Asymptotics for graphically divergent series

Khaydar Nurligareev (joint with Sergey Dovgal)

LiB, University of Burgundy

Seminar CALIN

September 19, 2023

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Table of content

1 Introduction

- 2 Asymptotic transfer
- **3** Graphs and tournaments

4 Digraphs

5 2-SAT formulae

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Outline

1 Introduction

- 2 Asymptotic transfer
- 3 Graphs and tournaments

4 Digraphs

5 2-SAT formulae

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Graphs (labeled undirected graphs)

- $\mathfrak{g}_n = \#\{ \text{graphs with } n \text{ vertices} \}$
- $\mathfrak{cg}_n = \#\{\text{connected graphs with } n \text{ vertices}\}$

$$(\mathfrak{cg}_n) = 1, 1, 4, 38, 728, 26704, 1866256, \ldots$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Digraphs (labeled directed graphs)

• $\mathfrak{d}_n = \#\{\text{digraphs with } n \text{ vertices}\}$

 $\mathfrak{d}_n=2^{2\binom{n}{2}}$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Digraphs (labeled directed graphs)

- $\mathfrak{d}_n = \#\{\text{digraphs with } n \text{ vertices}\}$
- sc∂_n = #{strongly connected digraphs with *n* vertices}

 $(\mathfrak{scd}_n) = 1, 1, 18, 1606, 565080, 734774776, \ldots$

Digraphs (labeled directed graphs)

- $\mathfrak{d}_n = \#\{\text{digraphs with } n \text{ vertices}\}$
- sc∂_n = #{strongly connected digraphs with *n* vertices}
- $\mathfrak{ssd}_n = \#\{\text{semi-strong digraphs with } n \text{ vertices}\}$

 $(\mathfrak{scd}_n) = 1, 1, 18, 1606, 565080, 734774776, \dots$ $(\mathfrak{ssd}_n) = 1, 2, 22, 1688, 573496, 738218192, \dots$

Khaydar Nurligareev (joint with Sergey Dovgal)

niversity of Burgundy

Tournaments (labeled tournaments)

• $\mathfrak{t}_n = \#\{\text{tournaments with } n \text{ vertices}\}$

 $\mathfrak{t}_n=2\binom{n}{2}$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Tournaments (labeled tournaments)

- $\mathfrak{t}_n = \#\{\text{tournaments with } n \text{ vertices}\}$
- $\mathfrak{it}_n = \#\{\text{irreducible tournaments with } n \text{ vertices}\}$

reducible tournament

$$\mathfrak{t}_n=2^{\binom{n}{2}}$$

$$(\mathfrak{it}_n) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Tournaments (labeled tournaments)

• $\mathfrak{t}_n = \#\{\text{tournaments with } n \text{ vertices}\}$

reducible tournament

$$\mathfrak{t}_n=2\binom{n}{2}$$

$$(\mathfrak{it}_n) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - 2\binom{n}{3} \frac{2^6}{2^{3n}} - 24\binom{n}{4} \frac{2^{10}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Probability of a graph to be connected

<u>Question</u>. What is the probability $p_n = \frac{\mathfrak{cg}_n}{\mathfrak{g}_n}$ that a random graph with *n* vertices is connected, as $n \to \infty$?

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - 2\binom{n}{3} \frac{2^6}{2^{3n}} - 24\binom{n}{4} \frac{2^{10}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Monteil, N., 2021:

$$p_n = 1 - \sum_{k=1}^{r-1} \operatorname{it}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right).$$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Probability of a tournament to be irreducible

<u>Question</u>. What is the probability $q_n = \frac{it_n}{t_n}$ that a random tournament with *n* vertices is irreducible as $n \to \infty$?

University of Burgundy

8/38

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Probability of a tournament to be irreducible

<u>Question</u>. What is the probability $q_n = \frac{it_n}{t_n}$ that a random tournament with *n* vertices is irreducible as $n \to \infty$?

Wright, 1970:

$$q_n = 1 - \binom{n}{1} \frac{2^2}{2^n} + \binom{n}{2} \frac{2^4}{2^{2n}} - \binom{n}{3} \frac{2^8}{2^{3n}} - \binom{n}{4} \frac{2^{15}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Monteil, N., 2021:

$$q_n = 1 - \sum_{k=1}^{r-1} \left(2\mathfrak{i}\mathfrak{t}_k - \mathfrak{i}\mathfrak{t}_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where $\mathfrak{i}\mathfrak{t}_k^{(2)} = \#\{\text{tournaments of size } n \text{ with } 2 \text{ irreducible parts}\}.$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Probability of a digraph to be strongly connected

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Probability of a digraph to be strongly connected

