Algebraic Combinatorial Aspects of Nonlinear Differential Systems

Hoang Ngoc Minh
Equipe CALIN, LIPN - UMR 7030.

Combinatoire, Informatique et Physique, Villetaneuse, 22 Janvier 2011.

Summary

1. Introduction,
2. Nonlinear dynamical Systems,
3. Diagonal series,
4. Polylogarithms, multiple harmonic sums and polyzêtas,
5. Nonlinear differential equations.

INTRODUCTION

Particular cases: Fuchsian differential equations (FDE)

$$
\dot{q}(z)=\left[M_{0} u_{0}(z)+M_{1} u_{1}(z)\right] q(z), \quad y(z)=\lambda q(z), \quad q\left(z_{0}\right)=\eta
$$

where $M_{0}, M_{1} \in \mathcal{M}_{n, n}(\mathbb{C}), \lambda \in \mathcal{M}_{1, n}(\mathbb{C}), \eta \in \mathcal{M}_{n, 1}(\mathbb{C})$ and $u_{0}(z), u_{1}(z) \in \mathcal{C}$.
Example (hypergeometric equation)

$$
z(1-z) \ddot{y}(z)+\left[t_{2}-\left(t_{0}+t_{1}+1\right) z\right] \dot{y}(z)-t_{0} t_{1} y(z)=0 .
$$

Let $q_{1}(z)=y(z)$ and $q_{2}(z)=z(1-z) \dot{y}(z)$. One has
$\binom{\dot{q}_{1}}{\dot{q}_{2}}=\left[\left(\begin{array}{cc}0 & 0 \\ -t_{0} t_{1} & -t_{2}\end{array}\right) \frac{1}{z}-\left(\begin{array}{cc}0 & 1 \\ 0 & t_{2}-t_{0}-t_{1}\end{array}\right) \frac{1}{1-z}\right]\binom{q_{1}}{q_{2}}$.
Here,
$\lambda=\left(\begin{array}{ll}1 & 0\end{array}\right), M_{0}=-\left(\begin{array}{cc}0 & 0 \\ t_{0} t_{1} & t_{2}\end{array}\right), M_{1}=-\left(\begin{array}{cc}0 & 1 \\ 0 & t_{2}-t_{0}-t_{1}\end{array}\right)$,
$\eta=\binom{q_{1}\left(z_{0}\right)}{q_{2}\left(z_{0}\right)}$.

Examples of Nonlinear Dynamical Systems

Example (harmonic oscillator)

$$
\dot{y}(z)+k_{1} y(z)+k_{2} y^{2}(z)=u_{1}(t) .
$$

$$
\begin{aligned}
\dot{q}(z) & =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z) \quad \text { with } u_{0}(z) \equiv 1 \\
A_{0} & =-\left(k_{1} q+k_{2} q^{2}\right) \frac{\partial}{\partial q}, \\
A_{1} & =\frac{\partial}{\partial q} \\
y(z) & =q(z) .
\end{aligned}
$$

Example (Duffing's equation)

$$
\begin{aligned}
& \ddot{y}(z)+a \dot{y}(z)+b y(z)+c y^{3}(z)=u_{1}(z) . \\
& \dot{q}(z)=A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z) \quad \text { with } u_{0}(z) \equiv 1, \\
& A_{0}=-\left(a q_{2}+b^{2} q_{1}+c q_{1}^{3}\right) \frac{\partial}{\partial q_{2}}+q_{2} \frac{\partial}{\partial q_{1}}, \\
& A_{1}=\frac{\partial}{\partial q_{2}}, \\
& y(z)=q_{1}(z) .
\end{aligned}
$$

Previous work

For (FDE), one can base on the R. Jungen thesis ${ }^{1}$ "Sur les séries de Taylor n'ayant que des singularités algébrico-logarithmiques sur leur cercle de convergence" (1931).

But for nonlinear differential equations ?

One can appoximate the nonlinear differential systems by linear ones, and then one can base one self on the Jungen's thesis.
${ }^{1}$ This thesis influence quitely the works of

- M.P. Schützenberger, "On a theorem of R. Jungen" (1962),
- M. Fliess, "Sur divers produits de séries formelles" (1974),
- Ph. Flajolet \& A. Odlyzko, "The Average Height of Binary Trees and Other Simple Trees" (1982).

NONLINEAR DYNAMICAL SYSTEMS

Nonlinear Dynamical Systems

Let (\mathcal{D}, d) be a k-commutative associative differential algebra with unit $(\operatorname{ch}(k)=0)$ and \mathcal{C} be a differential subfield of \mathcal{D}.
$y(z)=\sum_{n \geq 0} y_{n} z^{n}$ is the output of :
$(N L S) \quad\left\{\begin{aligned} y(z) & =f(q(z)), \\ \dot{q}(z) & =A_{0}(q) u_{0}(z)+A_{1}(q) u_{1}(z), \\ q\left(z_{0}\right) & =q_{0},\end{aligned}\right.$
where :

- $u_{0}(z), u_{1}(z) \in \mathcal{C}$,
- the state $q=\left(q_{1}, \ldots, q_{N}\right)$ belongs the complex analytic manifold Q of dimension N and q_{0} is the initial state,
- the observation $f \in \mathcal{O}$, with \mathcal{O} is the ring of holomorphic functions over Q,
- For $i=0 . .1, A_{i}=\sum_{j=1}^{N} A_{i}^{j}(q) \frac{\partial}{\partial q_{j}}$ is an analytic vector field ${ }^{2}$ over Q, with $A_{i}^{j}(q) \in \mathcal{O}$, for $j=1, \ldots, N$.

