Asymptotics for the probability of labelled objects to be irreducible

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13

Séminaire CALIN

6 October 2020

Khaydar Nurligareev (with Thierry Monteil)

Graphs

Let f_n be the number of labelled graphs with n vertices.

Khaydar Nurligareev (with Thierry Monteil)

Connected graphs

Let g_n be the number of connected labelled graphs with n vertices.

Every graph is a disjoint union (SET) of connected graphs.

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Gilbert, 1959:
$$p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$$

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Gilbert, 1959:
$$p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$$

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Khaydar Nurligareev (with Thierry Monteil)

<u>Question</u>. What is the probability $p_n = \frac{g_n}{f_n}$ of a random graph with n vertices to be connected as $n \to \infty$?

• folklore: $p_n = 1 + o(1)$

Gilbert, 1959:
$$p_n = 1 - \frac{2n}{2^n} + O\left(\frac{n^2}{2^{3n/2}}\right)$$

Wright, 1970:

$$p_n = 1 - \binom{n}{1} \frac{2}{2^n} - \binom{n}{3} \frac{2^7}{2^{3n}} - 3\binom{n}{4} \frac{2^{13}}{2^{4n}} + O\left(\frac{n^5}{2^{5n}}\right)$$

Can we have all terms at once? What is the interpretation?

Khaydar Nurligareev (with Thierry Monteil)

Warm-up ○○○● ○○○

Asymptotics for p_n

Monteil, N., 2019:

as $n \to \infty$, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot {\binom{n}{k}} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for graphs

Asymptotics for p_n

Monteil, N., 2019:

as $n \to \infty$, for every $r \geqslant 1$

$$p_n = 1 - \sum_{k=1}^{r-1} h_k \cdot {\binom{n}{k}} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right),$$

where h_k counts irreducible labelled tournaments of size k.

$$(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$$

Khaydar Nurligareev (with Thierry Monteil)

Tournaments

A tournament is a complete directed graph.

The number of labelled tournaments with n vertices is equal to

$$f_n = 2^{\binom{n}{2}}$$

Khaydar Nurligareev (with Thierry Monteil)

Irreducible tournaments

- A tournament is called irreducible (or strongly connected tournament),
- if for every partition of vertices $V = A \sqcup B$
 - **1** there exist an edge from A to B and
 - **2** there exist an edge from B to A.

Irreducible tournaments

- A tournament is called irreducible (or strongly connected tournament),
- if for every partition of vertices $V = A \sqcup B$
 - **1** there exist an edge from A to B and
 - **2** there exist an edge from B to A.
- Equivalently, for each two vertices u and v
 1 there is a path from u to v and
 2 there is a path from v to u.

 $V = \{1, 2, 3, 4, 5, 6\}$

Tournaments as a sequence

Lemma. Every labelled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labelled tournaments.

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris <u>13</u>

Tournaments as a sequence

Lemma. Every labelled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labelled tournaments.

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13

Tournaments as a sequence

Lemma. Every labelled tournament can be uniquely decomposed into a sequence (SEQ) of irreducible labelled tournaments.

Khaydar Nurligareev (with Thierry Monteil)

SET vs SEQ

Khaydar Nurligareev (with Thierry Monteil)

Notations

•
$$\mathcal{F} = \text{SET}(\mathcal{G}), \quad G(x) = \log(F(x));$$

• $\mathcal{F} = \text{SEQ}(\mathcal{H}), \quad H(x) = 1 - \frac{1}{F(x)};$
• $\mathcal{T}^{(m)} = \text{SEQ}_m(\mathcal{H}), \quad T^{(m)}(x) = (H(x))^m;$
• $H^{(m)}(x) = 1 - \frac{1}{(F(x))^m} = 1 - (1 - H(x))^m.$

Khaydar Nurligareev (with Thierry Monteil)

General result

Let
$$G(x) = \log(F(x))$$
, $H(x) = 1 - \frac{1}{F(x)}$, $H^{(2)}(x) = 1 - \frac{1}{F^2(x)}$.

