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Graphs (labeled undirected graphs)

gn = #{graphs with n vertices}
cgn = #{connected graphs with n vertices}
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Digraphs (labeled directed graphs)

dn = #{digraphs with n vertices}

scdn = #{strongly connected digraphs with n vertices}
ssdn = #{semi-strong digraphs with n vertices}
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Tournaments (labeled tournaments)

tn = #{tournaments with n vertices}

itn = #{irreducible tournaments with n vertices}
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Probability of a graph to be connected

Question. What is the probability pn =
cgn
gn

that a random graph

with n vertices is connected, as n→∞?

Wright, 1970:

pn = 1−
(
n

1

)
2

2n
− 2

(
n

3

)
26

23n
− 24

(
n

4

)
210

24n
+ O

(
n5

25n

)

Monteil, N., 2021:

pn = 1−
r−1∑
k=1

itk ·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
.
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Probability of a tournament to be irreducible

Question. What is the probability qn =
itn
tn

that a random

tournament with n vertices is irreducible as n→∞?

Wright, 1970:

qn = 1−
(
n

1

)
22

2n
+

(
n

2

)
24

22n
−
(
n

3

)
28

23n
−
(
n

4

)
215

24n
+O

(
n5

25n

)
Monteil, N., 2021:

qn = 1−
r−1∑
k=1

(
2itk − it

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
,

where it
(2)
k = #{tournaments of size n with 2 irreducible parts}.
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Probability of a digraph to be strongly connected

Question. What is the probability rn that a random directed graph
with n vertices is strongly connected, as n→∞?

Wright, 1971: rn =
r−1∑
k=0

ωk(n)

2kn
· n!

(n + [k/2]− k)!
+ O

(
nr

2rn

)
,

where

ωk(n) =

[k/2]∑
ν=0

γνξk−2ν
2k(k+1)/2

2ν(k−ν)
(n + [k/2]− k) . . . (n + ν + 1− k),

γ0 = 1, γν =
ν−1∑
s=0

γsην−s
(ν − s)!

,
∞∑
ν=0

ξνz
ν =

(
1−

∞∑
s=0

ηs

2s(s−1)/2

zs

s!

)2

,

η1 = 1, ηs = 2s(s−1) −
s−1∑
t=1

(
s

t

)
2(s−1)(s−t)ηt .
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Motivation

Summary. The probability rn has an expansion of the form

rn =
r−1∑
m=0

1

2mn

`m∑
`=0

n`a◦m,` + O

(
nr

2rn

)
,

where n` = n(n − 1) . . . (n − `+ 1) are falling factorials.

Observation. The array of coefficients (a◦m,`)
∞
m,`=0 can be

assembled into a (bivariate) generation function.

Questions. Can we express this bivariate generating function
explicitly in terms of other known generating functions?

What is the structure of the asymptotics?
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Graphically divergent series

α ∈ R>1 and β ∈ Z>0,

Gβ
α is the set of graphically divergent series, i.e.

A(z) =
∞∑
n=0

an
zn

n!

such that

an ≈ αβ(n2)

∑
m>M

1

αmn

∞∑
`=0

n` a◦m,`

,
where

M ∈ Z,
n` = n(n − 1) . . . (n − `+ 1) are falling factorials,
the support of (a◦m,`)

∞
`=0 is finite for each m ∈ Z>M .
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Coefficient generating function

If A ∈ Gβ
α with

an ≈ αβ(n2)

∑
m>M

1

αmn

∞∑
`=0

n` a◦m,`

,
then the associated coefficient generating function of type
(α, β) is

A◦(z ,w) =
∞∑

m=M

∞∑
`=0

a◦m,`
zm

α
1
β (m2)

w ` .

Cβα is the set of corresponding coefficient generating functions.

Qβα : Gβ
α → Cβα is the mapping of the form

QβαA = A◦.

Khaydar Nurligareev (joint with Sergey Dovgal) LiB, University of Burgundy
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First examples

Graphs:

G (z) =
∞∑
n=0

2(n2)
zn

n!
, gn = 2(n2) .