[^0]
Structural \mathbb{C}-automaton associated to (NLS)

Any (NLS) can be associated to a structural \mathbb{C}-automaton characterizing the structure of the differential algebra defined by $\left\{A_{i}\right\}_{i=0,1}$.
For any $i=1, \ldots, N$, let D_{j} denotes $\partial / \partial q_{i}$. Let \mathbf{r} be a multi-index $\left(r_{1}, \ldots, r_{N}\right)$ and let D^{r} denotes the differential operator $D_{1}^{r_{1}} \ldots D_{N}^{r_{N}}$. The infinite structural \mathbb{C}-automaton is the 5 -uple $(X, \mathcal{F}, I, \tau, \lambda)$, where

- $X=\left\{x_{0}, x_{1}\right\}$,
- \mathcal{F} is the \mathbb{C}-vector space generated by the operators D^{r},
- I is the initial state,
- $\tau\left(x_{i}\right), i=0, . .1$, is the linear endomorphism of \mathcal{F} describing the right action ${ }^{3}$ of A_{i} on differential operator D^{r},
- λ is the row vector whose $i^{\text {th }}$ component is $D_{i} f$.

The truncated structural \mathbb{C}-automaton is obtained by choosing the states that are met along the successful path and of length less or equal to m. This gives a \mathbb{C}-automaton recognizes a rational power series over X.
${ }^{3}$ This action is given by $D^{r} A_{i}=\sum_{j=1}^{N} \sum_{s \leq r}\binom{\mathrm{r}}{\mathrm{s}} D^{r-s} A_{i}^{j}(q) D^{s} D_{j}$,
with $\mathbf{r}=\left(r_{1}, \ldots, r_{N}\right), \mathbf{s}=\left(s_{1}, \ldots, s_{N}\right)$ and $\mathbf{s} \leq \mathbf{r} \Longleftrightarrow s_{1} \leq r_{1}, \ldots, s_{k} \leq r_{N}$ and $\binom{r}{\mathrm{~s}}=\prod_{j=1}^{N}\binom{r_{j}^{\prime}}{s_{j}}$.

Examples of structural \mathbb{C}-automaton

Example (harmonic oscillator)
Putting $F:=-\left(k_{1} q+k_{2} q^{2}\right)$, one has $A_{0}=F D, A_{1}=D$.
$X=\left\{x_{0}, x_{1}\right\}, \mathcal{F}=\operatorname{span}_{\mathbb{C}}\left\{D^{i}\right\}_{i \geq 0}, I=\{I \mathrm{~d}\}, \lambda=\left(\begin{array}{lllll}q & 1 & 0 & \ldots & 0\end{array}\right)$.
The \mathbb{C}-automaton cell is given by

$$
\begin{aligned}
& D^{i} A_{1}=D^{i+1} \\
& D^{i} A_{0}=F D^{i+1}+\binom{i}{1}[D F] D^{i-1}+\binom{i}{2}\left[D^{2} F\right] D^{i-2}
\end{aligned}
$$

Example (Duffing's equation)
Putting $F:=-\left(a q_{2}+b^{2} q_{1}+c q_{1}^{3}\right)$, one has $A_{0}=F D_{1}+D_{2}, A_{1}=D_{2}$. $X=\left\{x_{0}, x_{1}\right\}, \mathcal{F}=\operatorname{span}_{\mathbb{C}}\left\{D_{1}^{i} D_{2}^{j}\right\}_{i \geq 0}^{j \geq 0}, I=\{\mathrm{ld}\}, \lambda=\left(\begin{array}{lllll}q_{1} & 1 & 0 & \ldots & 0\end{array}\right)$.
The \mathbb{C}-automaton cell is given by

$$
\begin{aligned}
D_{1}^{i} D_{2}^{j} A_{1} & =D_{1}^{i} D_{2}^{j+1}, \\
D_{1}^{i} D_{2}^{j} A_{0} & =F D_{1}^{i} D_{2}^{j+1} \\
& +\binom{i}{1}\left[D_{1} F\right] D_{1}^{i-1} D_{2}^{j+1}+\binom{i}{2}\left[D_{1}^{2} F\right] D_{1}^{i-2} D_{2}^{j+1}+\binom{i}{3}\left[D_{1}^{3} F\right] D_{1}^{i-3} D_{2}^{j+1} \\
& -j a D_{1}^{i} D_{2}^{j}+q_{2} D_{1}^{i+1} D_{2}^{j}+j D_{1}^{i+1} D_{2}^{i-1} .
\end{aligned}
$$

Our works

Let $X=\left\{x_{0}, x_{1}\right\}$ with $x_{0}<x_{1}$. For any $w=x_{i_{1}} \cdots x_{i_{k}} \in X^{*}$, let $\mathcal{A}\left(1_{X *}\right)=\mathrm{ld}, \quad \mathcal{A}(w)=A_{i_{1}} \circ \ldots \circ A_{i_{k}}$,
$\alpha_{z_{0}}^{z}\left(1_{X *}\right)=1, \quad \alpha_{z_{0}}^{z}(w)=\int_{z_{0}}^{z} \int_{z_{0}}^{z_{1}} \cdots \int_{z_{0}}^{z_{k-1}} u_{i_{1}}\left(z_{1}\right) d z_{1} \cdots u_{i_{k}}\left(z_{k}\right) d z_{k}$.
Theorem (Deneufchâtel,Duchamp,HNM, 2010) Let $S=\sum_{w \in X^{*}} \alpha_{z_{0}}^{z}(w) w \in \mathcal{D}\langle\langle X\rangle\rangle$. The following conditions are equivalent :
i) The family $\left(\alpha_{z_{0}}^{z}(w)\right)_{w \in X^{*}}$ of coefficients of S is free over \mathcal{C}.
ii) The family of coefficients $\left(\alpha_{z_{0}}^{z}(x)\right)_{x \in X \cup\left\{1_{x^{*}}\right\}}$ is free over \mathcal{C}.

