On the solutions of
 Knizhnik-Zamolodchikov differential equations by noncommutative Picard-Vessiot theory

V.C. Bui ${ }^{0}$, J.Y. Enjalbert ${ }^{3}$, V. Hoang Ngoc Minh ${ }^{2,3}$, V. Nguyen Dinh ${ }^{1,3}$, Q.H. Ngô ${ }^{4}$.
${ }^{0}$ Hue University of Sciences, 77 - Nguyen Hue street - Hue city, Vietnam.
${ }^{1}$ Université Sorbonne-Paris Nord, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
${ }^{2}$ Université Lille, 1 Place Déliot, 59024 Lille, France.
${ }^{3}$ LIPN-UMR 7030, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
${ }^{4}$ University of Hai Phong, 171, Phan Dang Luu, Kien An, Hai Phong, Viet Nam.

Séminaire Calin, 31 Mai 2022, Villetaneuse.

Outline

1. Introduction:
1.1 Knizhnik-Zamolodchikov differential equations
1.2 Infinitesimal braid relations
1.3 Polylogarithms and polyzetas
2. Background on PV theory of noncommutative differential equations
2.1 Lazard elimination and diagonal series
2.2 Independences of iterated integrals over differential ring
2.3 Noncommutative differential equations
3. Algorithmic and computational aspects of solutions of $K Z_{n}$ by dévissage
3.1 Solutions of $K Z_{n}(n \geq 4)$ with asymptotic conditions
3.2 $K Z_{3}$: simplest non-trivial case
3.3 $K Z_{4}$: other example of non-trivial case

INTRODUCTION ${ }^{1}$

1. Abstract : In this work, basing on the algebraic combinatorics on non commutative formal series with holomorphic coefficients and, on the other hand, a Picard-Vessiot theory of noncommutative differential equations, we give a recursive construction of solutions of Knizhnik-Zamolodchikov equations satisfying asymptotic conditions.

Knizhnik-Zamolodchikov differential equations

Let $\left(\mathcal{H}(\mathcal{V}), 1_{\mathcal{H}(\mathcal{V})}\right)$ be the ring of holomorphic functions over the manifold $\mathcal{V}=\widetilde{\mathbb{C}_{*}^{n}}$, the universal covering of the configuration space of n points, i.e.

$$
\mathbb{C}_{*}^{n}:=\left\{z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j} \text { for } i \neq j\right\} .
$$

Let $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ be the ring of noncommutative series over the alphabet $\mathcal{T}_{n}:=\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$ and with coefficients in $\mathcal{H}(\mathcal{V})$.
The following noncommutative differential equation is so called $K Z_{n}$

$$
\mathbf{d} F(z)=\Omega_{n}(z) F(z), \quad \text { where } \quad \Omega_{n}(z):=\sum_{1 \leq i<j \leq n} \frac{t_{i, j}}{2 i \pi} d \log \left(z_{i}-z_{j}\right)
$$

for which solutions can be computed by convergent iterations, for the discrete topology ${ }^{2}$ of pointwise convergence over $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$, for instance

$$
F_{0}(z)=1_{\mathcal{H}(\mathcal{V})} \quad \text { and } \quad F_{l}(z)=\int_{z_{0}}^{z} \Omega_{n}(s) F_{l-1}(s)
$$

Remark (dévissage)

$$
\Omega_{n}(z)=\underbrace{\sum_{1 \leq i<j \leq n-1} \frac{t_{i, j}}{2 \mathrm{i} \pi} \frac{d\left(z_{j}-z_{i}\right)}{z_{j}-z_{i}}}_{\Omega_{n-1}(z) \longleftrightarrow \mathcal{T}_{n-1}}+\underbrace{\sum_{j=1}^{n-2} \frac{t_{i, n}}{2 \mathrm{i} \pi} \frac{d\left(z_{n}-z_{j}\right)}{z_{n}-z_{j}}+\frac{t_{n-1, n}}{2 \mathrm{i} \pi} \frac{d\left(z_{n}-z_{n-1}\right)}{z_{n}-z_{n-1}}}_{\text {for } z_{n} \rightarrow z_{n-1} \text {, c.f. hyperlogarithms }} .
$$

2. $\forall S, T \in \mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle, d(S, T)=2^{\varpi(S-T)}\right.$, where ϖ denotes the valuation, i.e. If $S \neq 0$ then $\varpi(S)=\inf \{|w|, w \in \operatorname{supp}(S)\}$ else $+\infty$.