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Wright, 1971:
$$r_n = \sum_{k=0}^{r-1} \frac{\omega_k(n)}{2^{kn}} \cdot \frac{n!}{(n+\lfloor k/2 \rfloor - k)!} + O\left(\frac{n^r}{2^{rn}}\right),$$

where

$$\omega_k(n) = \sum_{\nu=0}^{\lfloor k/2 \rfloor} \gamma_{\nu} \xi_{k-2\nu} \frac{2^{k(k+1)/2}}{2^{\nu(k-\nu)}} (n+\lfloor k/2 \rfloor - k) \dots (n+\nu+1-k),$$

$$\gamma_{0} = 1, \ \gamma_{\nu} = \sum_{s=0}^{\nu-1} \frac{\gamma_{s} \eta_{\nu-s}}{(\nu-s)!}, \ \sum_{\nu=0}^{\infty} \xi_{\nu} z^{\nu} = \left(1 - \sum_{s=0}^{\infty} \frac{\eta_{s}}{2^{s(s-1)/2}} \frac{z^{s}}{s!}\right)^{2},$$
$$\eta_{1} = 1, \ \eta_{s} = 2^{s(s-1)} - \sum_{t=1}^{s-1} \binom{s}{t} 2^{(s-1)(s-t)} \eta_{t}.$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

9/38

0

Probability of a digraph to be strongly connected

<u>Question</u>. What is the probability r_n that a random directed graph with n vertices is strongly connected, as $n \to \infty$?

Wright, 1971:
$$r_n = \sum_{k=0}^{r-1} \frac{\omega_k(n)}{2^{kn}} \cdot \frac{n!}{(n+[k/2]-k)!} + O\left(\frac{n^r}{2^{rn}}\right),$$

where

$$\omega_k(n) = \sum_{\nu=0}^{\lfloor k/2 \rfloor} \gamma_{\nu} \xi_{k-2\nu} \frac{2^{k(k+1)/2}}{2^{\nu(k-\nu)}} (n+\lfloor k/2 \rfloor - k) \dots (n+\nu+1-k),$$

$$\gamma_{0} = 1, \ \gamma_{\nu} = \sum_{s=0}^{\nu-1} \frac{\gamma_{s} \eta_{\nu-s}}{(\nu-s)!}, \ \sum_{\nu=0}^{\infty} \xi_{\nu} z^{\nu} = \left(1 - \sum_{s=0}^{\infty} \frac{\eta_{s}}{2^{s(s-1)/2}} \frac{z^{s}}{s!}\right)^{2},$$
$$\eta_{1} = 1, \ \eta_{s} = 2^{s(s-1)} - \sum_{t=1}^{s-1} \binom{s}{t} 2^{(s-1)(s-t)} \eta_{t}.$$

Khaydar Nurligareev (joint with Sergey Dovgal)

......

Asymptotics for graphically divergent series

9/38

0

Motivation

Summary. The probability r_n has an expansion of the form

$$r_n = \sum_{m=0}^{r-1} \frac{1}{2^{mn}} \sum_{\ell=0}^{\ell_m} n^{\ell} a^{\circ}_{m,\ell} + O\left(\frac{n^r}{2^{rn}}\right),$$

where $n^{\underline{\ell}} = n(n-1) \dots (n-\ell+1)$ are falling factorials.

<u>Observation</u>. The array of coefficients $(a_{m,\ell}^{\circ})_{m,\ell=0}^{\infty}$ can be assembled into a (bivariate) generation function.

Questions. Can we express this bivariate generating function explicitly in terms of other known generating functions?

What is the structure of the asymptotics?

Outline

1 Introduction

2 Asymptotic transfer

3 Graphs and tournaments

4 Digraphs

5 2-SAT formulae

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Graphically divergent series

• $\mathfrak{G}^{\beta}_{\alpha}$ is the set of graphically divergent series, i.e.

$$A(z) = \sum_{n=0}^{\infty} a_n \frac{z^n}{n!}$$

such that

$$a_n \approx \alpha^{\beta\binom{n}{2}} \left[\sum_{m \ge M} \frac{1}{\alpha^{mn}} \sum_{\ell=0}^{\infty} n^{\ell} a_{m,\ell}^{\circ} \right],$$

where

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Coefficient generating function

• If $A \in \mathfrak{G}^{\beta}_{\alpha}$ with

$$a_n pprox lpha^{eta \binom{n}{2}} \left[\sum_{m \geqslant M} \frac{1}{lpha^{mn}} \sum_{\ell=0}^{\infty} n^{\ell} a^{\circ}_{m,\ell}
ight],$$

then the associated **coefficient generating function** of type (α, β) is

$$\mathcal{A}^{\circ}(z,w) = \sum_{m=M}^{\infty} \sum_{\ell=0}^{\infty} a_{m,\ell}^{\circ} \frac{z^m}{\alpha^{\frac{1}{\beta}\binom{m}{2}}} w^{\ell}.$$

