl

n=0

such that
1 o
{ o
Do nta
m>=M /=0
where
m McZ,

mnt=n(n-1).. (n — 0 4 1) are falling factorials,

m the support of (ay, ;)72 is finite for each m € Zx .
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Asymptotic transfer

Coefficient generating function

m If Ac &2 with

~ o)
a,,Na( o namg,

m>M

then the associated coefficient generating function of type

(a, B) is
Azw)= 33 a8 !
m=M (=0 047*(2)

[ eﬁ is the set of corresponding coefficient generating functions.
] Qg: Qﬁg — etéi is the mapping of the form

QA = A°.
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Asymptotic transfer

First examples
m Graphs:

22 = en=20).

Its coefficient generating functlon of type (2,1) is
G°(z,w) = (Q3G)(z,w) = 1.
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Asymptotic transfer

First examples
m Graphs:

22 = en=20).

Its coefficient generating functlon of type (2,1) is
G°(z,w) = (Q3G)(z,w) = 1.

m Digraphs:

Z 206 o, =220).
nl
Its coefficient generating function of type (2,2) is

D°(z,w) = (Q%D)(z, w)=1.
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Asymptotic transfer

Properties, part |

The set 055 forms a ring with
(QU(A+ B))(z,w) = (QLA)(z, w) + (QLB)(z, w)

and

Derivation:
(Q2A) (2 w) == 277 ((QEA 2 w) + 50 (G2 w)).

Integration:
B+1 °© k
(Qﬁ /A) (zw)=a'7 2° (Z(l)k{fwk(gg;\)(z, W)>.
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Asymptotic transfer

Properties, part |l

Composition (interpretation of Bender's theorem): if

m F is analytic in a neighbourhood of the origin,
m a3y =0,

0
m H(z) = aF(X) " ,
x=A(z

then FoAcg¢ 055 and

B+1

(QE(F o A))(z,w) = H(a'= 2Pw) - (Q2A)(z, w).

A Powers: if meZsog (ormeQand ag=1), then

(QgAm) (z,w)=m- Am_l(aﬁTﬂzﬁw) (QBA)(z,w).
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Graphs and tournaments
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Graphs and tournaments
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Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

Connected graphs

Theorem (Monteil, N., 2021)

For every r > 1, the probability p, that a random labeled graph of size n
is connected satisfies

r—1
n 2k(k+1)/2 r
S (1) 2527 (),
— k 2 2

Theorem (Dovgal, N., 2023+)
The coefficient generating function of type (2,1) of connected graphs

satisfies
(Q3CG)(z,w) = o L IT(2zw).
Key ideas:  CG(z) = Iog (6(2)). gy = 773 = 1~ IT(2)
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Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

Irreducible tournaments

Theorem (Monteil, N., 2021)

For every r > 1, the probability g, that a random tournament of size n is
irreducible satisfies

r—1
) ) n 2k(k+1)/2 n'
S () 2 o(2),

k=1

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of irreducible
tournaments satisfies

(Q3IT)(z,w) = (1 — IT(2zw))*.

Key ideas: IT(z)=1— = (1-1T(2))*.

T(z)) T(2)
Khaydar Nurligareev (joint with Sergey Dovgal)
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Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

Fixed number of connected components in a graph

Observation:  G(z; t) = exp (t - CG(z)),
where t marks the number of connected components.
Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of graphs with the
marking variable t satisfies

(93 G)(z,w;t) = t-G(2zw; t — 1) = t - G(2zw; t) - (1 — IT(2zw)).
In particular,

CG™(2zw)

[t"1(Q; G)(z. wit) = ===+ (1 IT(2zw))
is the coefficient generating function for graphs with (m + 1) connected

components, m € Zxyg.

Khaydar Nurligareev (joint with Sergey Dovgal)
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Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

Fixed number of irreducible parts in a tournament

1

1—¢t-1T(2)’
where t marks the number of irreducible parts.

Observation:  T(z;t) =

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of tournaments with the
marking variable t satisfies

(QAT)(z,wit)=t- (T(2zw; £ (1- |T(2zw)))2.
In particular,
(™ 1)(Q5 T)(z, wi t) = (m+1) - IT™(2zw) - (1 — IT(2zw))?

is the coefficient generating function for tournaments with
(m + 1) irreducible parts, m € Zxo.
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The Erdés-Rényi model G(n, p), part |

Fix pe(0,1), qg=1-p, p=p/q
Consider a random labeled graph G:

m p is the probability of edge presence;

B g =1 — pis the probability of edge absence.