Its coefficient generating function of type (2, 1) is

G ◦(z ,w) = (Q1
2G )(z ,w) = 1 .

Digraphs:

D(z) =
∞∑
n=0

22(n2)
zn

n!
, dn = 22(n2) .

Its coefficient generating function of type (2, 2) is

D◦(z ,w) = (Q2
2D)(z ,w) = 1 .
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Properties, part I

1 The set Gβ
α forms a ring with(

Qβα(A + B)
)
(z ,w) = (QβαA)(z ,w) + (QβαB)(z ,w)

and (
Qβα(A · B)

)
(z ,w) =A

(
α
β+1

2 zβw
)
· (QβαB)(z ,w)+

B
(
α
β+1

2 zβw
)
· (QβαA)(z ,w) .

2 Derivation:(
QβαA′

)
(z ,w) = α−

β+1
2 z−β

((
QβαA

)
(z ,w) +

∂

∂w

(
QβαA

)
(z ,w)

)
.

3 Integration:(
Qβα
∫

A

)
(z ,w) = α

β+1
2 zβ

( ∞∑
k=0

(−1)k
∂k

∂wk

(
QβαA

)
(z ,w)

)
.
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Properties, part II

3 Composition (interpretation of Bender’s theorem): if

F is analytic in a neighbourhood of the origin,
a0 = 0,

H(z) =
∂

∂x
F (x)

∣∣∣∣
x=A(z)

,

then F ◦ A ∈ Gβ
α and(

Qβα(F ◦ A)
)
(z ,w) = H

(
α
β+1

2 zβw
)
· (QβαA)(z ,w).

4 Powers: if m ∈ Z>0 (or m ∈ Q and a0 = 1), then(
QβαAm

)
(z ,w) = m · Am−1

(
α
β+1

2 zβw
)
· (QβαA)(z ,w) .
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Connected graphs

Theorem (Monteil, N., 2021)

For every r > 1, the probability pn that a random labeled graph of size n
is connected satisfies

pn = 1−
r−1∑
k=1

itk ·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 1) of connected graphs
satisfies

(Q1
2 CG)(z ,w) =

1

G(2zw)
= 1− IT(2zw).

Key ideas: CG(z) = log
(
G (z)

)
,

1

G(z)
=

1

T(z)
= 1− IT(z).

Khaydar Nurligareev (joint with Sergey Dovgal) LiB, University of Burgundy
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Irreducible tournaments

Theorem (Monteil, N., 2021)

For every r > 1, the probability qn that a random tournament of size n is
irreducible satisfies

qn = 1−
r−1∑
k=1

(
2itk − it

(2)
k

)
·
(
n

k

)
· 2k(k+1)/2

2nk
+ O

(
nr

2nr

)
.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 1) of irreducible
tournaments satisfies

(Q1
2 IT)(z ,w) =

(
1− IT(2zw)

)2
.

Key ideas: IT(z) = 1− 1

T(z)
,

1

T2(z)
=
(
1− IT(z)

)2
.
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Fixed number of connected components in a graph

Observation: G(z ; t) = exp
(
t · CG(z)

)
,

where t marks the number of connected components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 1) of graphs with the
marking variable t satisfies

(Q1
2 G )(z ,w ; t) = t · G(2zw ; t − 1) = t · G(2zw ; t) ·

(
1− IT(2zw)

)
.

In particular,

[tm+1](Q1
2 G )(z ,w ; t) =

CGm(2zw)

m!
·
(
1− IT(2zw)

)
is the coefficient generating function for graphs with (m + 1) connected
components, m ∈ Z>0.
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Fixed number of irreducible parts in a tournament

Observation: T(z ; t) =
1

1− t · IT(z)
,

where t marks the number of irreducible parts.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 1) of tournaments with the
marking variable t satisfies

(Q1
2 T )(z ,w ; t) = t ·

(
T(2zw ; t) ·

(
1− IT(2zw)

))2

.

