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Introduction



Poset

A partial order, is a binary relation ≤ on
a set P such that for all a,b, c ∈ P
• a ≤ a (reflexivity)
• a ≤ b and b ≤ a =⇒ a = b
(antisymmetry)

• a ≤ b and b ≤ c =⇒ a ≤ c
(transitivity)

set of all subsets of 3 elements ordered
by inclusion
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Meets and joins

Let (P,≤) be a partially ordered set. Let
x, y,m ∈ P, then m is called the Meet
(greatest lower bound or infinimum)
m = x ∧ y if :
• m ≤ x and m ≤ y
• For any w ∈ P, with w ≤ x and w ≤ y
then w ≤ m

• Dually a Join (Smallest upper bound
or supremum) m = x ∨ y

• If a meet (resp. join) exists then it is
unique

Meets do not always exist (for example
d, e)

Introduction 2/31



Lattice Structure

A partially ordered set (L,≤), is a lattice
if ∀a,b ∈ L
• a,b have a infimum (a ∧ b exists)
• a,b have an supremum (a∨ b exists)

set of all subsets is a lattice
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Tamari Lattice

• The Tamari Lattice is a poset introduced by Dov Tamari in 1962
• The Poset has equivalent definitions on bracketed expressions, binary trees,
Dyck paths and triangulations

• Many connections with triangulations, combinatorial maps, lambda calculus,
…

A

B C =⇒

C

A B
A(BC) (AB)C
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Tamari Lattice on parenthesized expressions

If we denote by Tn the set of bracketed
expressions with n atoms.

Definition
The Tamari poset by endowing Tn with
the transitive closure � of the covering
relation A(BC) −→ (AB)C (shifting a
parenthesis to the left)

((((a ∗ b) ∗ c) ∗ d) ∗ e)

(((a ∗ (b ∗ c)) ∗ d) ∗ e)

((a ∗ ((b ∗ c) ∗ d)) ∗ e)

(a, (((b, c), d), e))

(((a ∗ b) ∗ (c ∗ d)) ∗ e)

((a, (b, (c, d))), e)

(a ∗ ((b ∗ (c ∗ d)) ∗ e)) ((a ∗ b) ∗ ((c ∗ d) ∗ e))

(a ∗ (b ∗ ((c ∗ d) ∗ e)))

(((a ∗ b) ∗ c) ∗ (d ∗ e))

((a ∗ (b ∗ c)) ∗ (d ∗ e))

(a ∗ ((b ∗ c) ∗ (d ∗ e))) ((a ∗ b) ∗ (c ∗ (d ∗ e)))

(a ∗ (b ∗ (c ∗ (d ∗ e))))
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Dyck Paths

A Dyck path is a lattice path in N2

starting at the origin, ending on the
x-axis and consisting of up steps
U = (1, 1) and down steps D = (1,−1).

Catalan numbers
Let Dn be the set of Dyck paths of
semilength n, then :

|Dn| = (2n)!/(n!(n+ 1)!)

D =
⋃
n≥0Dn

• first/last return decomposition of a
non-empty Dyck path is unique,
P = URDS, where R, S ∈ D

• A Dyck path is prime whenever it
only touches the x-axis at its
beginning and its end
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Tamari Lattice on Dyck Paths

Tamari Lattice
Defined by endowing Dn with the
transitive closure � of the covering
relation transforming an occurrence of
DUQD into an occurrence UQDD where
Q ∈ D .

T
D

D
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Other Lattices : Stanley and Kreweras

Stanley Lattice : DU→ UD

Kreweras Lattice : Swapping descent with Dyck subpath (not necess. prime)

Stanley, Tamari and Kreweras of size 3, Figures from [Bernardi and Bonichon, 2009]
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BKN Poset



BKN Poset

BKN poset
Defined by endowing Dn with the
transitive closure ≤ of the covering
relation transforming an occurrence of
DUkDk into an occurrence UkDkD with
k ≥ 1.

