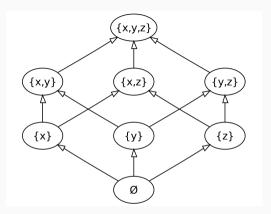

A Lattice on Dyck Paths Close to the Tamari Lattice

arxiv.org/abs/2309.00426

Jean-Luc Baril ¹ Sergey Kirgizov ¹ Mehdi Naima ² 30 janvier 2024

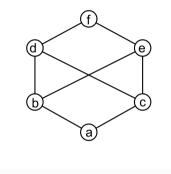
¹Université de Bourgogne, LIB, Dijon, France


²Sorbonne Université, CNRS, LIP6, Paris, France

Poset

A partial order, is a binary relation \leq on a set *P* such that for all $a, b, c \in P$

- $a \leq a$ (reflexivity)
- $a \le b$ and $b \le a \implies a = b$ (antisymmetry)
- $a \le b$ and $b \le c \implies a \le c$ (transitivity)

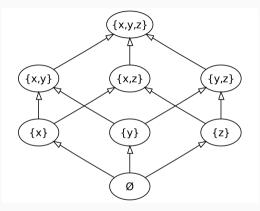


set of all subsets of 3 elements ordered by inclusion

Meets and joins

Let (P, \leq) be a partially ordered set. Let $x, y, m \in P$, then m is called the **Meet** (greatest lower bound or infinimum) $m = x \land y$ if :

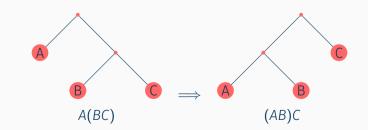
- $m \leq x$ and $m \leq y$
- For any $w \in P$, with $w \le x$ and $w \le y$ then $w \le m$
- Dually a **Join** (Smallest upper bound or supremum) $m = x \lor y$
- If a **meet** (resp. **join**) exists then it is **unique**



Meets do not always exist (for example *d*, *e*)

Lattice Structure

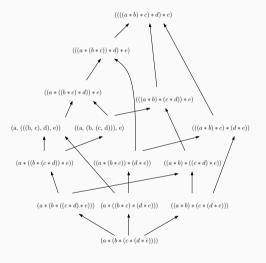
A partially ordered set (L, \leq) , is a lattice if $\forall a, b \in L$


- a, b have a infimum ($a \land b$ exists)
- a, b have an supremum ($a \lor b$ exists)

set of all subsets is a lattice

Tamari Lattice

- The Tamari Lattice is a poset introduced by Dov Tamari in 1962
- The Poset has equivalent definitions on bracketed expressions, binary trees, Dyck paths and triangulations
- Many connections with triangulations, combinatorial maps, lambda calculus,


...

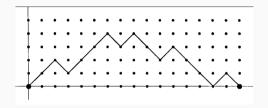
Tamari Lattice on parenthesized expressions

If we denote by T_n the set of bracketed expressions with n atoms.

Definition

The Tamari poset by endowing \mathcal{T}_n with the transitive closure \leq of the covering relation $A(BC) \longrightarrow (AB)C$ (shifting a parenthesis to the left)

Dyck Paths

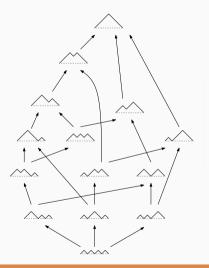

A Dyck path is a lattice path in \mathbb{N}^2 starting at the origin, ending on the x-axis and consisting of up steps U = (1, 1) and down steps D = (1, -1).

Catalan numbers

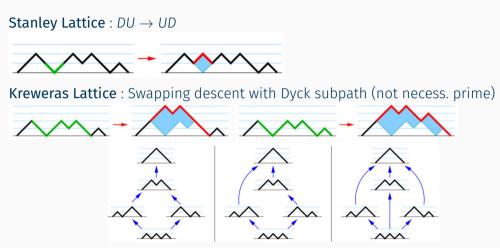
Let \mathcal{D}_n be the set of Dyck paths of semilength n, then :

