Long Alternating Paths Exist

Wolfgang Mulzer

FU Berlin
Berlin

Pavel Valtr

Charles-University
Prague

The Problem

Given: $2 n$ points, convex, n red, n blue
Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

No!

The Problem

Given: $2 n$ points, convex, n red, n blue
Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

No!

The Problem

Given: $2 n$ points, convex, n red, n blue
Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

The Problem

Given: $2 n$ points, convex, n red, n blue
Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings
Question: What is the longest alternating path?
algorithmically easy (dynamic programming)

The Problem

Given: $2 n$ points, convex, n red, n blue
Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings
Question: What is the longest alternating path as a function of n, alt(n)? (min over all colorings)

Easy Lower Bound (Erdős, 1980s)

Take any halving line.
One side has $\geq \mathrm{n} / 2$ red points.
Other side has $\geq n / 2$ blue points.
Connect into an alternating path with n points.
Thus: $\operatorname{alt}(n) \geq n$

Better Lower Bounds

run: maximal sequence of consecutive points of the same color
Theorem [Kynčl, Pach and Tóth '08]: alt(n) $\geq \mathrm{n}+$ \#runs/2-1
Theorem [Mészáros'11]: $\operatorname{alt}(n) \geq n+\lfloor(n-1) / \# r u n s\rfloor$
Corollary: $\operatorname{alt}(n) \geq n+\Omega(\sqrt{ } n)$

Our Result

Theorem: $\exists \varepsilon>0$: alt(n) $\geq(1+\varepsilon) \mathrm{n}$
Remark: also for monochromatic matchings
can also interpreted as a statement about (anti)palindromic subsequences in circular words.

More Background: Upper Bounds

[Erdős, 1980s]

$$
\operatorname{alt}(\mathrm{n}) \leq 1.5 n+2
$$

More Background: Upper Bounds

[Erdős, 1980s]
$\operatorname{alt}(\mathrm{n}) \leq 1.5 \mathrm{n}+2$
Assume alt(n) > $1.5 \mathrm{n}+2$
$\leq 0.5 n$ red points.
$0.5 n$

More Background: Upper Bounds

[Erdős, 1980s]
$\operatorname{alt}(\mathrm{n}) \leq 1.5 \mathrm{n}+2$
Assume alt(n) > 1.5n + 2

More Background: Upper Bounds

[Erdős, 1980s]
$\operatorname{alt}(\mathrm{n}) \leq 1.5 \mathrm{n}+2$
Assume alt(n) > 1.5n + 2

More Background: Upper Bounds

[Erdős, 1980s]
$\operatorname{alt}(\mathrm{n}) \leq 1.5 \mathrm{n}+2$
Assume alt(n) > 1.5n + 2

More Background: Upper Bounds

[Erdős, 1980s]
$\operatorname{alt}(\mathrm{n}) \leq 1.5 \mathrm{n}+2$
Assume alt(n) > 1.5n + 2

More Background: Upper Bounds

[Erdős, 1980s]
$\operatorname{alt}(\mathrm{n}) \leq 1.5 \mathrm{n}+2$
Assume alt(n) > 1.5n + 2
$\leq 0.5 \mathrm{n}$ red points

More Background: Upper Bounds

[Erdős, 1980s]

$$
\operatorname{alt}(n) \leq 1.5 n+2
$$

[Abellanas, Garcia, Hurtado, and Tejel '03; Kynčl, Pach and Tóth '08; Mészáros '11]

$$
\operatorname{alt}(n) \leq 4 n / 3 \approx 1.33 n
$$

[Csóka, Blázsik, Király and Lenger '20]

$$
\operatorname{alt}(n) \leq(4-2 \sqrt{ } 2) n \approx 1.17 n
$$

Our Approach - Chunks

k-chunk $\quad k$ points of one color and <k points of other color
k-configuration partition into k-chunks
index (chunk) \#points minority color/\#points majority color
index
(configuration)
average index over all chunks

blue 2-chunk
red 2-chunk

2-configuration

Our Approach - Configurations

Suppose:
For every k , we can find a canonical k-configuration Γ_{k} on P
Observation 1: If Γ_{1000} has index ≥ 0.1, a long alternating path exists.
Reason:
There must be many runs.