Quadratic relations among $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$

According to Drinfel'd, $K Z_{n}$ is completely integrable if $\Omega_{n}(z)$ is flat, i.e.

$$
d \Omega_{n}(z)-\Omega_{n}(z) \wedge \Omega_{n}(z)=0
$$

It turns out that this condition induces the following quadratic relations in $\left\{t_{i, j}\right\}_{1 \leq i<j \leq n}$:
$\mathcal{R}_{n}=\left\{\begin{array}{rll}{\left[t_{i, k}+t_{j, k}, t_{i, j}\right]=0} & \text { for distinct } i, j, k & \text { and } 1 \leq i<j<k \leq n, \\ {\left[t_{i, j}+t_{i, k}, t_{j, k}\right]=0} & \text { for distinct } i, j, k & \text { and } 1 \leq i<j<k \leq n, \\ {\left[t_{i, j}, t_{k, l}\right]=0} & \text { for distinct } i, j, k, l & \text { and } \begin{cases}1 \leq i<j \leq n, \\ 1 \leq k<I \leq n,\end{cases} \end{array}\right.$
generating the Lie ideal $\mathcal{J}_{\mathcal{R}_{n}}$.

Solutions of $K Z_{n}$ belong now to $\mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$.

Examples of $K Z_{n}$

Example ($K Z_{2}$: trivial case)
One has $\mathcal{T}_{2}=\left\{t_{1,2}\right\}$ and $\mathbf{d} F(z)=\Omega_{2}(z) F(z)$, where

$$
\Omega_{2}(z)=\left(t_{1,2} / 2 \mathrm{i} \pi\right) d \log \left(z_{1}-z_{2}\right),
$$

is $F\left(z_{1}, z_{2}\right)=e^{\left(t_{1,2} / 2 i \pi\right) \log \left(z_{1}-z_{2}\right)}=\left(z_{1}-z_{2}\right)^{t_{1,2} / 2 i \pi} \in \mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{2}}\right)\left\langle\left\langle\mathcal{T}_{2}\right\rangle\right\rangle$.
Example ($K Z_{3}$: simplest non-trivial case)
One has $\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$ and $\mathbf{d} F(z)=\Omega_{3}(z) F(z)$, where

$$
\Omega_{3}(z)=\frac{1}{2 \mathrm{i} \pi}\left(t_{1,2} \frac{d\left(z_{1}-z_{2}\right)}{z_{1}-z_{2}}+t_{1,3} \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+t_{2,3} \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right) .
$$

Drinfel'd proposed a following solution on $] 0,1[$

$$
F(z)=\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{1,3}+t_{2,3}\right) / 2 i \pi} G\left(\frac{z_{3}-z_{2}}{z_{1}-z_{2}}\right),
$$

where G satisfies the following noncommuative differential equation

$$
\text { (DE1) } \quad d G(s)=\left(A \frac{d s}{s}-B \frac{d s}{1-s}\right) G(s), \quad\left\{\begin{array}{l}
A:=t_{1,2} / 2 \mathrm{i} \pi \\
B:=t_{2,3} / 2 \mathrm{i} \pi
\end{array}\right.
$$

He stated that there is a unique solution G_{0} (resp. G_{1}) satisfying

$$
G_{0}(s) \sim_{0} e^{A \log (s)}=s^{A} \quad\left(\text { resp. } G_{1}(s) \sim_{1} e^{-B \log (1-s)}=(1-s)^{-B}\right),
$$

and a unique series $\Phi_{K Z}$, so-called Drinfel'd series ${ }^{3}$, s.t. $G_{0}=G_{1} \Phi_{K Z}$.
3. Cartier, Gonzalez-Lorca, Racinet defined associators as group like series satisfying the relations duality, pentagonal and hexagonal : $\Phi_{K Z}$ is an associator.

$\log \Phi_{K Z}$ determined by Drinfel'd

1. Assuming that $[A, B]=0$, he proposed an approximation solution for (DE1) over $] 0,1\left[, z^{A}(1-z)^{B}\right.$ (a group like series) satisfying standard asymptotic conditions. Hence, the logarithm of such approximation solution of $K Z_{3}$ belongs to

$$
\mathcal{L i e}_{\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)}\left\langle\left\langle t_{1,2}, t_{1,3}, t_{2,3}\right\rangle\right\rangle /\left[\mathcal{\operatorname { L i e }}{\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)}\left\langle\left\langle t_{1,2}, t_{2,3}\right\rangle\right\rangle, \mathcal{L} e_{\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)}\left\langle\left\langle t_{1,2}, t_{2,3}\right\rangle\right\rangle\right] .
$$

2. He also proposed, over $] 0,1[$,

$$
G_{0}(z)=z^{A}(1-z)^{B} V_{0}(z) \quad \text { and } \quad G_{1}(z)=z^{A}(1-z)^{B} V_{1}(z) .
$$