 $|\mathcal{D}_n| = (2n)!/(n!(n+1)!)$

 $\mathcal{D} = \bigcup_{n \ge 0} \mathcal{D}_n$


- first/last return decomposition of a non-empty Dyck path is unique, P = URDS, where $R, S \in D$
- A Dyck path is **prime** whenever it only touches the *x*-axis at its beginning and its end

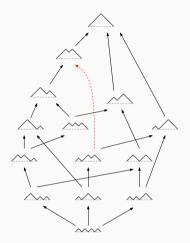
Tamari Lattice on Dyck Paths


Tamari Lattice

Defined by endowing \mathcal{D}_n with the transitive closure \preceq of the covering relation transforming an occurrence of DUQD into an occurrence UQDD where $Q \in \mathcal{D}$.

Other Lattices : Stanley and Kreweras

Stanley, Tamari and Kreweras of size 3, Figures from [Bernardi and Bonichon, 2009]


BKN Poset

BKN Poset

BKN poset

Defined by endowing \mathcal{D}_n with the transitive closure \leq of the covering relation transforming an occurrence of DU^kD^k into an occurrence U^kD^kD with $k \geq 1$.

The red arrow does not belong to BKN

Unicity of maximum and minimum element

Lemma

For $n \ge 2$, any Dyck path $P \in \mathcal{D}_n$, $P \ne U^n D^n$, contains at least one occurrence of $DU^k D^k$ for some $k \ge 1$.

 \exists an occurrence of *DU*, and the rightmost occurrence of *DU* always starts an occurrence of *DU* $U^{\ell}D^{\ell}D$, $\ell \geq 0$.

Lemma

For $n \ge 2$, any Dyck path $P \in \mathcal{D}_n$, $P \ne (UD)^n$, contains at least one occurrence of $U^k D^k D$ for some $k \ge 1$, and then P contains at least one occurrence of UDD.

By contradiction, assume P does not contain occurrence UDD. Then any peak UD is either at the end of P, or it precedes an up step U, implying that a down step cannot be contiguous to another down step. Thus, $P = (UD)^n$ contradicting $P \neq (UD)^n$.

BKN Poset

Propositions :

- 1. The poset (\mathcal{D}_n, \leq) admits a maximum element and a minimum element.
- 2. Given $P, Q \in \mathcal{D}_n$ satisfying $P \leq Q, P \neq Q$, such that P = RDS and Q = RUS' (*R* is the maximal common prefix). Let *W* the Dyck path obtained from *P* by applying the covering $P \longrightarrow W$ on the leftmost occurrence of $DU^k D^k$, $k \geq 1$, in *DS*, then we necessarily have $W \leq Q$.

Theorem

The poset (\mathcal{D}_n, \leq) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

For $n \leq 3$ the poset is isomorphic to the Tamari lattice.

Theorem The poset (\mathcal{D}_n, \leq) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

Assume $S_n = (D_n, \leq)$ is a lattice for $n \leq N$, and show for N + 1. Distinguish according to first return decomposition

Theorem

The poset (\mathcal{D}_n, \leq) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

(1) If P = URDS and Q = UR'DS' where |R| = |R'|. Apply the recurrence hypothesis for R and R' (resp. S and S'), which means that $R \vee R'$ (resp., $S \vee S'$) exists. Then, the path $U(R \vee R')D(S \vee S')$ is necessarily the least upper bound of P and Q, proving existence of $P \vee Q$.

Lattice structure of BKN

Theorem

The poset (\mathcal{D}_n, \leq) is a lattice

Existence of a join element. By induction on the semilength of the Dyck paths.

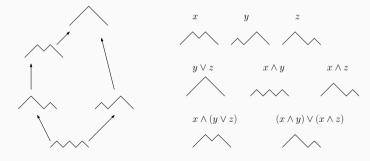
(2) Let us suppose that P = URDS and Q = UR'DS' where |R'| < |R|. Let M be an upper bound of P and Q (Prop 1). Since |R'| < |R|, M has necessarily a decomposition $M = UM_1DM_2$ where $|M_1| \ge |R|$. In any sequence of coverings $Q \rightarrow \ldots \rightarrow M$

from Q to M, there is necessarily a covering that elevates the down-step just after R'

$$Q = \underbrace{\begin{array}{c} R' \\ S_1 \\ S_2 \\$$

Theorem

The poset (\mathcal{D}_n, \leq) is a lattice


Existence of a join element. By induction on the semilength of the Dyck paths.