" EG))
P(G) = plE@IgG)-1E@I = P~
(p+ 1)(2)
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The Erd6és-Rényi model G(n, p), part |

Fix pe(0,1), qg=1-p, p=p/q

Consider a random labeled graph G:
m p is the probability of edge presence;

B g =1 — pis the probability of edge absence.

P(G) = p\E(G)Iq(Z)*\E(G)I — LG)‘H
(p+1)0)
Denote:
ma=p+l=gqgl
Then

Z(,O—i— 1) Za ok
n=0

Khaydar Nurligareev (joint with Sergey Dovgal)
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Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

The Erd6és-Rényi model G(n, p), part Il

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of connected graphs in
the Erdés-Rényi model satisfies

(93 CG)(z,w) =

G(21zw) = exp ( — CG(2zw)).

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of graphs in the
Erdbs-Rényi model with the marking variable t for the number of
strongly connected components satisfies
(Q2G)(z,w;t) =t-G(2zw; t — 1).
In particular,
CG™(2
[E™1(03 6)(z wit) = 2]

- xp ( — CG(2zw)).

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series



Digraphs

Outline

A Digraphs
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Digraphs

Transitions, part |

Theorem (Dovgal, de Panafieu, 2019)

The exponential generating function of strongly connected
digraphs satisfies

SCD(z) = — log (G(z) © %) .

m Exponential Hadamard product:

m Exponential Hadamard product (with G(z)) changes:
m the rate of convergence,
m the type of coefficient generating function.

Khaydar Nurligareev (joint with Sergey Dovgal)
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Digraphs

Transitions, part |

Theorem (Dovgal, de Panafieu, 2019)

The exponential generating function of strongly connected
digraphs satisfies

SCD(z) = — log (G(z) o %) .

m If 8> 1, then
Ny 65— @bt

is defined by

Oz > f, z"
A £ = 2
(Z ) 2 (7

" F(2)©G(z) = A MF(2).

Khaydar Nurligareev (joint with Sergey Dovgal)
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Digraphs

Transitions, part Il

mIf o € Ry1 and 5,7 € Z~g, then

e8¢l - el

is defined as
z" w — — o z" ¢
(S St ) = X S
m=M ¢=0 Oﬁ m=M (=0 Q2

m The following diagram is commutative:

6l 2, of
Aﬁi‘”l lrbﬁ”
6l —2, ¢

Khaydar Nurligareev (joint with Sergey Dovgal)
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Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

Strongly connected directed graphs, part |

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,2) of strongly
connected digraphs satisfies

(Q2SCD)(z, w) = SSD(2%/22%w) - ¢;’2(1 — |T(2ZW))2 :

where SSD(z) is the exponential generating function of
semi-strong digraphs.

Key ideas (Dovgal, de Panafieu, 2019; Monteil, N., 2021):

> — _log (1 - A;llT(z)) :

m SCD(z) = —log <G(z) O] G(lz)

1\t 1
m SSD(z) = <G(z)® G(z)) :m.

Khaydar Nurligareev (joint with Sergey Dovgal)
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Introduction Asymptotic transfer

Graphs and tournaments Digraphs 2-SAT formulae

Strongly connected directed graphs, part Il

Corollary

For every r > 1, the probability r, that a random labeled digraph
of size n is strongly connected satisfies

1 & n’
4
'n = onm Z m5c0m4+0<2m>’
m=0 {=[m/2]
where
) om(m+1)/2 S550m—y Im=2¢ — 2itop_m + itézglm
B 500, , =

20m=0) (m — 0)! (20— m)! ’

B 550, IS the number of semi-strong digraphs of size k,

m ity is the number of irreducible tournaments of size k,

| itf) is the number of tournaments of size k with two
irreducible components.