V_{0} and V_{1} have continuous extensions to $] 0,1[$ and are group like solutions of the following noncommutative differential equation

$$
(D E 2) \quad \mathbf{d} S(z)=Q(z) S(z), \quad Q(z):=e^{\operatorname{ad}_{-\log (1-z) B}} e^{\operatorname{ad}_{-\log (z) A}} \frac{B}{z-1} \in \mathfrak{p}
$$

with the initial conditions $V_{0}(0)=1, V_{1}(1)=1$ and \mathfrak{p} is the topological free Lie algebra generated by $\left\{\operatorname{ad}_{A}^{k} \operatorname{ad}_{B}^{\prime}[A, B]\right\}_{k, l \geq 0}$.
3. Since $G_{9}=G_{1} \Phi_{K Z}$ then the group like series $\Phi_{K Z}$ equals to $V(0) V(1)^{-1}$, where V is a solution of (DE2) and then the coefficients $\left\{c_{k, l}\right\}_{k, l \geq 0}$ of $\log \Phi_{K Z}$ are obtained, in $\mathfrak{p} /[\mathfrak{p}, \mathfrak{p}]$, by

$$
\log \Phi_{K Z}=\sum_{k, l \geq 0} c_{k, l} B^{k+1} A^{\prime+1}=\int_{0}^{1} Q(z) d z \bmod [\mathfrak{p}, \mathfrak{p}]
$$

Polylogarithms

Denoting $\left(X^{*}, 1_{X^{*}}\right)$ the monoid generated by $X=\left\{x_{0}, x_{1}\right\}$, recall that

$$
\mathrm{L}(s):=\sum_{w \in X^{*}} \operatorname{Li}_{w}(s) w \in \mathcal{H}(\tilde{B})\langle\langle X\rangle\rangle, \quad \text { where } \quad B:=\mathbb{C} \backslash\{0,1\}
$$

where $\mathrm{Li}_{\text {。 }}$ is the character of $\left(\mathcal{H}(\tilde{B})\langle X\rangle, ш, 1_{X^{*}}\right)$ defined by

$$
\operatorname{Li}_{1_{x^{*}}}=1_{\mathcal{H}(\tilde{B})}, \quad \operatorname{Li}_{x_{0}}(s)=\log (s), \quad \operatorname{Li}_{x_{1}}(s)=\log (1-s)
$$

and, for any $x_{i} w \in \mathcal{L} y n X \backslash X$,

$$
\operatorname{Li}_{x_{i} w}(s)=\int_{0}^{s} \omega_{i}(\sigma) \operatorname{Li}_{w}(\sigma), \quad \text { where } \quad\left\{\begin{array}{l}
\omega_{0}(s)=d s / s \\
\omega_{1}(s)=d s /(1-s)
\end{array}\right.
$$

$\left\{\mathrm{Li}_{i}\right\}_{I \in \mathcal{L} y n X}$ (resp. $\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$) are \mathbb{C}-algebraically (resp. linearly) free. By the Friedrichs crirerion, L is group like. Thus ${ }^{4}$,

$$
\mathrm{L}(s)=\prod_{I \in \mathcal{L} y n X}^{\searrow} e^{\mathrm{Li}_{s_{l}}(s) P_{l}} \quad \text { and then } \begin{cases}\lim _{z \rightarrow 0} \mathrm{~L}(s) e^{-x_{0} \log z} & =1 \\ \lim _{z \rightarrow 1} e^{x_{1} \log (1-z)} \mathrm{L}(s) & =\Phi_{K Z}\end{cases}
$$

and $\Phi_{K Z}$ admits $\left\{\operatorname{Li}_{/}(1)\right\}_{I \in \mathcal{L} y n X \backslash X}$ as convergent locale coordinates

$$
\Phi_{K Z}:=\prod_{I \in \mathcal{L} y n X \backslash X}^{\searrow} e^{\operatorname{Li}_{s_{l}(1)} P_{I}} \in \mathbb{R}\langle\langle X\rangle\rangle, \quad \text { for } \quad\left\{\begin{array}{l}
x_{0}=t_{1,2} / 2 \mathrm{i} \pi \\
x_{1}=-t_{2,3} / 2 \mathrm{i} \pi
\end{array}\right.
$$

4. $\left\{P_{1}\right\}_{\mid \in \mathcal{L} y n} \mathcal{T}_{n}$ is the basis of $\mathcal{L i e}_{\mathcal{H}(\tilde{B})}\langle X\rangle$ over which are constructed the PBW basis $\left\{P_{w}\right\}_{w \in \mathcal{T}_{n}^{*}}$ of $\mathcal{U}\left(\mathcal{L i e}_{\mathcal{H}(\tilde{B})}\langle X\rangle\right)$ and its dual, $\left\{S_{w}\right\}_{w \in X^{*}}$, containing the pure transcendence basis $\left\{S_{I}\right\}_{\mid \in \mathcal{L} y n x}$

