Wolfgang Mulzer Institut für Informatik

Long Alternating Paths Exist

Wolfgang Mulzer

FU Berlin Berlin **Pavel Valtr**

Charles-University Prague

- **Given:** 2n points, convex, n red, n blue
- Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

- **Given:** 2n points, convex, n red, n blue
- Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

- **Given:** 2n points, convex, n red, n blue
- Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

- **Given:** 2n points, convex, n red, n blue
- Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings
- Question: What is the longest alternating path?

algorithmically easy (dynamic programming)

- **Given:** 2n points, convex, n red, n blue
- Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings
- **Question:** What is the longest alternating path as a function of n, alt(n)? (min over all colorings)

Easy Lower Bound (Erdős, 1980s)

Take any halving line. One side has $\ge n/2$ red points. Other side has $\ge n/2$ blue points. Connect into an alternating path with n points. Thus: alt(n) $\ge n$

Better Lower Bounds

run: maximal sequence of consecutive points of the same color

Theorem [Kynčl, Pach and Tóth '08]: $alt(n) \ge n + #runs/2 - 1$

Theorem [Mészáros'11]: alt(n) \ge n + \lfloor (n - 1) / #runs \rfloor

Corollary: alt(n) \ge n + $\Omega(\sqrt{n})$

Our Result

Theorem: $\exists \epsilon > 0$: alt(n) $\geq (1 + \epsilon)n$

Remark: also for monochromatic matchings can also interpreted as a statement about (anti)palindromic subsequences in circular words.


```
[Erdős, 1980s]
```

```
alt(n) \le 1.5n + 2
```

[Abellanas, Garcia, Hurtado, and Tejel '03; Kynčl, Pach and Tóth '08; Mészáros '11]

```
alt(n) \le 4n/3 \approx 1.33n
```

[Csóka, Blázsik, Király and Lenger '20]

alt(n) ≤ $(4 - 2\sqrt{2})n \approx 1.17n$

Our Approach – Chunks

Our Approach – Configurations

- **Suppose:** For every k, we can find a canonical k-configuration Γ_k on P
- **Observation 1**: If Γ_{1000} has index ≥ 0.1 , a long alternating path exists.
- **Reason:** There must be many runs.

Our Approach – Configurations

- **Suppose:** For every k, we can find a canonical k-configuration Γ_k on P
- **Observation 2**: If $\Gamma_{n/1000}$ has index <0.1, a long alternating path exists.
- **Reason:** There must be a large unbalanced chunk.

Our Approach – Configurations

Suppose: For every k, we can find a canonical k-configuration Γ_k on P

Thus:We can focus on a canonical 3k-configuration Γ_{3k} with 1000 < 3k < n/1000 and index ≈ 0.1

Our Approach – Separated Matchings

We now look at separated matchings.

separated matching:

Obvious:

plane bichromatic matching, all segments intersected by one line separated matching with k edges \rightarrow alternating path with 2k points

Our Approach – Separated Matchings

We look at separated matchings.

separated matching:	plane bichromatic matching, all segments intersected by one line
Obvious:	separated matching with k edges \rightarrow alternating path with 2k points
We show:	∃ ε > 0 ∀ suitable Γ_{3k} ∃ sep. matching of (1/2+ε)n edges

chunk matching: match 3k-chunks in Γ_{3k} along a chunk-halving-line random chunk pick chunk-halving-line uniformly at random matching

Observation: chunk matching \rightarrow separated matching

Observation: chunk matching \rightarrow separated matching

Observation: chunk matching \rightarrow separated matching

Fact:A random chunk matching yields a separated matching of
expected size n/2 (# edges).

Proof:Brute-force calculation.Crucial: bound max $\{r_1, r_2\} \ge (r_1 + r_2)/2$

- **Suppose:** 3k-configuration Γ_{3k} of index ≈ 0.1 is at hand
- **Consider:** random chunk matching in Γ_{3k}
- **Lemma:** If the individual chunk indices in Γ_{3k} have "large variance", we get a separated matching with $(1/2 + \varepsilon)n$ edges in expectation.

Suppose: 3k-configuration Γ_{3k} of index ≈ 0.1 is at hand

Consider: random chunk matching in Γ_{3k}

Lemma: If Γ_{3k} has "large variance", we get a separated matching with $(1/2 + \varepsilon)n$ edges in expectation.

Otherwise: Consider refined k-configuration Γ_k for Γ_{3k} (it exists).

Lemma: If Γ_k has "large variance", we get a separated matching with $(1/2 + \varepsilon)n$ edges in expectation.

- **Remains:** 3k-configuration Γ_{3k} and refined k-configuration Γ_{k} with "uniform" chunks.
- Main trick: gain when matching two 3k-chunks of the same color!

- **Remains:** 3k-configuration Γ_{3k} and refined k-configuration Γ_{k} with "uniform" chunks.
- **Main trick:** gain when matching two 3k-chunks of the same color!

 \approx (4/3)max{b₁, b₂} edges

Conclusion

very technical

very small ϵ

What is the right bound for alt(n)?