Khaydar Nurligareev (joint with Sergey Dovgal)
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Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

Strongly connected directed graphs, part Il

Corollary

For every r > 1, the probability r, that a random labeled digraph
of size n is strongly connected satisfies

r—1 1 m n"
i = Snm Z 5C0mg +0 <2rn> ’
m=0 {=[m/2]
where
) om(m+1)/2 S550m—y Im=2¢ — 2itop_m + itézglm
B 500, , = ’

20m=0) (m — 0)!] (20 — m)!
m Interpretation of Wright's coefficients:

550, . Tp—o — 2itx + itg(z)
R k= K| '

e = 2B)ity, Vi =

Khaydar Nurligareev (joint with Sergey Dovgal)
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Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

Fixed number of strongly connected components, part |

Observation:  SSD(z; t) = exp (t - SCD(z)),
where t marks the number of connected components.
Theorem (Dovgal, N., 2023+)
The coefficient generating function of type (2,2) of semi-strong digraphs
with the marking variable t satisfies
(Q35SD)(z, w; t) = t - SSD(2%/222w; t + 1) - L2 (1 — IT(2zw))°.
In particular,

SCD™(23/22%w)

[£71)(Q3 SSD) (2, wi t) = *——

- (Q3 5CD)(z, w)

is the coefficient generating function for semi-strong digraphs with
(m + 1) strongly connected components, m € Zx.

Khaydar Nurligareev (joint with Sergey Dovgal)
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Digraphs

Fixed number of strongly connected components, part Il
Observation (Robinson, 1973):

. _ —1 1 _ —1 1
D(zt) = A; <A2 e—t:SCD(2) | — A A, SSD(z; —t) ’

where t marks the number of connected components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,2) of digraphs with the
marking variable t satisfies

2 DYz - t) — — L2 ©3' ((Q3 SSD)(2, w; —t))
(92 D), wit) = = ( (AzSSD(2ZW;—t))2 )

Khaydar Nurligareev (joint with Sergey Dovgal)
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Introduction Asymptotic transfer Graphs and tournaments Digraphs

Fixed number of strongly connected components, part Il

u marks purely source-like components,
v marks purely sink-like components,
y marks isolated components,

L]
L]
L]
m t marks all components.

Theorem (Dovgal, 2023+)

The coefficient generating function of type (2, 2) of digraphs with the above marking variables satisfies

2 1,2
(Q3 D)(z, wiu, v, y,1) = D + D, - ®3% (DS, + DF + %),

where
Df(z7 wiu,v,y,t)=(y —u—v+1)t- D(23/222W; u,v,y,t)- (Qg SCD)(z, w),
D5o(z, wiu, v, y, t) = SSD(23/222w; (y—u—v+1)),
Dzol(z, wiu,v,y,t) = B(ZZW; u, t) - 4);’1 ((Qg SSD)(Z, w; (v — l)t)) s
D;Z(z, wiu,v,y,t) = 6(2zw; v, t)- ®§’1 ((Qg SSD)(Z7 w; (u— l)t)) N
D§3(z, wiu,v,y,t) = B(ZZW; u, t) - 5(2ZW; v, t) - ¢§’1 ((Q% SSD)(z, w; 7t))
and

B( 3 Ay SSD(2zw; (s — 1)t)
ist)= ————————=
a Ay SSD (22W; —t)

Khaydar Nurligareev (joint with Sergey Dovgal)
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2-SAT formulae

Outline

E 2-SAT formulae
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2-CNF formulae

® Xxi,...,X, are Boolean variables,
B Cj € {x1,...,Xn,X1,...,Xn} are literals,
m 2-conjunctive normal form (2-CNF) formula:

m
/\(Cil Vcia),
i=1

m n Boolean variables and m clauses,
m (xVx)and (xV X) are forbidden,
m repetitions are forbidden,

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series



2-CNF formulae

® Xi,...,X, are Boolean variables,

mCj € {xi,...,Xn,X1,...,Xn} are literals,

m 2-conjunctive normal form (2-CNF) formula:
m
/\(Cil Vi),
i=1

m n Boolean variables and m clauses,
m (xVx) and (x V X) are forbidden,
m repetitions are forbidden,

m nf, = #{2-CNF with n Boolean variables},

enf, = 24(2),
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2-CNF formulae

® Xi,...,X, are Boolean variables,

mCj € {xi,...,Xn,X1,...,Xn} are literals,

m 2-conjunctive normal form (2-CNF) formula:
m
/\(Cil Vi),
i=1

m n Boolean variables and m clauses,
m (xVx) and (x V X) are forbidden,
m repetitions are forbidden,

m nf, = #{2-CNF with n Boolean variables},
cnfn = 24(;,)7

m a formula is satisfiable iff it can be made TRUE by assigning
appropriate values to its variables.