Therefore, by successive Picard iterations, one get

$$
y(z)=\sum_{w \in X^{*}} \mathcal{A}(w) \circ f\left(q_{0}\right) \alpha_{z_{0}}^{z}(w)=\left[\left(\mathcal{A} \otimes \alpha_{z_{0}}^{z}\right) \mathcal{D}\right]\left(f\left(q_{0}\right)\right)
$$

where, $\mathcal{D}=\sum_{w \in X^{*}} w \otimes w$.

Chen-Fliess generating series

- Chen series

$$
S_{z_{0} \rightsquigarrow z}=\sum_{w \in X^{*}} \alpha_{z_{0}}^{z}(w) w .
$$

Any Chen generating series $S_{z_{0} \rightsquigarrow z}$ is group-like, for $\Delta_{ш}$, and it depends only on the homotopy class of $z_{0} \rightsquigarrow z$ (Ree).
The product of two Chen generating series $S_{z_{1} \rightsquigarrow z_{2}}$ and $S_{z_{0} \rightsquigarrow z_{1}}$ is the Chen generating series $S_{z_{0} \rightsquigarrow z_{2}}=S_{z_{1} \rightsquigarrow z_{2}} S_{z_{0} \rightsquigarrow z_{1}}$ (Chen).

- The generating series of the polysystem $\left\{A_{i}\right\}_{i=0,1}$ and of the observation $f \in \mathcal{O}$ is given by

$$
\begin{aligned}
\sigma f & :=\sum_{w \in X^{*}} \mathcal{A}(w) \circ f w \quad \in \mathbb{C}^{c v} \llbracket q_{1}, \ldots, q_{N} \rrbracket\langle\langle X\rangle\rangle . \\
\sigma f_{\mid q} & :=\sum_{w \in X^{*}} \mathcal{A}(w) \circ f_{\mid q} w \quad \in \mathbb{C}\langle\langle X\rangle\rangle .
\end{aligned}
$$

The last is called Fliess generating series of $\left\{A_{i}\right\}_{i=0,1}$ and of f at q.
For any $f, g \in \mathcal{O}$ anf for any $\lambda, \mu \in \mathbb{C}$, one has (Fliess)

$$
\sigma(\nu f+\mu g)=\sigma(\nu f)+\sigma(\mu g) \quad \text { and } \quad \sigma(f g)=\sigma f ш \sigma g
$$

DIAGONAL SERIES

Lyndon words

- A word is a Lyndon word if it is less than each of its right factors (for the lexicographical ordering).

Example

$\left\{x_{0}, x_{1}\right\}, x_{0}<x_{1}$. The Lyndon words of length ≤ 5 are $x_{0}, x_{0}^{4} x_{1}$, $x_{0}^{3} x_{1}, x_{0}^{3} x_{1}^{2}, x_{0}^{2} x_{1}, x_{0}^{2} x_{1} x_{0} x_{1}, x_{0}^{2} x_{1}^{2}, x_{0}^{2} x_{1}^{3}, x_{0} x_{1}, x_{0} x_{1} x_{0} x_{1}^{2}, x_{0} x_{1}^{2}, x_{0} x_{1}^{3}, x_{0} x_{1}^{4}, x_{1}$.

- For any $w \in X^{*}, w=I_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, \quad I_{1}>\ldots>I_{k}$ (Širšov).

Example
$x_{1} x_{0} x_{1}^{2} x_{0} x_{1}^{2} x_{0}^{2} x_{1}=x_{1} \cdot x_{0} x_{1}^{2} \cdot x_{0} x_{1}^{2} \cdot x_{0}^{2} x_{1}=x_{1}\left(x_{0} x_{1}^{2}\right)^{2} x_{0}^{2} x_{1}$.

- $\mathcal{L} y n(X)$: the set of Lyndon words over X and forms a transcendence basis for the shuffle algebra (Radford).
Example
$x_{0} x_{1} x_{0}^{2} x_{1}=x_{0} x_{1} ш x_{0}^{2} x_{1}-3 x_{0}^{2} x_{1} x_{0} x_{1}-6 x_{0}^{3} x_{1}^{2}$,
$x_{0}^{3} x_{1} x_{0}^{4} x_{1}=x_{0}^{3} x_{1} ш x_{0}^{4} x_{1}-5 x_{0}^{4} x_{1} x_{0}^{3} x_{1}-15 x_{0}^{5} x_{1} x_{0}^{2} x_{1}-35 x_{0}^{6} x_{1} x_{0} x_{1}-70 x_{0}^{7} x_{1}^{2}$.
- Let $Y=\left\{y_{i}\right\}_{i \geq 1}$ with $y_{1}>y_{2}>\ldots$. Then $I \in \mathcal{L} y n X \backslash\left\{x_{0}\right\} \Longleftrightarrow \Pi_{Y} I \in \mathcal{L} y n(Y)$ (Perrin),