Iterating this process with P and Q_1 , construct P', Q' such that $P \le M, Q \le M$ $\equiv P' \le M, Q' \le M$ where P' and Q' lie (1). Using the hypothesis recurrence $P' \lor Q' = P \lor Q$ exists. The existence of greatest lower bound then follows automatically since the poset is finite with a least and greatest elements.

Distributive lattice

Let (L, \lor, \land) be a Lattice :

- *L* is **distributive** if $\forall x, y, z \in L, x \land (y \lor z) = (x \land y) \lor (x \land z)$
- The Tamari and BKN lattices are not distributive

Semidistributive lattice

- L is semidistributive if it is both join- and meet-semidistributive where
 - meet-semidistributive if for all elements $e, x, y \in L$ in the lattice we have :

 $e \wedge x = e \wedge y \implies e \wedge x = e \wedge (x \vee y)$

• **join-semidistributive** if for all elements $e, x, y \in L$ in the lattice we have :

 $e \lor x = e \lor y \implies e \lor x = e \lor (x \land y)$

• Tamari is semidistributive but not BKN

Let $A(x, y, z) = \sum_{n \ge 0} a_{n,k,\ell} x^n y^k z^\ell$ be the generating function where $a_{n,k,\ell}$ is the number of Dyck paths of

- semilength *n* having
- k possible coverings (or equivalently k outgoing edges),
- $\cdot \ \ell$ incoming edges.

 $A(x, y, z) = \frac{R(x, y, z) - \sqrt{4x(xzy - xy - xz + 1)(xy + xz - x - 1) + R(x, y, z)^2}}{2x(xzy - xy - xz + 1)},$ where $R(x, y, z) = x^2zy - x^2y - x^2z + x^2 - xy - xz + x + 1.$

Number of edges in the poset

$$A(x, y, z) = \frac{R(x, y, z) - \sqrt{4x(xzy - xy - xz + 1)(xy + xz - x - 1) + R(x, y, z)^2}}{2x(xzy - xy - xz + 1)}, \text{ where } R(x, y, z) = x^2 zy - x^2 y - x^2 z + x^2 - xy - xz + x + 1.$$

- Using last return decomposition P = RUSD
- 6 different cases according to R and S

$$A = 1 + \underbrace{x}_{R=S=\epsilon} + \underbrace{(A-1)xy}_{S=\epsilon} + \underbrace{\frac{x^2z}{1-xz}}_{S=\ell} + \underbrace{\frac{x^2z}{1-xz}}_{R=\epsilon} + \underbrace{\frac{x^2z}{1-xz}(A-1)y}_{R\neq\epsilon,S=U^{\alpha}D^{\alpha}} + \underbrace{\frac{x^2z}{1-xz}(A-1)yA}_{S=S'U^{\alpha}D^{\alpha},S'\neq\epsilon} + \underbrace{Ax\left(A-1-x-\frac{x^2z}{1-xz}-x(A-1)y-\frac{x^2z}{1-xz}(A-1)y\right)}_{S\neq S'U^{\alpha}D^{\alpha}},$$
(1)

G.F E(x) of the total number of possible coverings over all Dyck paths of semilength n (or equivalently the number of edges in the Hasse diagram) is

$$E(x) = \frac{-1 + 4x + (1 - 2x)\sqrt{1 - 4x}}{2(1 - 4x)(1 - x)}.$$

From A(x, y, z) simply compute $\partial_y (A(x, y, 1))|_{y=1}$. $[x^n]E(x) = \sum_{k=0}^{n-2} {\binom{2k+2}{k}}$ (A057552 in [Sloane et al., 2003]) # coverings Tamari Lattice : $\frac{(n-1)}{2}C_n$ G.F E(x) of the total number of possible coverings over all Dyck paths of semilength n (or equivalently the number of edges in the Hasse diagram) is

$$E(x) = \frac{-1 + 4x + (1 - 2x)\sqrt{1 - 4x}}{2(1 - 4x)(1 - x)}.$$

From A(x, y, z) simply compute $\partial_y (A(x, y, 1))|_{y=1}$. $[x^n]E(x) = \sum_{k=0}^{n-2} {2k+2 \choose k}$ (A057552 in [Sloane et al., 2003]) # coverings Tamari Lattice : $\frac{(n-1)}{2}C_n$

The ratio between the numbers of coverings in T_n and S_n tends towards 3/2.