T ′

The red arrow does not belong to BKN
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Unicity of maximum and minimum element

Lemma
For n ≥ 2, any Dyck path P ∈ Dn, P 6= UnDn, contains at least one occurrence of
DUkDk for some k ≥ 1.

∃ an occurrence of DU, and the rightmost occurrence of DU always starts an occurrence of
DUU`D`D, ` ≥ 0.

Lemma
For n ≥ 2, any Dyck path P ∈ Dn, P 6= (UD)n, contains at least one occurrence of UkDkD
for some k ≥ 1, and then P contains at least one occurrence of UDD.

By contradiction, assume P does not contain occurrence UDD. Then any peak UD is either
at the end of P, or it precedes an up step U, implying that a down step cannot be
contiguous to another down step. Thus, P = (UD)n contradicting P 6= (UD)n.
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Lattice structure of BKN

Propositions :

1. The poset (Dn,≤) admits a maximum element and a minimum element.
2. Given P,Q ∈ Dn satisfying P ≤ Q, P 6= Q, such that P = RDS and Q = RUS′ (R is
the maximal common prefix). Let W the Dyck path obtained from P by
applying the covering P −→ W on the leftmost occurrence of DUkDk, k ≥ 1, in
DS, then we necessarily have W ≤ Q.
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Lattice structure of BKN

Theorem
The poset (Dn,≤) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

For n ≤ 3 the poset is isomorphic to the Tamari lattice.
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Lattice structure of BKN

Theorem
The poset (Dn,≤) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

Assume Sn = (Dn,≤) is a lattice for n ≤ N, and show for N+ 1. Distinguish
according to first return decomposition
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Lattice structure of BKN

Theorem
The poset (Dn,≤) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

(1) If P = URDS and Q = UR′DS′ where |R| = |R′|. Apply the recurrence hypothesis
for R and R′ (resp. S and S′), which means that R∨ R′ (resp., S∨ S′) exists. Then, the
path U(R ∨ R′)D(S ∨ S′) is necessarily the least upper bound of P and Q, proving
existence of P ∨ Q.
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Lattice structure of BKN

Theorem
The poset (Dn,≤) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

(2) Let us suppose that P = URDS and Q = UR′DS′ where |R′| < |R|. Let M be an
upper bound of P and Q (Prop 1). Since |R′| < |R|, M has necessarily a
decomposition M = UM1DM2 where |M1| ≥ |R|. In any sequence of coverings
Q→ . . . → M
from Q toM, there is necessarily a covering that elevates the down-step just after R′

Q =
R′ S1

S2 ≤
R′

S2 −→
R′

S2 = Q1
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Lattice structure of BKN

Theorem
The poset (Dn,≤) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

Iterating this process with P and Q1, construct P′,Q′ such that P ≤ M,Q ≤ M
≡ P′ ≤ M,Q′ ≤ M where P′ and Q′ lie (1). Using the hypothesis recurrence
P′ ∨ Q′ = P ∨ Q exists. The existence of greatest lower bound then follows
automatically since the poset is finite with a least and greatest elements. �
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Distributive lattice

Let (L,∨,∧) be a Lattice :

• L is distributive if ∀x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
• The Tamari and BKN lattices are not distributive

x y z

y ∨ z x ∧ y x ∧ z

x ∧ (y ∨ z) (x ∧ y) ∨ (x ∧ z)
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Semidistributive lattice

• L is semidistributive if it is both join- and
meet-semidistributive where

• meet-semidistributive if for all
elements e, x, y ∈ L in the lattice
we have :

e∧ x = e∧ y =⇒ e∧ x = e∧ (x∨ y)

• join-semidistributive if for all
elements e, x, y ∈ L in the lattice
we have :

e∨ x = e∨ y =⇒ e∨ x = e∨ (x∧ y)

• Tamari is semidistributive but not BKN

e x y

e ∧ x e ∧ y

e ∧ (x ∨ y)

x ∨ y
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Characteristics of BKN



Number of edges in the poset

Let A(x, y, z) =
∑

n≥0 an,k,`xnykz` be the generating function where an,k,` is the
number of Dyck paths of

• semilength n having
• k possible coverings (or equivalently k outgoing edges),
• ` incoming edges.