Standard factorization and PBW basis

- The standard factorization of $I \in \mathcal{L} y n X \backslash X$, noted by st (I), is (u, v), where $u, v \in \mathcal{L} y n X$ s.t. $I=u v$ and v is the proper longest right factor of $/$ verifying $u<u v<v$.
Example $\operatorname{st}\left(x_{0}^{2} x_{1} x_{0} x_{1}\right)=\left(x_{0}^{2} x_{1}, x_{0} x_{1}\right)$.
- $\mathcal{L i e}_{\mathbb{C}}\langle X\rangle$ (resp. $\mathcal{L i e}_{\mathbb{C}}\langle\langle X\rangle\rangle$): set of Lie polynomials (resp. power series) over X and of coefficients in \mathbb{C}.
- $\left\{S_{l} ; I \in \mathcal{L} y n(X)\right\}$ is a basis of $\mathcal{L i e}_{\mathbb{C}}\langle X\rangle$, where the bracket form S_{I} of Lyndon word I is defined by $S_{x}=x$ if $x \in X$ and $S_{I}=\left[S_{u}, S_{v}\right]$ if $(u, v)=\operatorname{st}(I)$.
- The PBW basis $\mathcal{B}=\left\{S_{w} ; w \in X^{*}\right\}$ is obtained by putting

$$
S_{w}=S_{l_{1}}^{i_{1}} S_{l_{2}}^{i_{2}} \ldots S_{l_{k}}^{i_{k}} \quad \text { for } \quad w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}}, I_{1}>\ldots>I_{k}
$$

- The dual basis $\check{\mathcal{B}}=\left\{\check{S}_{w} ; w \in X^{*}\right\}$ is obtained by putting $\check{S}_{1_{x^{*}}}=1_{X^{*}}, \check{S}_{I}=x \check{S}_{u}$ for $I=x u \in \mathcal{L} y n X$ and

$$
\check{S}_{w}=\frac{\check{S}_{l_{1}}^{ш i_{1}} ш \ldots ш \check{S}_{l_{k}}^{ш i_{k}}}{i_{1}!\ldots i_{k}!} \quad \text { for } \quad w=l_{1}^{i_{1}} \ldots . l_{k}^{i_{k}}, l_{1}>\ldots>I_{k} .
$$

Diagonal series and Lie elements

- $\mathcal{D}=\prod_{l \in \mathcal{L} y n x}^{\searrow} e^{l \otimes \hat{l}}=\prod_{l \in \mathcal{L} y n X}^{\searrow} e^{\check{S}_{l} \otimes S_{l}}$ (Schützenberger).
- Let $S \in \mathbb{C}\langle\langle X\rangle\rangle . S$ is called group-like if $\Delta_{ш} S=S \otimes S$.
- S is said to be primitive if $\Delta_{ш} S=1 \otimes S+S \otimes 1$.
- S satisfies Friedrichs' (multiplicative) criterion $\langle S \mid u ш v\rangle=\langle S \mid u\rangle\langle S \mid v\rangle$.
- The following assertions are equivalent (Ree)
i) $S \in \mathcal{L i e} e_{\mathbb{C}}\langle\langle X\rangle\rangle$.
ii) e^{S} verifies Friedrichs' (multiplicative) criterion.
iii) S is primitive.
iv) e^{S} is group-like.

One has similar results over $Y=\left\{y_{i}\right\}_{i \geq 1}$ with $y_{1}>y_{2}>\ldots$.