- An interval is an ordered pair of elements (P, Q) with $P \leq Q$
- Inspired by [Bousquet-Mélou and Chapoton, 2023]
- Let $I(x, y) = \sum_{n,k \ge 1} a_{n,k} x^n y^k$, where $a_{n,k}$ number of intervals in S_n with upper path ends with k down-steps exactly
- Let $J(x, y) = \sum_{n,k \ge 1} b_{n,k} x^n y^k$, where $b_{n,k}$ number of intervals (P, Q) in S_n such that the upper path Q is **prime** and ends with k down-steps exactly

$$I(x,y) = \underbrace{J(x,y)}_{\substack{\text{Interval is}\\ \text{either prime}}} + \underbrace{I(x,1) \cdot J(x,y)}_{\substack{Q=RUSD, P=P_1P_2\\ I_1:=(P_1,R) \text{ and } I_2:=(P_2,USD)}$$
(2)

The following also holds :

$$J(x,y) = \underbrace{xy}_{P=UD \text{ and } Q=UD} + \underbrace{xyI(x,y)}_{P \text{ is prime, } P=UP'D}_{\text{ and necess. } Q=UQ'D} + \underbrace{\frac{J(x,y) - J(x,1)}{y-1} \cdot C(xy)xy^2}_{P \text{ is not prime, } P=RUSD}, (3)$$

where C(x) is the g.f. for Catalan numbers, i.e., $C(x) = 1 + xC(x)^2$.

With little rearrangments

$$\begin{cases} I(x,y) &= \frac{J(x,y)}{1-J(x,1)}, \\ J(x,y) &= xy + xy \frac{J(x,y)}{1-J(x,1)} + \frac{J(x,y)-J(x,1)}{y-1} \cdot C(xy)xy^2. \end{cases}$$

In order to compute J(x, 1) use the kernel method [Banderier et al., 2002] on

$$J(x,y) \cdot \left(1 - \frac{xy}{1 - J(x,1)} - \frac{C(xy)xy^2}{y - 1}\right) = xy - \frac{J(x,1)}{y - 1} \cdot C(xy)xy^2.$$

Cancel the factor of J(x, y) by finding y as a function y_0 of J(x, 1) and x to find :

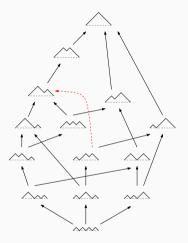
$$\begin{cases} 1 - \frac{xy_0}{1 - J(x, 1)} - \frac{C(xy_0)xy_0^2}{y_0 - 1} &= 0, \\ xy_0 - \frac{J(x, 1)}{y_0 - 1} \cdot C(xy_0)xy_0^2 &= 0. \end{cases}$$

Then
$$y_0 = \frac{1+4x-\sqrt{1-8x}}{8x}$$
.

- The generating function J(x, y) can be found explicitly
- From J(x, y) we exhibit (prime intervals) $J(x, 1) = \frac{1-\sqrt{1-8x}}{4} = x + 2x^2 + 8x^3 + 40x^4 + 224x^5 + \dots$ (A052701) $(2^{n-1}c_{n-1})$
- We then obtain : $I(x, y) = J(x, y) \cdot \frac{3 \sqrt{1 8x}}{2(x+1)}$
- (intervals) I(x, 1) = $\frac{1-2x-\sqrt{1-8x}}{2(x+1)} = x + 3x^2 + 13x^3 + 67x^4 + 381x^5 + \dots$ (A064062) $\left(\frac{1}{n}\sum_{m=0}^{n-1}(n-m)\binom{n+m-1}{m}2^m\right) \stackrel{n\to\infty}{=} \frac{2^{3n}n^{-3/2}}{36\sqrt{\pi}}$

Both sequences count **outerplanar maps** and **bi-colored Dyck Paths** [Geffner and Noy Serrano, 2017]

Asymptotic exponential growth of intervals in T_n and S_n is $\left(\frac{32}{27}\right)^n$


Generalization

Extension of BKN Poset : BBKN

BKN poset

Defined by endowing \mathcal{D}_n with the transitive closure \leq of the covering relation transforming an occurrence of DU^kD into an occurrence U^kDD with $k \geq 1$.