Theorem (Monteil, N., 2019+)

If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \geqslant 1$ such that

(i)
$$n \cdot \frac{f_{n-1}}{f_n} \to 0$$
 and (ii) $\sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r}),$

Then

(a)
$$p_n = \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

(b) $p_n^{(1)} := \frac{h_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k^{(2)} \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$

Khaydar Nurligareev (with Thierry Monteil)

General result

Let
$$G(x) = \log(F(x)), \ H(x) = 1 - \frac{1}{F(x)}, \ H^{(m)}(x) = 1 - \frac{1}{F^m(x)}.$$

Theorem (Monteil, N., 2019+)

If $f_n \neq 0$ for all $n \in \mathbb{N}$ and there exists $r \ge 1$ such that (i) $n \cdot \frac{f_{n-1}}{f_n} \to 0$ and (ii) $\sum_{k=r}^{n-r} {n \choose k} f_k f_{n-k} = O(n^r f_{n-r}),$

Then for all $m \ge 1$

(a)
$$p_n = \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot {\binom{n}{k}} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right).$$

(c)
$$\frac{1}{m}\frac{h_n^{(m)}}{f_n} = 1 - \sum_{k=1}h_k^{(m+1)}\cdot \binom{n}{k}\cdot \frac{f_{n-k}}{f_n} + O\left(n^r\cdot \frac{f_{n-r}}{f_n}\right).$$

Khaydar Nurligareev (with Thierry Monteil)

General result

Let
$$H(x) = 1 - \frac{1}{F(x)}, T^{(m)} = (H(x))^m.$$

Theorem (Monteil, N., 2019+)

$$\begin{array}{ll} \text{If } f_n \neq 0 \ \text{ for all } n \in \mathbb{N} \ \text{ and there exists } r \geq 1 \ \text{ such that} \\ (i) \ n \cdot \frac{f_{n-1}}{f_n} \to 0 \quad \text{ and} \quad (ii) \ \sum_{k=r}^{n-r} \binom{n}{k} f_k f_{n-k} = O(n^r f_{n-r}), \\ \text{Then for all } m \geq 1 \\ (d) \ p_n^{(m+1)} = \frac{t_n^{(m+1)}}{f_n} = \sum_{k=1}^{r-1} c_k^{(m+1)} \cdot \binom{n}{k} \cdot \frac{f_{n-k}}{f_n} + O\left(n^r \cdot \frac{f_{n-r}}{f_n}\right), \\ \text{where} \quad c_k^{(m+1)} = (m+1)(t_k^{(m)} - 2t_k^{(m+1)} + t_k^{(m+2)}). \end{array}$$

Khaydar Nurligareev (with Thierry Monteil)

- f_n counts labelled graphs / tournaments,
- g_n counts connected labelled graphs,
- *h_n* counts irreducible labelled tournaments.
 t_n^(m) counts irreducible labelled tournaments with exactly *m* irreducible components.

 $\mathbb{P}\{\text{graph is connected}\} =$

$$= \frac{g_n}{f_n} = 1 - \sum_{k=1}^{r-1} h_k \cdot \binom{n}{k} \cdot \frac{2^{k(k+1)/2}}{2^{nk}} + O\left(\frac{n^r}{2^{nr}}\right).$$

where

 $(h_k) = 1, 0, 2, 24, 544, 22320, 1677488, \ldots$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for the probability of labelled objects to be irreducible

LIPN, Paris 13

- f_n counts labelled graphs / tournaments,
- g_n counts connected labelled graphs,
- *h_n* counts irreducible labelled tournaments.
 t_n^(m) counts irreducible labelled tournaments with exactly *m* irreducible components.

 $\mathbb{P}\{\text{tournament is irreducible}\} =$

$$=\frac{h_n}{f_n}=1-\sum_{k=1}^{r-1}h_k^{(2)}\cdot \binom{n}{k}\cdot \frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

$${n_k^{(2)}} = 2, -2, 4, 32, 848, 38032...$$

Khaydar Nurligareev (with Thierry Monteil)

- f_n counts labelled graphs / tournaments,
- g_n counts connected labelled graphs,
- *h_n* counts irreducible labelled tournaments.
 t_n^(m) counts irreducible labelled tournaments with exactly *m* irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 2 irreducible components}\} =$

$$=\frac{t_n^{(2)}}{f_n}=\sum_{k=1}^{r-1}c_k^{(2)}\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

$$(c_k^{(2)}) = 2, -8, 16, -16, 368, 22528...$$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for the probability of labelled objects to be irreducible

IPN, Paris 13

- f_n counts labelled graphs / tournaments,
- \blacksquare g_n counts connected labelled graphs,
- *h_n* counts irreducible labelled tournaments.
 t_n^(m) counts irreducible labelled tournaments with exactly *m* irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 3 irreducible components}\} =$

$$=\frac{t_n^{(3)}}{f_n}=\sum_{k=1}^{r-1}c_k^{(3)}\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where $(c_k^{(3)})=0,6,-36,120,0,9744\dots$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for the probability of labelled objects to be irreducible

LIPN, Paris 13

- f_n counts labelled graphs / tournaments,
- \blacksquare g_n counts connected labelled graphs,
- *h_n* counts irreducible labelled tournaments.
 t_n^(m) counts irreducible labelled tournaments with exactly *m* irreducible components.