Computational examples

1	$\Pi_{Y}(I)$	S_{l}	$\check{S r}_{1}$	$\Pi_{Y}\left(\check{S}_{l}\right)$
x_{0}		x_{0}	x_{0}	
x_{1}	y_{1}	x_{1}	x_{1}	y_{1}
$x_{0} x_{1}$	y_{2}	[x_{0}, x_{1}]	$x_{0} x_{1}$	y_{2}
$x_{0}^{2} x_{1}$	y_{3}	$\left[x_{0},\left[x_{0}, x_{1}\right]\right]$	$x_{0}^{2} x_{1}$	y_{3}
$x_{0} x_{1}^{2}$	$y_{2} y_{1}$	[[$\left.\left.x_{0}, x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{2}$	$y_{2} y_{1}$
$x_{0}^{3} x_{1}$	y_{4}	[$\left.x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]$	$x_{0}^{3} x_{1}$	y_{4}
$x_{0}^{2} x_{1}^{2}$	$y_{3} y_{1}$	[$\left.x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]$	$x_{0}^{2} x_{1}^{2}$	$y_{3} y_{1}$
$x_{0} x_{1}^{3}$	$y_{2} y_{1}^{2}$	[[[$\left.\left.\left.x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{3}$	$y_{2} y_{1}^{2}$
$x_{0}^{4} x_{1}$	y_{5}	$\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]\right]$	$x_{0}^{4} x_{1}$	y_{5}
$x_{0}^{3} x_{1}^{2}$	$y_{4} y_{1}$	$\left[x_{0},\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]$	$x_{0}^{3} x_{1}^{2}$	$y_{4} y_{1}$
$x_{0}^{2} x_{1} x_{0} x_{1}$	$y_{3} y_{2}$	$\left[\left[x_{0},\left[x_{0}, x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]$	$2 x_{0}^{3} x_{1}^{2}+x_{0}^{2} x_{1} x_{0} x_{1}$	$2 y_{4} y_{1}^{2}+y_{3} y_{2}$
$x_{0}^{2} x_{1}^{3}$	$y_{3} y_{1}^{2}$	$\left[x_{0},\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]$	$x_{0}^{2} x_{1}^{3}$	$y_{3} y_{1}^{2}$
$x_{0} x_{1} x_{0} x_{1}^{2}$	$y_{2}^{2} y_{1}$	$\left[\left[x_{0}, x_{1}\right],\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]$	$3 x_{0}^{2} x_{1}^{3}+x_{0} x_{1} x_{0} x_{1}^{2}$	$3 y_{3} y_{1}^{2}+y_{2}^{2} y_{1}$
$x_{0} x_{1}^{4}$	$y_{2} y_{1}^{3}$	$\left[\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{4}$	$y_{2} y_{1}^{3}$
$x_{0}^{5} x_{1}$	y_{6}	$\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0},\left[x_{0}, x_{1}\right]\right]\right]\right]\right]$	$x_{0}^{5} x_{1}$	y_{6}
$x_{0}^{4} x_{1}^{2}$	$y_{5} y_{1}$	$\left[x_{0},\left[x_{0},\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]\right]$	$x_{0}^{4} x_{1}^{2}$	$y_{5} y_{1}$
$x_{0}^{3} x_{1} x_{0} x_{1}$	$y_{4} y_{2}$	$\left[x_{0},\left[\left[x_{0},\left[x_{0}, x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]\right]$	$2 x_{0}^{4} x_{1}^{2}+x_{0}^{3} x_{1} x_{0} x_{1}$	$2 y_{5} y_{1}+y_{4} y_{2}$
$x_{0}^{3} x_{1}^{3}$	$y_{4} y_{1}^{2}$	$\left[x_{0},\left[x_{0},\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]\right]$	$x_{0}^{3} x_{1}^{3}$	$y_{4} y_{1}^{2}$
$x_{0}^{2} x_{1} x_{0} x_{1}^{2}$	$y_{3} y_{2} y_{1}$	$\left[x_{0},\left[\left[x_{0}, x_{1}\right],\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right]\right]$	$3 x_{0}^{3} x_{1}^{3}+x_{0}^{2} x_{1} x_{0} x_{1}^{2}$	$3 y_{4} y_{1}^{2}+y_{3} y_{2} y_{1}$
$x_{0}^{2} x_{1}^{2} x_{0} x_{1}$	$y_{3} y_{1} y_{2}$	$\left[\left[x_{0},\left[\left[x_{0}, x_{1}\right], x_{1}\right]\right],\left[x_{0}, x_{1}\right]\right]$	$6 x_{0}^{3} x_{1}^{3}+3 x_{0}^{2} x_{1} x_{0} x_{1}^{2}+x_{0}^{2} x_{1}^{2} x_{0} x_{1}$	$6 y_{4} y_{1}^{2}+3 y_{3} y_{2} y_{1}+y_{3} y_{1} y_{2}$
$x_{0}^{2} x_{1}^{4}$	$y_{3} y_{1}^{3}$	$\left[x_{0},\left[\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]\right]$	$x_{0}^{2} x_{1}^{4}$	$y_{3} y_{1}^{3}$
$x_{0} x_{1} x_{0} x_{1}^{3}$	$y_{2}^{2} y_{1}^{2}$	$\left[\left[x_{0}, x_{1}\right],\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right]\right]$	$4 x_{0}^{2} x_{1}^{4}+x_{0} x_{1} x_{0} x_{1}^{3}$	$4 y_{3} y_{1}^{3}+y_{2}^{2} y_{1}^{2}$
$x_{0} x_{1}^{5}$	$y_{2} y_{1}^{4}$	$\left[\left[\left[\left[\left[x_{0}, x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right], x_{1}\right]$	$x_{0} x_{1}^{5}$	$\underline{y}_{2} y_{1}^{4}$

POLYLOGARITHM-HARMONIC SUM-POLYZETA

Chen series and generating series of polylogarithms
Let $u_{0}(z)=\frac{1}{z}, u_{1}(z)=\frac{1}{1-z}$ and $\omega_{0}(z)=u_{0}(z) d z, \omega_{1}(z)=u_{1}(z) d z$.

$$
\begin{aligned}
\forall w \in X^{*} x_{1}, \quad & \alpha_{0}^{z}(w) \\
& =\operatorname{Li}_{w}(z) \\
& \mathrm{P}_{w}(z):=(1-z)^{-1} \operatorname{Li}_{w}(z)=\sum_{n \geq 1} \mathrm{H}_{w}(n) z^{n}
\end{aligned}
$$

$$
\operatorname{Li}_{x_{0}}(z):=\log z
$$

$$
\mathrm{L}(z):=\sum_{w \in X^{*}} \operatorname{Li}_{w}(z) w
$$

$$
\mathrm{P}(z):=(1-z)^{-1} \mathrm{~L}(z)
$$

Let

$$
(D E) \quad d G(z)=\left[x_{0} \omega_{0}(z)+x_{1} \omega_{1}(z)\right] G(z)
$$

Proposition

- $S_{z_{0} \rightsquigarrow z}$ satisfies $(D E)$ with $S_{z_{0} \rightsquigarrow z_{0}}=1$,
- $\mathrm{L}(z)$ satisfies $(D E)$ with $\mathrm{L}(z)_{z \rightarrow 0} \exp \left(x_{0} \log z\right)$.

Hence, $S_{z_{0} \rightsquigarrow z}=\mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}$, or equivalently, $\mathrm{L}(z)=S_{z_{0} \rightsquigarrow z} \mathrm{~L}\left(z_{0}\right)$.