• $\mathfrak{C}^{\beta}_{\alpha}$ is the set of corresponding coefficient generating functions. • $\mathcal{Q}^{\beta}_{\alpha} \colon \mathfrak{G}^{\beta}_{\alpha} \to \mathfrak{C}^{\beta}_{\alpha}$ is the mapping of the form

$$\mathcal{Q}^{\beta}_{\alpha}A=A^{\circ}.$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

First examples

Graphs:

$$G(z) = \sum_{n=0}^{\infty} 2^{\binom{n}{2}} \frac{z^n}{n!}, \qquad \mathfrak{g}_n = 2^{\binom{n}{2}}.$$

Its coefficient generating function of type (2,1) is

$$G^{\circ}(z,w)=(\mathcal{Q}_2^1G)(z,w)=1.$$

First examples

Graphs:

$$G(z) = \sum_{n=0}^{\infty} 2^{\binom{n}{2}} \frac{z^n}{n!}, \qquad \mathfrak{g}_n = 2^{\binom{n}{2}}.$$

Its coefficient generating function of type $\left(2,1\right)$ is

$$G^{\circ}(z,w)=(\mathcal{Q}_2^1G)(z,w)=1.$$

Digraphs:

$$D(z) = \sum_{n=0}^{\infty} 2^{2\binom{n}{2}} \frac{z^n}{n!}, \qquad \mathfrak{d}_n = 2^{2\binom{n}{2}}.$$

Its coefficient generating function of type (2,2) is

$$D^\circ(z,w)=(\mathcal{Q}_2^2D)(z,w)=1$$
.

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Properties, part I

1 The set
$$\mathfrak{G}^{\beta}_{\alpha}$$
 forms a ring with
 $\left(\mathcal{Q}^{\beta}_{\alpha}(A+B)\right)(z,w) = \left(\mathcal{Q}^{\beta}_{\alpha}A\right)(z,w) + \left(\mathcal{Q}^{\beta}_{\alpha}B\right)(z,w)$
and

$$\begin{aligned} \big(\mathcal{Q}^{\beta}_{\alpha}(A \cdot B)\big)(z,w) =& A\big(\alpha^{\frac{\beta+1}{2}} z^{\beta} w\big) \cdot \big(\mathcal{Q}^{\beta}_{\alpha}B\big)(z,w) + \\ & B\big(\alpha^{\frac{\beta+1}{2}} z^{\beta} w\big) \cdot \big(\mathcal{Q}^{\beta}_{\alpha}A\big)(z,w) \,. \end{aligned}$$

2 Derivation:

$$(\mathcal{Q}_{\alpha}^{\beta}A')(z,w) = \alpha^{-\frac{\beta+1}{2}}z^{-\beta}\left(\left(\mathcal{Q}_{\alpha}^{\beta}A\right)(z,w) + \frac{\partial}{\partial w}(\mathcal{Q}_{\alpha}^{\beta}A)(z,w)\right).$$

3 Integration:

$$\left(\mathcal{Q}_{\alpha}^{\beta}\int A\right)(z,w) = \alpha^{\frac{\beta+1}{2}} z^{\beta}\left(\sum_{k=0}^{\infty}(-1)^{k}\frac{\partial^{k}}{\partial w^{k}}(\mathcal{Q}_{\alpha}^{\beta}A)(z,w)\right).$$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Properties, part II

3 Composition (interpretation of Bender's theorem): if

• F is analytic in a neighbourhood of the origin,

then $F \circ A \in \mathfrak{G}^{\beta}_{\alpha}$ and

$$(\mathcal{Q}^{\beta}_{\alpha}(F \circ A))(z, w) = H(\alpha^{\frac{\beta+1}{2}}z^{\beta}w) \cdot (\mathcal{Q}^{\beta}_{\alpha}A)(z, w).$$

4 Powers: if $m \in \mathbb{Z}_{\geq 0}$ (or $m \in \mathbb{Q}$ and $a_0 = 1$), then $\left(\mathcal{Q}^{\beta}_{\alpha}A^{m}\right)(z,w) = m \cdot A^{m-1}\left(\alpha^{\frac{\beta+1}{2}}z^{\beta}w\right) \cdot \left(\mathcal{Q}^{\beta}_{\alpha}A\right)(z,w).$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Outline

1 Introduction

3 Graphs and tournaments

4 Digraphs

5 2-SAT formulae

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Connected graphs

Theorem (Monteil, N., 2021)

For every $r \ge 1$, the probability p_n that a random labeled graph of size n is connected satisfies

$$p_n = 1 - \sum_{k=1}^{r-1} \mathfrak{i}\mathfrak{t}_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right).$$