 $\mathbb{P}\{\text{tournament has exactly 4 irreducible components}\} =$

$$=\frac{t_n^{(4)}}{f_n}=\sum_{k=1}^{r-1}c_k^{(4)}\cdot\binom{n}{k}\cdot\frac{2^{k(k+1)/2}}{2^{nk}}+O\left(\frac{n^r}{2^{nr}}\right),$$

where

$$(c_k^{(4)}) = 0, 0, 24, -192, 960, 960 \dots$$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for the probability of labelled objects to be irreducible

LIPN, Paris 13

- f_n counts labelled graphs / tournaments,
- g_n counts connected labelled graphs,
- *h_n* counts irreducible labelled tournaments.
 t_n^(m) counts irreducible labelled tournaments with exactly *m* irreducible components.

 \mathbb{P} {tournament has exactly (*m*+1) irreducible components} =

$$=\frac{t_n^{(m+1)}}{f_n}=(n)_m\cdot\frac{2^{m(m+1)/2}}{2^{nm}}+O\left(\frac{n^{m+1}}{2^{n(m+1)}}\right),$$

where $(n)_m=n(n-1)(n-2)\dots(n-m+1).$

Khaydar Nurligareev (with Thierry Monteil)

Surface applications

	square-tiled surfaces	polygons model
	translation surfaces	surfaces obtained
f_n	obtained by gluing squares	by gluing polygons
	$\{(\sigma, \tau) \mid \sigma, \tau \in S_n^2\}$	$\{(\sigma, \tau) \mid \tau \text{ is perfect matching}\}$
gn	connected surfaces	connected surfaces
	$\{(\sigma, \tau) \mid \tau \text{ is indecomposable} \}$	$\{(\sigma, \tau) \mid \tau \text{ is indecomposable} \}$
h _n	permutation}	perfect matching}
p _n	$\mathbb{P}\{$ surface is connected $\}$	$\mathbb{P}\{$ surface is connected $\}$
	$\mathbb{P}\{permutation \ is$	$\mathbb{P}\{perfect \ matching \ is \}$
$p_{n}^{(1)}$	indecomposable}	indecomposable}
f _n	n!	n!(n-1)!!, <i>n</i> is even
gn	$1, 3, 26, 426, 11064 \dots$	0, 2, 0, 60, 0, 8880
	$h_n = n! \cdot m_n$	$h_n = n! \cdot m_n$
h _n	$(m_n) = 1, 1, 3, 13, 71, 461 \dots$	$(m_n) = 0, 1, 0, 2, 0, 10, 0, 74$

Khaydar Nurligareev (with Thierry Monteil)

Asymptotics for G(n, p)

Consider G(n, p) model, q = 1 - p.

<u>Question</u>. What is the probability p_n of a random graph with n vertices to be connected as $n \to \infty$?

Gilbert, 1959: $p_n = 1 - nq^{n-1} + O(n^2q^{3n/2})$

Asymptotics for G(n, p)

Consider G(n, p) model, q = 1 - p.

<u>Question</u>. What is the probability p_n of a random graph with n vertices to be connected as $n \to \infty$?

Gilbert, 1959: $p_n = 1 - nq^{n-1} + O(n^2q^{3n/2})$

Monteil, N., 2020:

$$p_n = 1 - \sum_{k=1}^{r-1} c_k(q) \cdot \binom{n}{k} \cdot q^{nk-k^2} + O(n^r q^{nr}),$$
where $c_k(q) \in \mathbb{Z}[q]$, $\deg c_k \leq \binom{k}{2}$. Particularly,
 $c_1(q) = 1$, $c_2(q) = 1 - 2q$, $c_3(q) = 1 - 6q^2 + 6q^3$.

• What is the interpretation of $c_k(q)$?

Applications

The end

Thank you for your attention!

Khaydar Nurligareev (with Thierry Monteil)

LIPN, Paris 13