A(x, y, z) = R(x, y, z)−
√
4 x (xzy − xy − xz + 1) (xy + xz − x − 1) + R(x, y, z)2

2x (xzy − xy − xz + 1)
,

where R(x, y, z) = x2zy − x2y − x2z + x2 − xy − xz + x + 1.
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Number of edges in the poset

A(x, y, z) = R(x,y,z)−
√
4 x(xzy−xy−xz+1)(xy+xz−x−1)+R(x,y,z)2

2x(xzy−xy−xz+1) , where
R(x, y, z) = x2zy − x2y − x2z + x2 − xy − xz + x + 1.

• Using last return decomposition P = RUSD
• 6 different cases according to R and S

A =1+ x︸︷︷︸
R=S=ε

+(A− 1)xy︸ ︷︷ ︸
R 6=ε
S=ε

+
x2z
1− xz︸ ︷︷ ︸
R=ε

S=UαDα

+
x2z
1− xz

(A− 1)y︸ ︷︷ ︸
R6=ε,S=UαDα

+
x2z
1− xz

(A− 1)yA︸ ︷︷ ︸
S=S′UαDα,S′ 6=ε

+ Ax
(
A− 1− x − x2z

1− xz
− x(A− 1)y − x2z

1− xz
(A− 1)y

)
︸ ︷︷ ︸

S 6=S′UαDα

,

(1)
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Comparison with Tamari Lattice

G.F E(x) of the total number of possible coverings over all Dyck paths of
semilength n (or equivalently the number of edges in the Hasse diagram) is

E(x) = −1+ 4x + (1− 2x)
√
1− 4x

2 (1− 4x) (1− x)
.

From A(x, y, z) simply compute ∂y(A(x, y, 1))|y=1.
[xn]E(x) =

∑n−2
k=0

(2k+2
k

)
(A057552 in [Sloane et al., 2003])

# coverings Tamari Lattice : (n−1)2 Cn

The ratio between the numbers of coverings in Tn and Sn tends towards 3/2.
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Intervals in the poset

• An interval is an ordered pair of elements (P,Q) with P ≤ Q
• Inspired by [Bousquet-Mélou and Chapoton, 2023]
• Let I(x, y) =

∑
n,k≥1

an,kxnyk, where an,k number of intervals in Sn with upper

path ends with k down-steps exactly
• Let J(x, y) =

∑
n,k≥1

bn,kxnyk, where bn,k number of intervals (P,Q) in Sn such

that the upper path Q is prime and ends with k down-steps exactly

I(x, y) = J(x, y)︸ ︷︷ ︸
Interval is
either prime

+ I(x, 1) · J(x, y)︸ ︷︷ ︸
Q=RUSD,P=P1P2

I1:=(P1,R) and I2:=(P2,USD)

(2)
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Intervals in the poset

The following also holds :

J(x, y) = xy︸︷︷︸
P=UD and Q=UD

+ xyI(x, y)︸ ︷︷ ︸
P is prime, P = UP′D
and necess. Q = UQ′D

+
J(x, y)− J(x, 1)

y − 1
· C(xy)xy2︸ ︷︷ ︸

P is not prime, P = RUSD
const. h intervals

, (3)

where C(x) is the g.f. for Catalan numbers, i.e., C(x) = 1+ xC(x)2.

Uk Dk+`

h

︸ ︷︷ ︸
Length of USD=2k

︸ ︷︷ ︸
Prefix Q′

xyQ = Q′UkDk+` =

︸ ︷︷ ︸
USD

︸ ︷︷ ︸
R

P = RUSD =
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Intervals in the poset

With little rearrangments{
I(x, y) = J(x,y)

1−J(x,1) ,

J(x, y) = xy + xy J(x,y)
1−J(x,1) +

J(x,y)−J(x,1)
y−1 · C(xy)xy2.