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of connected graphs satisfies

$$(\mathcal{Q}_2^1 \operatorname{CG})(z, w) = \frac{1}{\operatorname{G}(2zw)} = 1 - \operatorname{IT}(2zw).$$

<u>Key ideas:</u> $CG(z) = \log (G(z)), \quad \frac{1}{G(z)} = \frac{1}{T(z)} = 1 - IT(z).$

18/38

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

LiB. University of Burgundy

Irreducible tournaments

Theorem (Monteil, N., 2021)

For every $r \ge 1$, the probability q_n that a random tournament of size n is irreducible satisfies

$$q_n = 1 - \sum_{k=1}^{r-1} \left(2\mathfrak{i}\mathfrak{t}_k - \mathfrak{i}\mathfrak{t}_k^{(2)} \right) \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right).$$

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 1) of irreducible tournaments satisfies

$$(\mathcal{Q}_2^1 \operatorname{\mathsf{IT}})(z, w) = (1 - \operatorname{\mathsf{IT}}(2zw))^2.$$

$$\underline{\mathsf{Key ideas:}} \quad \mathsf{IT}(z) = 1 - \frac{1}{\mathsf{T}(z)}, \quad \frac{1}{\mathsf{T}^2(z)} = \big(1 - \mathsf{IT}(z)\big)^2.$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Fixed number of connected components in a graph

<u>Observation:</u> $G(z; t) = \exp(t \cdot CG(z))$, where t marks the number of connected components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of graphs with the marking variable t satisfies

$$(\mathcal{Q}_2^1 \mathsf{G})(z,w;t) = t \cdot \mathsf{G}(2zw;t-1) = t \cdot \mathsf{G}(2zw;t) \cdot (1 - \mathsf{IT}(2zw)).$$

In particular,

$$[t^{m+1}](\mathcal{Q}_2^1 G)(z,w;t) = \frac{\mathsf{CG}^m(2zw)}{m!} \cdot (1 - \mathsf{IT}(2zw))$$

is the coefficient generating function for graphs with (m + 1) connected components, $m \in \mathbb{Z}_{\geq 0}$.

Fixed number of irreducible parts in a tournament

Observation:
$$T(z; t) = \frac{1}{1 - t \cdot IT(z)}$$
,
where t marks the number of irreducible parts.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of tournaments with the marking variable t satisfies

$$(\mathcal{Q}_2^1 T)(z, w; t) = t \cdot \left(\mathsf{T}(2zw; t) \cdot (1 - \mathsf{IT}(2zw))\right)^2$$

In particular,

$$[t^{m+1}](\mathcal{Q}_2^1 T)(z,w;t) = (m+1) \cdot \mathsf{IT}^m(2zw) \cdot (1-\mathsf{IT}(2zw))^2$$

is the coefficient generating function for tournaments with (m + 1) irreducible parts, $m \in \mathbb{Z}_{\geq 0}$.

The Erdős-Rényi model G(n, p), part l

Fix
$$p \in (0,1)$$
, $q = 1 - p$, $\rho = p/q$.

Consider a random labeled graph G:

- *p* is the probability of edge presence;
- q = 1 p is the probability of edge absence.

$$\mathbb{P}(G) =
ho^{|E(G)|} q^{\binom{n}{2} - |E(G)|} = rac{
ho^{|E(G)|}}{(
ho + 1)^{\binom{n}{2}}}.$$

The Erdős-Rényi model G(n, p), part l

Fix
$$p \in (0,1)$$
, $q = 1 - p$, $\rho = p/q$.

Consider a random labeled graph G:

p is the probability of edge presence;

• q = 1 - p is the probability of edge absence.

$$\mathbb{P}(G) = p^{|E(G)|} q^{\binom{n}{2} - |E(G)|} = rac{
ho^{|E(G)|}}{(
ho + 1)^{\binom{n}{2}}}.$$

Denote:

•
$$\alpha = \rho + 1 = q^{-1}$$
.

Then

$$G(z) = \sum_{n=0}^{\infty} (\rho+1)^{\binom{n}{2}} \frac{z^n}{n!} = \sum_{n=0}^{\infty} \alpha^{\binom{n}{2}} \frac{z^n}{n!}.$$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

The Erdős-Rényi model G(n, p), part II

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of connected graphs in the Erdős-Rényi model satisfies

$$(\mathcal{Q}_2^1 \operatorname{CG})(z, w) = \frac{1}{\operatorname{G}(2zw)} = \exp\big(-\operatorname{CG}(2zw)\big).$$

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of graphs in the Erdős-Rényi model with the marking variable t for the number of strongly connected components satisfies

$$(\mathcal{Q}_2^1 G)(z,w;t) = t \cdot G(2zw;t-1).$$

In particular,

$$[t^{m+1}](\mathcal{Q}_2^1 G)(z,w;t) = \frac{\mathsf{CG}^m(2zw)}{m!} \cdot \exp\big(-\mathsf{CG}(2zw)\big).$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Outline