Noncommutative generating series of convergent polyzêtas

Let $X=\left\{x_{0}, x_{1}\right\}\left(\right.$ resp. $\left.Y=\left\{y_{i}\right\}_{i \geq 1}\right)$ with $x_{0}<x_{1}\left(\right.$ resp. $y_{1}>y_{2}>\ldots$). Let $\mathcal{L} y n X$ (resp. $\mathcal{L} y n X)$ be the transcendence basis of $(\mathbb{C}\langle X\rangle$, ш) (resp. $(\mathbb{C}\langle Y\rangle, \pm))$ and let $\{\hat{I}\}_{\mid \in \mathcal{L} y n X}\left(\right.$ resp. $\left.\{\hat{I}\}_{\mid \in \mathcal{L} y n Y}\right)$ be its dual basis. Then Theorem (HNM, 2009)
We have $\Delta_{ш} \mathrm{~L}=\mathrm{L} \otimes \mathrm{L}$ and $\Delta_{ \pm \pm} \mathrm{H}=\mathrm{H} \otimes \mathrm{H}$.
Moreover, let $\mathrm{L}_{\mathrm{reg}}(z):=\prod_{\substack{l \in \mathcal{C y x} \\ l \neq \chi_{0}, x_{1}}}^{\nu} e^{\mathrm{Li}_{i}(z) \hat{l}}$ and $\mathrm{H}_{\mathrm{reg}}(N):=\prod_{\substack{1 \in \mathcal{C y v r} \\ 1 \neq y_{1}}}^{\nu} e^{\mathrm{H}_{l}(N) \hat{\jmath}}$.
Then $\mathrm{L}(z)=e^{x_{1} \log \frac{1}{1-z}} \mathrm{~L}_{\mathrm{reg}}(z) e^{x_{0} \log z}$ and $\mathrm{H}(N)=e^{y_{1} H_{1}(N)} \mathrm{H}_{\mathrm{reg}}(N)$.
We put $Z_{ш}:=\mathrm{L}_{\mathrm{reg}}(1)$ and $Z_{\text {เ }}:=\mathrm{H}_{\mathrm{reg}}(\infty)$.
Theorem (à la Abel theorem, HNM, 2005)
Let $\Pi_{Y} \mathrm{~L}$ and $\Pi_{Y} Z_{ш}$ be the projections of L and $Z_{ш}$ over Y. Then $\lim _{z \rightarrow 1} e^{y_{1} \log \frac{1}{1-2}} \Pi_{Y} \mathrm{~L}(z)=\lim _{N \rightarrow \infty} \exp \left[-\sum_{k \geq 1} H_{y_{k}}(N) \frac{\left(-y_{1}\right)^{k}}{k}\right] H(N)=\Pi_{Y} Z_{w}$.

Corollary
Z_{\amalg} and Z_{++}are group-likes and $Z_{++}=e^{-\gamma y_{1}} \Gamma\left(1+y_{1}\right) \Pi_{Y} Z_{ш}$.

Successive derivations of L

For any $w=x_{i_{1}} \ldots x_{i_{k}} \in X^{*}$ and for any derivation multi-index $\mathbf{r}=\left(r_{1}, \ldots, r_{k}\right)$ of degree $\operatorname{deg} \mathbf{r}=|w|=k$ and of weight wgt $\mathbf{r}=k+r_{1}+\ldots+r_{k}$, let us define the monomial $\tau_{\mathbf{r}}(w)$ by

$$
\tau_{\mathbf{r}}(w)=\tau_{r_{1}}\left(x_{i_{1}}\right) \ldots \tau_{r_{k}}\left(x_{i_{k}}\right)=\left[u_{i_{1}}^{\left(r_{1}\right)}(z) \ldots u_{i_{k}}^{\left(r_{k}\right)}(z)\right] x_{i_{1}} \ldots x_{i_{k}}
$$

In particular, for any integer r

$$
\begin{aligned}
\tau_{r}\left(x_{0}\right) & =u_{0}^{(r)}(z) x_{0}
\end{aligned}=\frac{-r!x_{0}}{(-z)^{r+1}}, ~=u_{1}^{(r)}(z) x_{1}=\frac{r!x_{1}}{(1-z)^{r+1}} .
$$

Theorem (HNM, 2003)
For any $n \in \mathbb{N}$, we have, $\mathrm{L}^{(n)}(z)=P_{n}(z) \mathrm{L}(z)$, where
$P_{n}(z)=\sum_{w g t} \sum_{r=n} \prod_{w \in X^{n}}^{\operatorname{deg} r}\binom{\sum_{j=1}^{i} r_{j}+j-1}{r_{i}} \tau(w) \in \mathcal{D}\langle X\rangle$.

Operations on $\mathrm{P}_{w}(z)=(1-z)^{-1} \operatorname{Li}_{w}(z)$

For $f(z)=\sum_{n \geq 0} a_{n} z^{n}$, since multiplying or dividing by z acts simply on
$\left[z^{n}\right] f(z)$, then let us study the effect of multiplying or dividing by $1-z$.