In order to compute J(x, 1) use the kernel method [Banderier et al., 2002] on

J(x, y) ·
(
1− xy

1− J(x, 1)
− C(xy)xy2

y − 1

)
= xy − J(x, 1)

y − 1
· C(xy)xy2.

Cancel the factor of J(x, y) by finding y as a function y0 of J(x, 1) and x to find :{
1− xy0

1−J(x,1) −
C(xy0)xy20
y0−1 = 0,

xy0 − J(x,1)
y0−1 · C(xy0)xy

2
0 = 0.

Then y0 = 1+4x−
√
1−8x

8x .
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Intervals in the poset

• The generating function J(x, y) can be found explicitly
• From J(x, y) we exhibit
(prime intervals) J(x, 1) = 1−

√
1−8x
4 = x + 2 x2 + 8 x3 + 40 x4 + 224 x5 + . . .

(A052701) (2n−1cn−1)
• We then obtain : I(x, y) = J(x, y) · 3−

√
1−8x

2(x+1)

• (intervals) I(x, 1) = 1−2 x−
√
1−8x

2(x+1) = x+ 3 x2 + 13 x3 + 67 x4 + 381 x5 + . . .

(A064062) ( 1n
n−1∑
m=0

(n−m)
(n+m−1

m
)
2m) n→∞

=
23nn−3/2

36
√
π

Both sequences count outerplanar maps and bi-colored Dyck
Paths [Geffner and Noy Serrano, 2017]

Asymptotic exponential growth of intervals in Tn and Sn is
(
32
27

)n
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Generalization



Extension of BKN Poset : BBKN

BKN poset
Defined by endowing Dn with the
transitive closure ≤ of the covering
relation transforming an occurrence of
DUkD into an occurrence UkDD with
k ≥ 1.

Reminder BKN :
DUkDk into an occurrence UkDkD with

k ≥ 1.

The red arrow does not belong to BKN
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Extension of BKN Poset : BBKN

• Joint work BKN and Bousquet-Mélou
• The resulting poset is a lattice

meet-semidistributive join-semidistributive
Tamari yes yes
BKN no no
BBKN yes no

• As n tends to infinity, the number of
intervals

κµnn−7/2, µ =
11+ 5

√
5

2 , κ =
3
8

√
275+ 123

√
5

10π

The red arrow does not belong to BKN
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Comparison intervals

Asymptotic form
Kreweras c1 µn4n−3/2 µ1 = 6.75
BKN c2 µn1n−3/2 µ2 = 8
Tamari c3 µn2n−5/2 µ3 =

256
27 ≈ 9.48148

BBKN c4 µn3n−7/2 µ4 =
11+5

√
5

2 ≈ 11.09
Stanley c5 µn4n−10/2 µ5 = 16

Stanley

Tamari

KrewerasBKN

BBKN

Inclusion of lattices
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Open questions



Extension to m-BKN

• Fix m ≥ 1, an m-Dyck path is a path in N2

starting at (0, 0) ending on the x-axis and
consisting of U = (m,m) and D = (1,−1).

• m-BKN poset is defined by endowing Dm
n

with the transitive closure ≤ of the covering
transforming an occurrence of DUkDmk into
an occurrence UkDmkD with k ≥ 1.

• m-BKN seems to always give lattices

• Can we extend our approach to count
intervals in m-BKN?

• I2n = 0, 1, 6, 55, 600, 7192, 91470, . . .

• I3n = 0, 1, 10, 152, 2723, 53307, 1104003, . . .
The red arrows belong to 2-Tamari but

not to 2-BKN
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Sequent Calculus

• In [Zeilberger, 2019] showed a
sequent calculus capturing the
Tamari order (semi-associative law)

• Can we find a calculus capturing the
BKN order ?