Reminder BKN : DU^kD^k into an occurrence U^kD^kD with $k \ge 1$.

The red arrow does not belong to BKN

Generalization

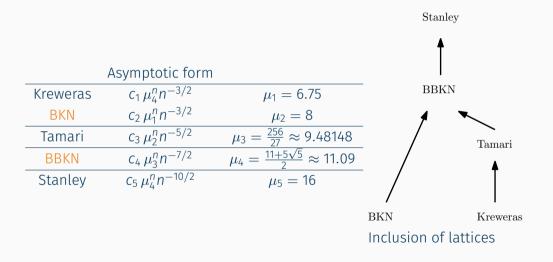
Extension of BKN Poset : BBKN

- Joint work BKN and Bousquet-Mélou
- The resulting poset is a lattice

	meet-semidistributive	join-semidistributive
Tamari	yes	yes
BKN	no	no
BBKN	yes	no

• As *n* tends to infinity, the number of intervals

$$\kappa \mu^n n^{-7/2}, \mu = \frac{11 + 5\sqrt{5}}{2}, \qquad \kappa = \frac{3}{8}\sqrt{\frac{275 + 123\sqrt{5}}{10\,\pi}}$$

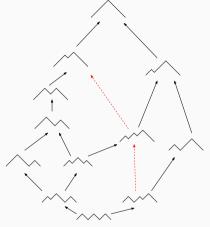


The red arrow does not belong to BKN

Generalization

23/31

Comparison intervals



Open questions

Extension to *m*-BKN

- Fix $m \ge 1$, an *m*-Dyck path is a path in \mathbb{N}^2 starting at (0,0) ending on the *x*-axis and consisting of U = (m, m) and D = (1, -1).
- *m*-BKN poset is defined by endowing \mathcal{D}_n^m with the transitive closure \leq of the covering transforming an occurrence of $DU^k D^{mk}$ into an occurrence $U^k D^{mk} D$ with $k \geq 1$.
- *m*-BKN seems to always give lattices
- Can we extend our approach to count intervals in *m*-BKN?
- $I_n^2 = 0, 1, 6, 55, 600, 7192, 91470, \ldots$
- $I_n^3 = 0, 1, 10, 152, 2723, 53307, 1104003, \dots$

The red arrows belong to 2-Tamari but not to 2-BKN

Sequent Calculus

- In [Zeilberger, 2019] showed a sequent calculus capturing the Tamari order (semi-associative law)
- Can we find a calculus capturing the BKN order?
- Currently working on proofs

$$\overline{A \Rightarrow A} \text{ id}$$

$$\overline{A, B, \Delta \Rightarrow C}$$

$$\overline{A * B, \Delta \Rightarrow C} \text{ L}$$

$$\underline{\Delta \Rightarrow A} \xrightarrow{\Gamma \Rightarrow B} \text{ R}$$

- A, B, C are formulas, Δ, Γ are lists of formulas
- (atoms) lowercase latin letters
- (Formulas) $\mathcal{F} := a, b, \dots \mid (\mathcal{F} * \mathcal{F})$

Sequent Calculus

$$\frac{\overline{b \Rightarrow b} \text{ id } \overline{c \Rightarrow c}}{b, c \Rightarrow (b * c)} \frac{\text{id}}{R_1} \frac{\overline{d \Rightarrow d} \text{ id } \overline{e \Rightarrow e}}{d, e \Rightarrow (d * e)} \frac{\text{id}}{R_1}}{R_2} R_2 \text{ id } \frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow A} \text{ id}$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow A} \text{ id}$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow A} \text{ id}$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow A} \text{ id}$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow A \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

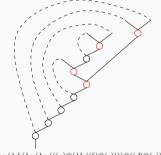
$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