1 Introduction

2 Asymptotic transfer

3 Graphs and tournaments

5 2-SAT formulae

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Transitions, part I

Theorem (Dovgal, de Panafieu, 2019)

The exponential generating function of strongly connected digraphs satisfies

$$\mathsf{SCD}(z) = -\log\left(\mathsf{G}(z) \odot rac{1}{\mathsf{G}(z)}
ight) \,.$$

Exponential Hadamard product:

$$\left(\sum_{n=0}^{\infty} a_n \frac{z^n}{n!}\right) \odot \left(\sum_{n=0}^{\infty} b_n \frac{z^n}{n!}\right) = \left(\sum_{n=0}^{\infty} a_n b_n \frac{z^n}{n!}\right)$$

- Exponential Hadamard product (with G(z)) changes:
 - the rate of convergence,
 - the type of coefficient generating function.

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Transitions, part I

Theorem (Dovgal, de Panafieu, 2019)

The exponential generating function of strongly connected digraphs satisfies

$$\mathsf{SCD}(z) = -\log\left({{\mathit G}(z) \odot rac{1}{{{\mathit G}(z)}}}
ight) \,.$$

 $\blacksquare \ {\rm If} \ \beta>1, \ {\rm then}$

$$\Delta_{\alpha} \colon \mathfrak{G}_{\alpha}^{\beta} \to \mathfrak{G}_{\alpha}^{\beta-1}$$

is defined by

$$\Delta_{\alpha}\left(\sum_{n=0}^{\infty}f_{n}\frac{z^{n}}{n!}\right)=\sum_{n=0}^{\infty}\frac{f_{n}}{\alpha\binom{n}{2}}\frac{z^{n}}{n!}.$$

•
$$F(z) \odot G(z) = \Delta_2^{-1} F(z)$$
.

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Transitions, part II

• If $\alpha \in \mathbb{R}_{>1}$ and $\beta, \gamma \in \mathbb{Z}_{>0}$, then

$$\Phi^{\beta,\gamma}_{\alpha} \colon \mathfrak{C}^{\beta}_{\alpha} \to \mathfrak{C}^{\gamma}_{\alpha}$$

is defined as

$$\Phi_{\alpha}^{\beta,\gamma}\left(\sum_{m=M}^{\infty}\sum_{\ell=0}^{\infty}a_{m,\ell}^{\circ}\frac{z^{m}}{\alpha^{\frac{1}{\beta}\binom{m}{2}}}w^{\ell}\right)=\sum_{m=M}^{\infty}\sum_{\ell=0}^{\infty}a_{m,\ell}^{\circ}\frac{z^{m}}{\alpha^{\frac{1}{\gamma}\binom{m}{2}}}w^{\ell}.$$

The following diagram is commutative:

$$\begin{array}{ccc} \mathfrak{G}^{\beta}_{\alpha} & \xrightarrow{\mathcal{Q}^{\beta}_{\alpha}} & \mathfrak{C}^{\beta}_{\alpha} \\ \Delta^{\beta-\gamma}_{\alpha} & & & \downarrow \Phi^{\beta,\gamma}_{\alpha} \\ \mathfrak{G}^{\gamma}_{\alpha} & \xrightarrow{\mathcal{Q}^{\gamma}_{\alpha}} & \mathfrak{C}^{\gamma}_{\alpha} \end{array}$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

iB. University of Burgundy

Strongly connected directed graphs, part I

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,2) of strongly connected digraphs satisfies

$$(\mathcal{Q}_2^2 \text{SCD})(z, w) = \text{SSD}(2^{3/2}z^2w) \cdot \Phi_2^{1,2} (1 - \text{IT}(2zw))^2.$$

where SSD(z) is the exponential generating function of semi-strong digraphs.

Key ideas (Dovgal, de Panafieu, 2019; Monteil, N., 2021):

• SCD(z) =
$$-\log\left(G(z)\odot\frac{1}{G(z)}\right) = -\log\left(1-\Delta_2^{-1}\mathsf{IT}(z)\right)$$
,
• SSD(z) = $\left(G(z)\odot\frac{1}{G(z)}\right)^{-1} = \frac{1}{1-\Delta_2^{-1}\mathsf{IT}(z)}$.