$$
\begin{aligned}
{\left[z^{n}\right](1-z) \mathrm{P}_{w}(z) } & =\mathrm{H}_{w}(n)-\mathrm{H}_{w}(n-1) . \\
{\left[z^{n}\right] \frac{\mathrm{P}_{w}(z)}{1-z} } & =\sum_{k=0}^{n} \mathrm{H}_{w}(k) \\
& =\left\{\begin{array}{l}
(n+1) \mathrm{H}_{w}(n)-\mathrm{H}_{y_{s-1} w^{\prime}}(n) \text { if } w=y_{s} w^{\prime}, s \neq 1 . \\
(n+1) \mathrm{H}_{w}(n)-\sum_{j=1}^{n} \mathrm{H}_{w^{\prime}}(j-1) \text { if } w=y_{1} w^{\prime},
\end{array}\right.
\end{aligned}
$$

and, more generally,

$$
\begin{aligned}
{\left[z^{n}\right](1-z)^{k} \mathrm{P}_{w}(z) } & =\sum_{j=0}^{k}\binom{k}{j}(-1)^{j} \mathrm{H}_{w}(n-j), \\
{\left[z^{n}\right] \frac{\mathrm{P}_{w}(z)}{(1-z)^{k}} } & =\sum_{n \geq j_{1} \geq \cdots \geq j_{k} \geq 0} \mathrm{H}_{w}\left(j_{k}\right) .
\end{aligned}
$$

NONLINEAR DIFFERENTIAL EQUATIONS

Nonlinear differential equations with three singularities

$y(z)=\sum_{n \geq 0} y_{n} z^{n}$ is the output of :

$$
(N S)\left\{\begin{array}{l}
y(z)=f(q(z)) \\
\dot{q}(z)=\frac{A_{0}(q)}{z}+\frac{A_{1}(q)}{1-z} \\
q\left(z_{0}\right)=q_{0}
\end{array}\right.
$$

($\rho, \check{\rho}, C_{f}$) and ($\rho, \check{\rho}, C_{i}$), for $i=0, . ., m$, are convergence modules of f and $\left\{A_{i}^{j}\right\}_{j=1, . ., n}$ respectively at $q \in \operatorname{CV}(f) \cap_{i=0, . ., m}^{j=1, ., n} \operatorname{CV}\left(A_{i}^{j}\right)$. $\sigma f_{\left.\right|_{q_{0}}}=\sum_{w \in X^{*}} \mathcal{A}(w)\left(f\left(q_{0}\right)\right) w$ satisfies the $\chi-$ growth condition.
The duality between $\sigma f_{\left.\right|_{q_{0}}}$ and $S_{z_{0} \rightsquigarrow z}$ consists on the convergence (precisely speaking, the convergence of a duality pairing) of the Fliess' fundamental formula which is extended as follows
Theorem (HNM, 2007)
$y(z)=\left\langle\sigma f_{\mid q_{0}} \| S_{z_{0} \rightsquigarrow z}\right\rangle=\sum_{w \in X^{*}}\left\langle\mathcal{A}(w)\left(f\left(q_{0}\right)\right) \mid w\right\rangle\left\langle S_{z_{0} \rightsquigarrow z} \mid w\right\rangle$.

Corollary

The output y of nonlinear differential equation with three singularities admits then the following expansions

$$
\begin{aligned}
y(z) & =\sum_{w \in X^{*}} g_{w}(z) \mathcal{A}(w)\left(f\left(q_{0}\right)\right), \\
& =\sum_{k \geq 0} \sum_{n_{1}, \ldots, n_{k} \geq 0} g_{x_{0}^{n_{1}} x_{1} \ldots x_{0}^{n_{k}} x_{1}}(z) \operatorname{ad}_{A_{0}}^{n_{1}} A_{1} \ldots \operatorname{ad}_{A_{0}}^{n_{k}} A_{1} e^{\log z A_{0}}\left(f\left(q_{0}\right)\right), \\
& =\exp \left(\sum_{w \in X^{*}} g_{w}(z) \mathcal{A}\left(\pi_{1}(w)\right)\left(f\left(q_{0}\right)\right)\right), \\
& =\prod_{I \in \mathcal{L} y n X} \exp \left(g_{l}(z) \mathcal{A}(\hat{l})\left(f\left(q_{0}\right)\right)\right),
\end{aligned}
$$

where, for any $w \in X^{*}, g_{w} \in \mathrm{LI}_{\mathcal{C}}$ and
$\pi_{1}(w)=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{v_{1}, \cdots, v_{k} \in X^{*} \backslash\left\{1_{X^{*}}\right\}}\left\langle w \mid v_{1} ш \cdots ш v_{k}\right\rangle v_{1} \cdots v_{k}$.

Asymptotics of the output

The output y of nonlinear differential equation with three singularities is then combination of the elements belonging the $\mathrm{LI}_{\mathcal{C}}$.

For $z_{0}=\varepsilon \rightarrow 0^{+}$, the asymptotic behaviour of the output y at $z=1$ is given by
$y(1) \underset{\varepsilon \rightarrow 0^{+}}{\sim}\left\langle\sigma f_{q_{0}} \| S_{\varepsilon \rightsquigarrow 1-\varepsilon}\right\rangle=\sum_{w \in X^{*}}\left\langle\mathcal{A}(w) \circ f_{\mid q_{0}} \mid w\right\rangle\left\langle S_{\varepsilon \rightsquigarrow 1-\varepsilon} \mid w\right\rangle$,
with $S_{\varepsilon \rightsquigarrow 1-\varepsilon} \underset{\varepsilon \rightarrow 0^{+}}{ } e^{-x_{1} \log \varepsilon} Z_{ш} e^{-x_{0} \log \varepsilon}$.
If $y(z)=\sum_{n \geq 0} y_{n} z^{n}$ then, the coefficients of its ordinary Taylor
expansion belong the harmonic algebra and there exist algorithmically computable coefficients $a_{i} \in \mathbb{Z}, b_{i} \in \mathbb{N}$ and c_{i} belong a completion of the \mathbb{C}-algrebra generated by \mathcal{Z} and by the Euler's γ constant, such that

$$
y_{n} \widetilde{n \rightarrow \infty} \sum_{i \geq 0} c_{i} n^{a_{i}} \log ^{b_{i}} n
$$