In particular,

[tm+1](Q1
2 T )(z ,w ; t) = (m + 1) · ITm(2zw) ·

(
1− IT(2zw)

)2

is the coefficient generating function for tournaments with
(m + 1) irreducible parts, m ∈ Z>0.
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The Erdős-Rényi model G (n, p), part I

Fix p ∈ (0, 1), q = 1− p, ρ = p/q.

Consider a random labeled graph G :

p is the probability of edge presence;

q = 1− p is the probability of edge absence.

P(G ) = p|E(G)|q(n2)−|E(G)| =
ρ|E(G)|

(ρ+ 1)(n2)
.

Denote:

α = ρ+ 1 = q−1.

Then

G (z) =
∞∑
n=0

(ρ+ 1)(n2)
zn

n!
=
∞∑
n=0

α(n2)
zn

n!
.
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The Erdős-Rényi model G (n, p), part I

Fix p ∈ (0, 1), q = 1− p, ρ = p/q.

Consider a random labeled graph G :

p is the probability of edge presence;

q = 1− p is the probability of edge absence.

P(G ) = p|E(G)|q(n2)−|E(G)| =
ρ|E(G)|

(ρ+ 1)(n2)
.

Denote:

α = ρ+ 1 = q−1.

Then

G (z) =
∞∑
n=0

(ρ+ 1)(n2)
zn

n!
=
∞∑
n=0

α(n2)
zn

n!
.

Khaydar Nurligareev (joint with Sergey Dovgal) LiB, University of Burgundy

Asymptotics for graphically divergent series



23/38

Introduction Asymptotic transfer Graphs and tournaments Digraphs 2-SAT formulae

The Erdős-Rényi model G (n, p), part II

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 1) of connected graphs in
the Erdős-Rényi model satisfies

(Q1
2 CG)(z ,w) =

1

G(2zw)
= exp

(
− CG(2zw)

)
.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 1) of graphs in the
Erdős-Rényi model with the marking variable t for the number of
strongly connected components satisfies

(Q1
2 G )(z ,w ; t) = t · G(2zw ; t − 1).

In particular,

[tm+1](Q1
2 G )(z ,w ; t) =

CGm(2zw)

m!
· exp

(
− CG(2zw)

)
.
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Transitions, part I

Theorem (Dovgal, de Panafieu, 2019)

The exponential generating function of strongly connected
digraphs satisfies

SCD(z) = − log

(
G (z)� 1

G (z)

)
.

Exponential Hadamard product:(∑
n=0

an
zn

n!

)
�

(∑
n=0

bn
zn

n!

)
=

(∑
n=0

anbn
zn

n!

)
.

Exponential Hadamard product (with G (z)) changes:

the rate of convergence,
the type of coefficient generating function.
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Transitions, part I

Theorem (Dovgal, de Panafieu, 2019)

The exponential generating function of strongly connected
digraphs satisfies

SCD(z) = − log

(
G (z)� 1

G (z)

)
.

If β > 1, then
∆α : Gβ

α → Gβ−1
α

is defined by

∆α

( ∞∑
n=0

fn
zn

n!

)
=
∞∑
n=0

fn

α(n2)

zn

n!
.

F (z)� G (z) = ∆−1
2 F (z) .
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Transitions, part II

If α ∈ R>1 and β, γ ∈ Z>0, then

Φβ,γ
α : Cβα → Cγα

is defined as

Φβ,γ
α

( ∞∑
m=M

∞∑
`=0

a◦m,`
zm

α
1
β (m2)

w `

)
=

∞∑
m=M

∞∑
`=0

a◦m,`
zm

α
1
γ (m2)

w ` .

The following diagram is commutative:

Gβ
α

Qβα−−−−→ Cβα

∆β−γ
α

y yΦβ,γα

Gγ
α

Qγα−−−−→ Cγα
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Strongly connected directed graphs, part I

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 2) of strongly
connected digraphs satisfies

(Q2
2 SCD)(z ,w) = SSD(23/2z2w) · Φ1,2

2

(
1− IT(2zw)

)2
.

where SSD(z) is the exponential generating function of
semi-strong digraphs.