Our Approach - Configurations

Suppose:
For every k , we can find a canonical k-configuration Γ_{k} on P
Observation 2: If $\Gamma_{\mathrm{n} / 1000}$ has index <0.1, a long alternating path exists.
Reason: There must be a large unbalanced chunk.

Our Approach - Configurations

Suppose:

Thus:

For every k, we can find a canonical k-configuration Γ_{k} on P
We can focus on a canonical 3k-configuration $\Gamma_{\text {3k }}$ with $1000<3 k<n / 1000$ and index ≈ 0.1

Our Approach - Separated Matchings

We now look at separated matchings.
separated matching: plane bichromatic matching, all segments intersected by one line
Obvious: separated matching with k edges \rightarrow alternating path with 2 k points

Our Approach - Separated Matchings

We look at separated matchings.
separated matching:
plane bichromatic matching, all segments intersected by one line
Obvious:

We show:
separated matching with k edges \rightarrow alternating path with 2 k points
$\exists \varepsilon>0 \forall$ suitable $\Gamma_{3 k} \exists$ sep. matching of $(1 / 2+\varepsilon)$ n edges

Our Approach - Chunk Matchings

chunk matching: match 3 k -chunks in $\Gamma_{3 \mathrm{k}}$ along a chunk-halving-line random chunk pick chunk-halving-line uniformly at random matching

Our Approach - Chunk Matchings

Observation: chunk matching \rightarrow separated matching

Our Approach - Chunk Matchings

Observation: chunk matching \rightarrow separated matching

Our Approach - Chunk Matchings

Observation: chunk matching \rightarrow separated matching
Fact: A random chunk matching yields a separated matching of expected size n/2 (\# edges).
Proof: Brute-force calculation.
Crucial: bound max\{r, $\left.r_{2}\right\} \geq\left(r_{1}+r_{2}\right) / 2$

Our Approach - Proof Strategy

Suppose: $\quad 3 k$-configuration $\Gamma_{3 k}$ of index ≈ 0.1 is at hand
Consider: random chunk matching in $\Gamma_{3 \mathrm{k}}$
Lemma:
If the individual chunk indices in $\Gamma_{3 k}$ have "large
variance", we get a separated matching with $(1 / 2+\varepsilon) n$ edges in expectation.

Our Approach - Proof Strategy

Suppose: $\quad 3 k$-configuration $\Gamma_{3 k}$ of index ≈ 0.1 is at hand
Consider: random chunk matching in $\Gamma_{3 \mathrm{k}}$
Lemma:
If $\Gamma_{3 k}$ has "large variance", we get a separated matching with $(1 / 2+\varepsilon)$ n edges in expectation.
Otherwise: Consider refined k-configuration Γ_{k} for $\Gamma_{3 k}$ (it exists).
Lemma:
If Γ_{k} has "large variance", we get a separated matching with $(1 / 2+\varepsilon)$ n edges in expectation.

3 red k-chunks

3 red k-chunks

Our Approach - Proof Strategy

Remains:
3k-configuration $\Gamma_{3 \mathrm{k}}$ and refined k-configuration Γ_{k} with "uniform" chunks.
Main trick: gain when matching two 3k-chunks of the same color!

red 3k-chunk
$\max \left\{b_{1}, b_{2}\right\}$ edges

Our Approach - Proof Strategy

Remains: $\quad 3 \mathrm{k}$-configuration $\Gamma_{3 \mathrm{k}}$ and refined k-configuration Γ_{k} with "uniform" chunks.
Main trick: gain when matching two 3k-chunks of the same color!

$$
\approx(4 / 3) \max \left\{b_{1}, b_{2}\right\}
$$

edges

Conclusion

very technical
very small ε
What is the right bound for alt(n)?

Questions?