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series .iB. University of Burgundy

Strongly connected directed graphs, part II

Corollary

For every $r \ge 1$, the probability r_n that a random labeled digraph of size n is strongly connected satisfies

$$r_n = \sum_{m=0}^{r-1} \frac{1}{2^{nm}} \sum_{\ell = \lceil m/2 \rceil}^m n^{\ell} \mathfrak{scd}_{m,\ell}^\circ + O\left(\frac{n^r}{2^{rn}}\right),$$

where

•
$$\mathfrak{scd}^{\circ}_{m,\ell} = \frac{2^{m(m+1)/2}}{2^{\ell(m-\ell)}} \frac{\mathfrak{ssd}_{m-\ell}}{(m-\ell)!} \frac{\mathbb{I}_{m=2\ell} - 2\mathfrak{i}\mathfrak{t}_{2\ell-m} + \mathfrak{i}\mathfrak{t}_{2\ell-m}^{(2)}}{(2\ell-m)!},$$

• \mathfrak{ssd}_k is the number of semi-strong digraphs of size k,

it_k is the number of irreducible tournaments of size k,
it⁽²⁾_k is the number of tournaments of size k with two irreducible components.

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Strongly connected directed graphs, part II

Corollary

For every $r \ge 1$, the probability r_n that a random labeled digraph of size n is strongly connected satisfies

$$r_n = \sum_{m=0}^{r-1} \frac{1}{2^{nm}} \sum_{\ell = \lceil m/2 \rceil}^m n^{\ell} \mathfrak{scd}_{m,\ell}^\circ + O\left(\frac{n^r}{2^{rn}}\right),$$

where

$$\mathfrak{scd}_{m,\ell}^{\circ} = \frac{2^{m(m+1)/2}}{2^{\ell(m-\ell)}} \frac{\mathfrak{ssd}_{m-\ell}}{(m-\ell)!} \frac{\mathbb{I}_{m=2\ell} - 2\mathfrak{i}\mathfrak{t}_{2\ell-m} + \mathfrak{i}\mathfrak{t}_{2\ell-m}^{(2)}}{(2\ell-m)!} \,,$$

Interpretation of Wright's coefficients:

$$\eta_k = 2^{\binom{k}{2}} \mathfrak{i}\mathfrak{t}_k, \qquad \gamma_k = \frac{\mathfrak{ssd}_k}{k!}, \qquad \xi_k = \frac{\mathbb{I}_{k=0} - 2\mathfrak{i}\mathfrak{t}_k + \mathfrak{i}\mathfrak{t}_k^{\binom{2}{k}}}{k!}$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

 $\langle \alpha \rangle$

Fixed number of strongly connected components, part I

<u>Observation</u>: $SSD(z; t) = \exp(t \cdot SCD(z))$, where *t* marks the number of connected components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,2) of semi-strong digraphs with the marking variable t satisfies

$$(\mathcal{Q}_2^2 SSD)(z, w; t) = t \cdot SSD(2^{3/2}z^2w; t+1) \cdot \Phi_2^{1,2}(1 - IT(2zw))^2.$$

In particular,

$$[t^{m+1}](\mathcal{Q}_2^2 SSD)(z, w; t) = \frac{\mathsf{SCD}^m(2^{3/2}z^2w)}{m!} \cdot (\mathcal{Q}_2^2 SCD)(z, w)$$

is the coefficient generating function for semi-strong digraphs with (m + 1) strongly connected components, $m \in \mathbb{Z}_{\geq 0}$.

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Fixed number of strongly connected components, part II

Observation (Robinson, 1973):

$$\mathsf{D}(z;t) = \Delta_2^{-1}\left(\frac{1}{\Delta_2 e^{-t \cdot \mathsf{SCD}(z)}}\right) = \Delta_2^{-1}\left(\frac{1}{\Delta_2 \operatorname{SSD}(z;-t)}\right),$$

where *t* marks the number of connected components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,2) of digraphs with the marking variable t satisfies

$$(\mathcal{Q}_2^2 D)(z, w; t) = -\Phi_2^{1,2} \left(\frac{\Phi_2^{2,1}((\mathcal{Q}_2^2 SSD)(z, w; -t)))}{(\Delta_2 SSD(2zw; -t))^2} \right).$$

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series 30/38

.iB, University of Burgundy

Fixed number of strongly connected components, part III

- u marks purely source-like components,
- v marks purely sink-like components,
- y marks isolated components,
- t marks all components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 2) of digraphs with the above marking variables satisfies

$$(\mathcal{Q}_{2}^{2} D)(z, w; u, v, y, t) = \mathsf{D}_{1}^{\circ} + \mathsf{D}_{20}^{\circ} \cdot \Phi_{2}^{1,2} \left(\mathsf{D}_{21}^{\circ} + \mathsf{D}_{22}^{\circ} + \mathsf{D}_{23}^{\circ}\right),$$