Key ideas (Dovgal, de Panafieu, 2019; Monteil, N., 2021):

SCD(z) = − log

(
G (z)� 1

G (z)

)
= − log

(
1−∆−1

2 IT(z)
)
,

SSD(z) =

(
G (z)� 1

G (z)

)−1

=
1

1−∆−1
2 IT(z)

.
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Strongly connected directed graphs, part II

Corollary

For every r > 1, the probability rn that a random labeled digraph
of size n is strongly connected satisfies

rn =
r−1∑
m=0

1

2nm

m∑
`=dm/2e

n` scd◦m,` + O

(
nr

2rn

)
,

where

scd◦m,` =
2m(m+1)/2

2`(m−`)
ssdm−`

(m − `)!

Im=2` − 2it2`−m + it
(2)
2`−m

(2`−m)!
,

ssdk is the number of semi-strong digraphs of size k ,

itk is the number of irreducible tournaments of size k ,

it
(2)
k is the number of tournaments of size k with two

irreducible components.
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Strongly connected directed graphs, part II

Corollary

For every r > 1, the probability rn that a random labeled digraph
of size n is strongly connected satisfies

rn =
r−1∑
m=0

1

2nm

m∑
`=dm/2e

n` scd◦m,` + O

(
nr

2rn

)
,

where

scd◦m,` =
2m(m+1)/2

2`(m−`)
ssdm−`

(m − `)!

Im=2` − 2it2`−m + it
(2)
2`−m

(2`−m)!
,

Interpretation of Wright’s coefficients:

ηk = 2(k2)itk , γk =
ssdk
k!

, ξk =
Ik=0 − 2itk + it

(2)
k

k!
.
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Fixed number of strongly connected components, part I

Observation: SSD(z ; t) = exp
(
t · SCD(z)

)
,

where t marks the number of connected components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 2) of semi-strong digraphs
with the marking variable t satisfies

(Q2
2 SSD)(z ,w ; t) = t · SSD(23/2z2w ; t + 1) · Φ1,2

2

(
1− IT(2zw)

)2
.

In particular,

[tm+1](Q2
2 SSD)(z ,w ; t) =

SCDm(23/2z2w)

m!
· (Q2

2 SCD)(z ,w)

is the coefficient generating function for semi-strong digraphs with
(m + 1) strongly connected components, m ∈ Z>0.
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Fixed number of strongly connected components, part II

Observation (Robinson, 1973):

D(z ; t) = ∆−1
2

(
1

∆2 e−t·SCD(z)

)
= ∆−1

2

(
1

∆2 SSD(z ;−t)

)
,

where t marks the number of connected components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 2) of digraphs with the
marking variable t satisfies

(Q2
2 D)(z ,w ; t) = −Φ1,2

2

(
Φ2,1

2

(
(Q2

2 SSD)(z ,w ;−t)
)(

∆2 SSD(2zw ;−t)
)2

)
.
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Fixed number of strongly connected components, part III
u marks purely source-like components,
v marks purely sink-like components,
y marks isolated components,
t marks all components.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 2) of digraphs with the above marking variables satisfies