• Currently working on proofs

idA⇒ A

A,B,∆ ⇒ C
LA ∗ B,∆ ⇒ C

∆ ⇒ A Γ ⇒ B R
∆, Γ ⇒ A ∗ B

• A,B, C are formulas, ∆, Γ are lists of
formulas

• (atoms) lowercase latin letters
• (Formulas) F := a,b, . . . | (F ∗ F)

Open questions 26/31



Sequent Calculus

ida⇒ a

idb⇒ b idc ⇒ c R1b, c ⇒ (b ∗ c)

idd⇒ d ide⇒ e R1d, e⇒ (d ∗ e)
R2b, c,d, e⇒ ((b ∗ c) ∗ (d ∗ e))

L
(b ∗ c),d, e⇒ ((b ∗ c) ∗ (d ∗ e))

R2a, (b ∗ c),d, e⇒ (a ∗ ((b ∗ c) ∗ (d ∗ e)))
L

(a ∗ (b ∗ c)),d, e⇒ (a ∗ ((b ∗ c) ∗ (d ∗ e)))
L

((a ∗ (b ∗ c)) ∗ d), e⇒ (a ∗ ((b ∗ c) ∗ (d ∗ e)))
L

(((a ∗ (b ∗ c)) ∗ d) ∗ e) ⇒ (a ∗ ((b ∗ c) ∗ (d ∗ e)))

idA⇒ A

A,B,∆ ⇒ C
LA ∗ B,∆ ⇒ C

∆ ⇒ A C ⇒ B R1
∆, C ⇒ A ∗ B

T ⇒ A ∆ ⇒ B R2
T,∆ ⇒ A ∗ B

A,B, C are formulas, ∆ a list of formulas
and T a list of atoms.
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Fragment of Lambda Calculus

• A term with no free variables is
closed

• A term is indecomposable if it has
no closed proper subterms

• An abstraction λx.M is linear if the x
has exactly one free occurrence in
M. By extension, a term is linear if
every abstraction subterm is linear

• A linear term M is planar if its
binding diagram is planar

• A term is β-normal if it can not be
reduced further by β-reductions

λe.(λd.(λc.(λa.(((a)@(λb.((b)@(c))))@((d)@(e))))))
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Fragment of Lambda Calculus

• In [Zeilberger, 2019] showed that
Tamari intervals are in bijection
with Closed indecomposable
β-normal linear planar lambda
terms

• BKN Lattice being a restriction of
the Tamari Lattice

• Can we characterize the properties
of the fragment of Lambda Calculus
induced by BKN? Figure from [Zeilberger, 2019]
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Fragment of Lambda Calculus

• In [Zeilberger, 2019] showed that
Tamari intervals are in bijection
with Closed indecomposable
β-normal linear planar lambda
terms

• BKN Lattice being a restriction of
the Tamari Lattice

• Can we characterize the properties
of the fragment of Lambda Calculus
induced by BKN?

λe.(λd.(λc.(λa.(((a)@(λb.((b)@(c))))@((d)@(e))))))

First term belonging to Tamari but not to
BKN
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Bijection with bicolored Dyck Paths

• Sequence of prime intervals :
x + 2 x2 + 8 x3 + 40 x4 + 224 x5 +
1344 x6 + . . . (A052701) (2n−1cn−1)

• Also corresponds to Number of Dyck
paths of semilength n in which the
step U = (1, 1) not on ground level
comes in 2 colors

• Can we find a bijection between
these classes ?

F

F
−1
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Diameter of the poset

• The diameter is the maximum
distance between any two vertices

• The diameter of BKN gives an upper
bound on the diameter of the
Tamari Lattice

• For n ≥ 3, we conjecture that the
diameter of Sn is 2n− 4, and that
this value corresponds to the
distance between (UD)n and
UU(UD)n−2DD.
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Intervals in the poset

J(x, y) = xy (−1+ J(x, 1)) (J(x, 1) C (xy) y − y + 1)
J(x, 1) C (xy) xy2 − C (xy) xy2 − xy2 − J(x, 1) y + xy + J(x, 1) + y − 1

Open questions 31/31
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