Finite parts of the output

Definition
For any $f \in \mathcal{O}$ such that

$$
\left\langle\sigma f_{q_{0}} \| S_{z_{0} \rightsquigarrow z}\right\rangle=\sum_{n \geq 0} y_{n} z^{n}
$$

and for $z_{0}=\varepsilon \rightarrow 0^{+}$, let
$\phi\left(f_{\left.\right|_{0}}\right) \underset{z \rightarrow 1}{ }$ f.p. $y(z)$ in the scale $\left\{(1-z)^{a} \log (1-z)^{b}\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$ $\psi\left(f_{\left.\right|_{0}}\right) \widetilde{n \rightarrow \infty}$ f.p. y_{n} in the scale $\left\{n^{a} \log ^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$.

Proposition

For any $f, g \in \mathcal{O}$ anf for any $\lambda, \mu \in \mathbb{C}$, one has

$$
\begin{array}{lll}
\phi\left((\nu f+\mu g)_{\left.\right|_{q_{0}}}\right)=\phi\left(\nu f_{q_{0}}\right)+\phi\left(\mu g_{\left.\right|_{0}}\right) & \text { and } & \phi\left(f g_{\left.\right|_{q_{0}}}\right)=\phi\left(f_{\left.\right|_{q_{0}}}\right) \phi\left(g_{\left.\right|_{q_{0}}}\right) \\
\psi\left((\nu f+\mu g)_{\left.\right|_{q_{0}}}\right)=\psi\left(\nu f_{\left.\right|_{0}}\right)+\psi\left(\mu g_{\left.\right|_{q_{0}}}\right) & \text { and } & \psi\left(f g_{\left.\right|_{q_{0}}}\right)=\psi\left(f_{\left.\right|_{q_{0}}}\right) \psi\left(g_{\left.\right|_{q_{0}}}\right) .
\end{array}
$$

Successive derivations of the output

Let $n \in \mathbb{N}$,

$$
\begin{aligned}
y^{(n)}(z) & =\left\langle\sigma f_{\left.\right|_{q_{0}}} \| \frac{d^{n}}{d z^{n}} S_{z_{0} \rightsquigarrow z}\right\rangle \\
& =\left\langle\sigma f_{\left.\right|_{q_{0}}} \| \mathrm{L}^{(n)}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle \\
& =\left\langle\sigma f_{\left.\right|_{q_{0}}} \| P_{n}(z) \mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle \\
& =\left\langle P_{n}(z) \triangleleft \sigma f_{\left.\right|_{q_{0}}} \| \mathrm{L}(z) \mathrm{L}\left(z_{0}\right)^{-1}\right\rangle \\
& =\left\langle P_{n}(z) \triangleleft \sigma f_{\left.\right|_{q_{0}}} \| S_{z_{0} \rightsquigarrow z}\right\rangle,
\end{aligned}
$$

where the polynomial $P_{n}(z) \in \mathcal{D}\langle X\rangle$ is defined as follows

$$
P_{n}(z)=\sum_{\text {wgt } \mathbf{r}=n} \sum_{w \in X^{n}} \prod_{i=1}^{\operatorname{deg} \mathbf{r}}\binom{\sum_{j=1}^{i} r_{j}+j-1}{r_{i}} \tau(w)
$$

Therefore, $P_{n}(z) \triangleleft \sigma f_{\left.\right|_{q_{0}}} \in \mathcal{D}\langle\langle X\rangle\rangle$ is the non commutative generating series of $y^{(n)}$.

Asymptotics of the successive derivation of the output

Let $k \in \mathbb{N}$, the successive derivation $y^{(k)}$ of the output of nonlinear differential equation with three singularities is then combination of the elements g belonging the polylogarithm algebra.
For $z_{0}=\varepsilon \rightarrow 0^{+}$, the asymptotic behaviour of the output y at $z=1$ is given by

$$
\begin{aligned}
y^{(k)}(1) & \underset{\varepsilon \rightarrow 0^{+}}{\sim}\left\langle\sigma f_{q_{0}} \| P_{k}(\varepsilon) S_{\varepsilon \rightsquigarrow 1-\varepsilon}\right\rangle \\
& =\sum_{w \in X^{*}}\left\langle\mathcal{A}(w) \circ f_{\mid q_{0}} \mid w\right\rangle\left\langle P_{k}(\varepsilon) S_{\varepsilon \rightsquigarrow 1-\varepsilon} \mid w\right\rangle .
\end{aligned}
$$

If $y^{(k)}(z)=\sum_{n \geq 0} y_{n}^{(k)} z^{n}$ then, the coefficients of its ordinary Taylor
expansion belong the harmonic algebra and there exist algorithmically computable coefficients $a_{i} \in \mathbb{Z}, b_{i} \in \mathbb{N}$ and c_{i} belong a completion of the \mathbb{C}-algrebra generated by \mathcal{Z} and by the Euler's γ constant, such that

$$
y_{n}^{(k)} \widetilde{n \rightarrow \infty} \sum_{i \geq 0} c_{i} n^{a_{i}} \log ^{b_{i}} n
$$

THANK YOU FOR YOUR ATTENTION

[^0]: ${ }^{2} \mathrm{~A}$ vector field A_{i} is said to be linear if the $A_{i}^{j}(q), j=1 . . N$, are constants. \equiv