(Q2
2 D)(z,w ; u, v, y, t) = D◦

1 + D◦
20 · Φ

1,2
2

(
D◦

21 + D◦
22 + D◦

23

)
,

where

D◦
1 (z,w ; u, v, y, t) = (y − u − v + 1)t · D(23/2z2w ; u, v, y, t) · (Q2

2 SCD)(z,w) ,

D◦
20(z,w ; u, v, y, t) = SSD

(
23/2z2w ; (y − u − v + 1)t

)
,

D◦
21(z,w ; u, v, y, t) = D̂(2zw ; u, t) · Φ

2,1
2

(
(Q2

2 SSD)
(
z,w ; (v − 1)t

))
,

D◦
22(z,w ; u, v, y, t) = D̂(2zw ; v, t) · Φ

2,1
2

(
(Q2

2 SSD)
(
z,w ; (u − 1)t

))
,

D◦
23(z,w ; u, v, y, t) = D̂(2zw ; u, t) · D̂(2zw ; v, t) · Φ

2,1
2

(
(Q2

2 SSD)(z,w ;−t)
)

and

D̂(z; s, t) =
∆2 SSD

(
2zw ; (s − 1)t

)
∆2 SSD

(
2zw ;−t

) .
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2-CNF formulae

x1, . . . , xn are Boolean variables,

cij ∈ {x1, . . . , xn, x̄1, . . . , x̄n} are literals,

2-conjunctive normal form (2-CNF) formula:

m∧
i=1

(ci1 ∨ ci2),

n Boolean variables and m clauses,
(x ∨ x) and (x ∨ x̄) are forbidden,
repetitions are forbidden,

cnfn = #{2-CNF with n Boolean variables},

cnfn = 24(n2),

a formula is satisfiable iff it can be made TRUE by assigning
appropriate values to its variables.
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Implication digraph (of a 2-CNF formula)

Vertices: x1, . . . , xn, x̄1, . . . , x̄n,

Clause x ∨ y  edges x̄ → y and ȳ → x .

x̄1

x̄2

x̄3

x̄4

x̄5

x1

x2

x3

x4

x5
 



x
x
x
x
x
x
x
x

x1 ∨ x2x1 ∨ x2

x̄1 ∨ x2

x̄1 ∨ x4

x̄2 ∨ x3

x̄2 ∨ x̄3

x̄3 ∨ x̄5

x4 ∨ x5

x̄4 ∨ x̄5

ordinary contradictory ordinary
component component component

Contradictory component contain x and x̄ at the same time.

Fact: formula is satisfiable iff there is no contradictory
component.
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Asymptotics of 2-SAT formulae

Implication generating function of 2-SAT formulae:

¨SAT(z) =
∞∑
n=0

satn
zn

2n2n!
.

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

¨SAT(z) = G (z) ·∆2
2

(
G (z)� 1

G (z)

)1/2

.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 1) of 2-SAT
formulae satisfies

(Q1
2

¨SAT)(z ,w) =
¨SAT(2zw)

G(2zw)
= ¨SAT(2zw)

(
1− IT(2zw)

)
.
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Asymptotics of contradictory components

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

CSC(z) =
1

2
SCD(2z) + log

(
D(z)� D(z)

G (2z)

)
.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 4) of contradictory
strongly connected implication digraphs satisfy

(Q4
2 CSC)(z ,w) = exp

(
1

2
SCD(27/2z4w)− CSC(25/2z4w)

)
·

Φ2,4
2

(
1− IT(25/2z2zw)

)
.
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Fixed number of strongly connected components

Let

s marks contradictory components,

t marks ordinary components.

Observation (Dovgal, de Panafieu, Ravelomanana, 2023):

¨CNF(z ; s, t) = ∆2

(
D(z ; t)

)
·∆2

2

(
es·CSC(z/2)−t/2·SCD(z)

)
.

Theorem (Dovgal, N., 2023+)

The coefficient generating function of type (2, 2) of implication digraphs with
the above marking variables satisfies

(Q2
2

¨CNF)(z ,w ; s, t) = s·∆2

(
D(23/2z2w ; t)

)
·Φ4,2

2

[
z · S◦ · Φ2,4

2

(
1− IT(4z2w)

)]
,

where

S◦(z ,w ; s, t) = exp

((
s − 1

)
· CSC(23/2z4w) +

(1− t)

2
· SCD(25/2z4w)

)
.
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Conclusion

1 We have constructed a tool for manipulating coefficients of
asymptotic expansions.

2 Transfers extend to graphic families with marked patterns:
any family with a fixed number of components:

strongly connected components in digraphs, contradictory
components in 2-sat,
source-like, sink-like, isolated components, ...
any graphically divergent series with marking variables.

3 Bonus: combinatorial explanations of the expansion
coefficients.

Thank you for your attention!
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