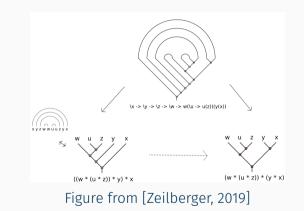
$$\frac{\overline{A \Rightarrow A} \text{ id}}{A \Rightarrow B, \Delta \Rightarrow C} L$$

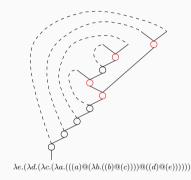
$$\frac{\overline{A \Rightarrow A} \text{ id}}{A, B, C \text{ id} (b * c) * d * B} R_2$$


$$A, B, C \text{ are formulas, } \Delta \text{ a list of formulas}$$

and $\boldsymbol{\mathfrak{T}}$ a list of atoms.

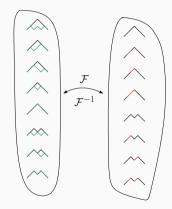
Fragment of Lambda Calculus


- A term with no free variables is **closed**
- A term is **indecomposable** if it has no closed proper subterms
- An abstraction λx.M is linear if the x has exactly one free occurrence in M. By extension, a term is linear if every abstraction subterm is linear
- A linear term *M* is **planar** if its binding diagram is planar
- A term is β**-normal** if it can not be reduced further by β-reductions

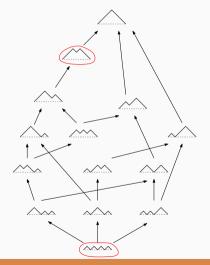

 $\lambda e.(\lambda d.(\lambda c.(\lambda a.(((a)@(\lambda b.((b)@(c))))@((d)@(e)))))))$

- In [Zeilberger, 2019] showed that Tamari intervals are in bijection with Closed indecomposable β-normal linear planar lambda terms
- BKN Lattice being a restriction of the Tamari Lattice
- Can we characterize the properties of the fragment of Lambda Calculus induced by BKN?

Fragment of Lambda Calculus


- In [Zeilberger, 2019] showed that Tamari intervals are in bijection with Closed indecomposable β-normal linear planar lambda terms
- BKN Lattice being a restriction of the Tamari Lattice
- Can we characterize the properties of the fragment of Lambda Calculus induced by BKN?

First term belonging to Tamari but not to BKN


Bijection with bicolored Dyck Paths

- Sequence of prime intervals : $x + 2x^2 + 8x^3 + 40x^4 + 224x^5 + 1344x^6 + \dots$ (A052701) (2^{*n*-1}*c*_{*n*-1})
- Also corresponds to Number of Dyck paths of semilength n in which the step U = (1, 1) not on ground level comes in 2 colors
- Can we find a bijection between these classes?

Diameter of the poset

- The *diameter* is the maximum distance between any two vertices
- The diameter of BKN gives an upper bound on the diameter of the Tamari Lattice
- For $n \ge 3$, we conjecture that the diameter of S_n is 2n 4, and that this value corresponds to the distance between $(UD)^n$ and $UU(UD)^{n-2}DD$.

References i

Banderier, C., Bousquet-Mélou, M., Denise, A., Flajolet, P., Gardy, D., and Gouyou-Beauchamps, D. (2002). Generating functions for generating trees. Discrete mathematics, 246(1-3):29–55.	
Bernardi, O. and Bonichon, N. (2009). Intervals in catalan lattices and realizers of triangulations. Journal of Combinatorial Theory, Series A, 116(1):55–75.	
Bousquet-Mélou, M. and Chapoton, F. (2023). Intervals in the greedy tamari posets. arXiv preprint arXiv:2303.18077.	
Geffner, I. and Noy Serrano, M. (2017). Counting outerplanar maps. Electronic journal of combinatorics, 24(2):1–8.	
Sloane, N. J. et al. (2003). The on-line encyclopedia of integer sequences.	

References ii

Zeilberger, N. (2019).

A sequent calculus for a semi-associative law. Logical Methods in Computer Science, 15.

$$J(x,y) = \frac{xy(-1+J(x,1))(J(x,1)C(xy)y-y+1)}{J(x,1)C(xy)xy^2 - C(xy)xy^2 - xy^2 - J(x,1)y + xy + J(x,1) + y - 1}$$