Khaydar Nurligareev (joint with Sergey Dovgal)
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2-SAT formulae

Implication digraph (of a 2-CNF formula)

m Vertices: X1,...,Xp, X1,...,Xn,
m Clause xVy ~» edges X —y and y — x.

x1 'V X2 X1 X1

X1V xo _

X1V Xa x4 _ 4
X2 V X3 - [
Xo V X3 X5 I

X3 V Xg s
Xa V Xz

\ X4 V X5

Khaydar Nurligareev (joint with Sergey Dovgal)
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2-SAT formulae

Implication digraph (of a 2-CNF formula)

m Vertices: X1,...,Xp, X1,...,Xn,
m Clause xVy ~» edges X —y and y — x.

x1 V X2 X1 X1

X1V xo _

X1V xq X4 _ 4
X2 V X3 - [
Xo V X3 X5 I

X3 V Xg s
Xa V Xz

\ X4 V X5
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2-SAT formulae

Implication digraph (of a 2-CNF formula)

m Vertices:
m Clause xVy

x1 V X2
X1V xo
X1V Xa
X2 V X3
Xo V X3
X3 V Xg
Xa V Xz

\ X4 V X5

Khaydar Nurligareev (joint with Sergey Dovgal)

<5 Xn,

edges X -y and ¥y — x.

X1 X1
Xa l\‘ X4
Xo X2 fj
X5 I )_(5
X3 X3
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2-SAT formulae

Implication digraph (of a 2-CNF formula)

m Vertices:
m Clause xVy

x1 V Xo
X1V xo
X1V Xa
X2 V X3
Xo V X3
X3 V Xg
Xa V Xz

\ X4 V X5

..,Xn,)_(l,...,)_(n,
edges X -y and ¥y — x.

X3
ordinary  contradictory  ordinary
component component component

m Contradictory component contain x and x at the same time.

m Fact: formula is satisfiable iff there is no contradictory

component.
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Asymptotics of 2-SAT formulae

Implication generating function of 2-SAT formulae:
. o0 Zn
SAT(Z) = z;)ﬁatnm .
n—=

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

N 1/2
SAT(z) = G(z) - A3 (G(z)@ G(lz)) .

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of 2-SAT
formulae satisfies

SAT(2zw)

(QLSAT)(z, w) = o)

= SAT(2ZW)(]. —1T(2zw)) .
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2-SAT formulae

Asymptotics of contradictory components

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

CSC(z) = %SCD(22) +log <D(z) ® 5((222))> .

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,4) of contradictory
strongly connected implication digraphs satisfy

(93 CSC)(z, w) =exp <;SCD(27/2Z4W) — CSC(25/2Z4W)> :

3% (1 - IT(2%%2%2w)).
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Fixed number of strongly connected components

Let
m s marks contradictory components,

m t marks ordinary components.

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

CRF(z;s,t) = £8o(D(z: 1)) - A3 (& CC/ /2506 )

Theorem (Dovgal, N., 2023+)
The coefficient generating function of type (2,2) of implication digraphs with
the above marking variables satisfies

(Q3 CNF)(z, w; s, t) = s-Ao (D(23/222W; t))~¢;‘2 [z 5% . o3t (1 - |T(422W))] ,

where

1-1t)

S°(z,w;s,t) = exp ((s —1) - CSC(2*?2*w) + ( 5 SCD(25/2z4w)> .
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2-SAT formulae

Conclusion

We have constructed a tool for manipulating coefficients of
asymptotic expansions.

H Transfers extend to graphic families with marked patterns:
any family with a fixed number of components:

m strongly connected components in digraphs, contradictory
components in 2-sat,

m source-like, sink-like, isolated components, ...

m any graphically divergent series with marking variables.

Bonus: combinatorial explanations of the expansion
coefficients.

Thank you for your attention!
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