where

$$\begin{split} & \mathsf{D}_{1}^{\circ}(z,w;u,v,y,t) = (y-u-v+1)t \cdot \mathsf{D}(2^{3/2}z^2w;u,v,y,t) \cdot (\mathcal{Q}_{2}^{2}\,\mathsf{SCD})(z,w) \\ & \mathsf{D}_{20}^{\circ}(z,w;u,v,y,t) = \mathsf{SSD}(2^{3/2}z^2w;(y-u-v+1)t) \;, \\ & \mathsf{D}_{21}^{\circ}(z,w;u,v,y,t) = \widehat{\mathsf{D}}(2zw;u,t) \cdot \Phi_{2}^{2,1}\Big((\mathcal{Q}_{2}^{2}\,\mathsf{SSD})(z,w;(v-1)t)\Big) \;, \\ & \mathsf{D}_{22}^{\circ}(z,w;u,v,y,t) = \widehat{\mathsf{D}}(2zw;v,t) \cdot \Phi_{2}^{2,1}\Big((\mathcal{Q}_{2}^{2}\,\mathsf{SSD})(z,w;(u-1)t)\Big) \;, \\ & \mathsf{D}_{23}^{\circ}(z,w;u,v,y,t) = \widehat{\mathsf{D}}(2zw;u,t) \cdot \widehat{\mathsf{D}}(2zw;v,t) \cdot \Phi_{2}^{2,1}\Big((\mathcal{Q}_{2}^{2}\,\mathsf{SSD})(z,w;(u-1)t)\Big) \;, \end{split}$$

and

$$\widehat{\mathsf{D}}(z;s,t) = \frac{\Delta_2 SSD(2zw;(s-1)t)}{\Delta_2 SSD(2zw;-t)}$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Outline

1 Introduction

- 2 Asymptotic transfer
- **3** Graphs and tournaments

4 Digraphs

5 2-SAT formulae

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

2-CNF formulae

- x_1, \ldots, x_n are **Boolean variables**,
- $c_{ij} \in \{x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n\}$ are literals,
- **2-conjunctive normal form** (2-CNF) formula:

$$\bigwedge_{i=1}^m (c_{i1} \vee c_{i2}),$$

- *n* Boolean variables and *m* clauses,
- $(x \lor x)$ and $(x \lor \overline{x})$ are forbidden,
- repetitions are forbidden,
- $\mathfrak{cnf}_n = \#\{2\text{-}\mathsf{CNF} \text{ with } n \text{ Boolean variables}\},\$

$$\mathfrak{cnf}_n=2^{4\binom{n}{2}},$$

 a formula is satisfiable iff it can be made TRUE by assigning appropriate values to its variables.

Khaydar Nurligareev (joint with Sergey Dovgal)

2-CNF formulae

- x_1, \ldots, x_n are **Boolean variables**,
- $c_{ij} \in \{x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n\}$ are literals,
- **2-conjunctive normal form** (2-CNF) formula:

$$\bigwedge_{i=1}^m (c_{i1} \vee c_{i2}),$$

- *n* Boolean variables and *m* clauses,
- $(x \lor x)$ and $(x \lor \overline{x})$ are forbidden,
- repetitions are forbidden,
- $\mathfrak{cnf}_n = \#\{2\text{-}\mathsf{CNF} \text{ with } n \text{ Boolean variables}\},\$

$$\operatorname{cnf}_n = 2^{4\binom{n}{2}},$$

 a formula is satisfiable iff it can be made TRUE by assigning appropriate values to its variables.

Khaydar Nurligareev (joint with Sergey Dovgal)

2-CNF formulae

- x_1, \ldots, x_n are Boolean variables,
- $c_{ij} \in \{x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n\}$ are literals,
- **2-conjunctive normal form** (2-CNF) formula:

$$\bigwedge_{i=1}^m (c_{i1} \vee c_{i2}),$$

- *n* Boolean variables and *m* clauses,
- $(x \lor x)$ and $(x \lor \overline{x})$ are forbidden,
- repetitions are forbidden,
- $\mathfrak{cnf}_n = \#\{2\text{-}\mathsf{CNF} \text{ with } n \text{ Boolean variables}\},\$

$$\operatorname{cnf}_n = 2^{4\binom{n}{2}},$$

a formula is satisfiable iff it can be made TRUE by assigning appropriate values to its variables.

Khaydar Nurligareev (joint with Sergey Dovgal)

• Vertices:
$$x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n$$
,
• Clause $x \lor y \rightsquigarrow$ edges $\bar{x} \to y$ and $\bar{y} \to x$.

34/38

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

• Vertices: $x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n$, • Clause $x \lor y \iff$ edges $\bar{x} \to y$ and $\bar{y} \to x$.

• Vertices: $x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n$, • Clause $x \lor y \rightsquigarrow$ edges $\bar{x} \to y$ and $\bar{y} \to x$.

• Vertices: $x_1, \ldots, x_n, \bar{x}_1, \ldots, \bar{x}_n$, • Clause $x \lor y \iff$ edges $\bar{x} \to y$ and $\bar{y} \to x$.

Contradictory component contain x and x at the same time.
 Fact: formula is satisfiable iff there is no contradictory component.

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

.

Asymptotics of 2-SAT formulae

Implication generating function of 2-SAT formulae:

$$S\ddot{A}T(z) = \sum_{n=0}^{\infty} \mathfrak{sat}_n \frac{z^n}{2^{n^2} n!}$$

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

$$\mathsf{S\ddot{A}T}(z) = G(z) \cdot \Delta_2^2 \left(G(z) \odot \frac{1}{G(z)} \right)^{1/2}$$

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,1) of 2-SAT formulae satisfies

$$(\mathcal{Q}_2^1 \operatorname{S\ddot{A}T})(z,w) = \frac{\operatorname{S\ddot{A}T}(2zw)}{\operatorname{G}(2zw)} = \operatorname{S\ddot{A}T}(2zw)(1 - \operatorname{IT}(2zw)).$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Asymptotics of contradictory components

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

$$\mathsf{CSC}(z) = \frac{1}{2}\mathsf{SCD}(2z) + \log\left(D(z)\odot\frac{D(z)}{G(2z)}\right)$$

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2,4) of contradictory strongly connected implication digraphs satisfy

$$(\mathcal{Q}_{2}^{4} \operatorname{CSC})(z, w) = \exp\left(\frac{1}{2}\operatorname{SCD}(2^{7/2}z^{4}w) - \operatorname{CSC}(2^{5/2}z^{4}w)\right)$$
$$\Phi_{2}^{2,4}(1 - \operatorname{IT}(2^{5/2}z^{2}zw)).$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

36/38

LiB, University of Burgundy

Fixed number of strongly connected components

Let

- s marks contradictory components,
- t marks ordinary components.

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

$$C\ddot{\mathsf{N}}\mathsf{F}(z;s,t) = \Delta_2(D(z;t)) \cdot \Delta_2^2\left(e^{s \cdot \mathsf{CSC}(z/2) - t/2 \cdot \mathsf{SCD}(z)}\right) \,.$$

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 2) of implication digraphs with the above marking variables satisfies

$$(\mathcal{Q}_2^2 \operatorname{CNF})(z, w; s, t) = s \cdot \Delta_2 \Big(\mathsf{D}(2^{3/2} z^2 w; t) \Big) \cdot \Phi_2^{4,2} \Big[z \cdot S^\circ \cdot \Phi_2^{2,4} \Big(1 - \mathsf{IT}(4z^2 w) \Big) \Big],$$

where

$$S^{\circ}(z, w; s, t) = \exp\left((s-1) \cdot \mathsf{CSC}(2^{3/2}z^4w) + \frac{(1-t)}{2} \cdot \mathsf{SCD}(2^{5/2}z^4w)\right).$$

Khaydar Nurligareev (joint with Sergey Dovgal)

Asymptotics for graphically divergent series

Conclusion

- We have constructed a tool for manipulating coefficients of asymptotic expansions.
- **2** Transfers extend to graphic families with marked patterns: any family with a fixed number of components:
 - strongly connected components in digraphs, contradictory components in 2-sat,
 - source-like, sink-like, isolated components, ...
 - any graphically divergent series with marking variables.
- **3** Bonus: combinatorial explanations of the expansion coefficients.

Thank you for your attention!

Literature I

De Panafieu É., Dovgal S.

Symbolic method and directed graph enumeration *Acta Math. Univ. Comenian. (N.S.)*, 88.3 (2019), pp. 989–996. issn: 0862-9544.

- De Panafieu É., Dovgal S., Ravelomanana V. Exact enumeration of satisfiable 2-SAT formulae Combinatorial Theory, 3 (2) (2023), #7.
- Dovgal S., Nurligareev K.

Asymptotics for graphically divergent series: dense digraphs and 2-SAT formulae 2021, *arXiv*: 2310.05282.

Literature II

Monteil T., Nurligareev K.

Asymptotics for connected graphs and irreducible tournaments *Extended Abstracts EuroComb 2021*, Springer, 2021, pp. 823–828.

🔋 Robinson R.

Counting labeled acyclic digraphs

New directions in the theory of graphs, Proc. Third Ann Arbor Conf., Univ. Michigan, 1973, pp. 239–273.

Wright E.M.

Asymptotic relations between enumerative functions in graph theory

Proc. Lond. Math. Soc., Vol. s3-20, Issue 3 (1970), pp. 558-572.

Khaydar Nurligareev (joint with Sergey Dovgal) Asymptotics for graphically divergent series

Literature III

Wright E.M.

The number of irreducible tournaments *Glasg. Math. J.*, Vol. 11, Issue 2 (1970), pp. 97-101.

Wright E.M.

The number of strong digraphs Bull. London Math. Soc., 3.3 (1971), pp. 348–350.