BACKGROUND ON
 PV THEORY OF NONCOMMUTATIVE DIFFERENTIAL EQUATIONS

Differential ring of holomorphic functions

- \mathcal{V} : simply connected manifold of $\mathbb{C}^{n}(n>0)$.
- $\mathcal{A}=\left(\mathcal{H}(\mathcal{V}), \partial_{1}, \ldots, \partial_{n}\right)$: the differential ring of holomorphic functions on \mathcal{V} and equipped $1_{\mathcal{H}(\mathcal{V})}$ as the neutral element.
For any $f \in \mathcal{H}(\mathcal{V})$, one has $d f=\left(\partial_{1} f\right) d z_{1}+\ldots+\left(\partial_{n} f\right) d z_{n}$.
- Let \mathcal{C} be a sub differential ring of \mathcal{A} (i.e. $\partial_{i} \mathcal{C} \subset \mathcal{C}$, for $1 \leq i \leq n$) and let $\varsigma \rightsquigarrow z$ denotes a path (with fixed endpoints, (ς, z)) over \mathcal{V}, i.e. the parametrized curve $\gamma:[0,1] \longrightarrow \mathcal{V}$ such that

$$
\gamma(0)=\varsigma=\left(\varsigma_{1}, \ldots, \varsigma_{n}\right) \quad \text { and } \quad \gamma(1)=z=\left(z_{1}, \ldots, z_{n}\right) .
$$

- For any integers i, j such that $1 \leq i<j \leq n$, let $\omega_{i, j}$ denote the 1-differential forms ${ }^{5}$, in $\Omega^{1}(\mathcal{V}), \omega_{i, j}=d \xi_{i, j}$, with $\xi_{i, j} \in \mathcal{C}$.

Example $\left(\xi_{i, j}(z)=\log \left(z_{i}-z_{j}\right), 1 \leq i<j \leq n\right)$
Let $\mathcal{C}_{0}:=\mathbb{C}\left[\left\{\left(\partial_{1} \xi_{i, j}\right)^{ \pm 1}, \ldots,\left(\partial_{n} \xi_{i, j}\right)^{ \pm 1}\right\}_{1 \leq i<j \leq n}\right]$.
Then \mathcal{C}_{0} is a sub differential ring of \mathcal{A}.
5. Over \mathcal{V}, the holomorphic function $\xi_{i, j}$ is called a primitive for $\omega_{i, j}$ which is said to be a exact form and then is a closed form (i.e. $\left.d \omega_{i, j}=0\right)$.

Notations

- $\left(\mathcal{T}_{n}{ }^{*}, 1_{\mathcal{T}_{n}{ }^{*}}\right)$ is the free monoid generated by \mathcal{T}_{n}.
- $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ (resp. $\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle$) is the set of series (resp. polynomials) over \mathcal{T}_{n} with coefficients in \mathcal{A}. $\mathcal{L} y n \mathcal{T}_{n}$ (resp. $\mathcal{L} y n \mathcal{T}$) is the set of Lyndon words over \mathcal{T}_{n} (resp. \mathcal{T}).
- $T_{k}:=\left\{t_{j, k}\right\}_{1 \leq j \leq k-1}, \mathcal{T}:=\left\{T_{2}, \ldots, T_{n}\right\}$ s.t. $\mathcal{T}_{k}=T_{k} \sqcup \mathcal{T}_{k-1}, k \leq n$. $\left|\mathcal{T}_{n}\right|=n(n-1) / 2$ and $\left|T_{n}\right|=n-1$. If $n \geq 4$ then $\left|\mathcal{T}_{n-1}\right| \geq\left|T_{n}\right|$.
Example
- $\mathcal{T}_{5}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{1,5}, t_{2,3}, t_{2,4}, t_{2,5}, t_{3,4}, t_{3,5}, t_{4,4}\right\}$, one has $T_{5}=\left\{t_{1,5}, t_{2,5}, t_{3,5}, t_{4,5}\right\}$ and \mathcal{T}_{4}.
- $\mathcal{T}_{4}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\right\}$, one has $T_{4}=\left\{t_{1,4}, t_{2,4}, t_{3,4}\right\}$ and \mathcal{T}_{3}.
- $\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$, one has $T_{3}=\left\{t_{1,3}, t_{2,3}\right\}$ and $\mathcal{T}_{2}=\left\{t_{1,2}\right\}$.
- $\ln \left(\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle, \partial_{1}, \ldots, \partial_{n}\right)$, for any $S \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$, one defines

$$
\begin{aligned}
\partial_{i} S=\sum_{w \in \mathcal{T}_{n}^{*}}\left(\partial_{i}\langle S \mid w\rangle\right) w \quad \text { and } \quad \mathbf{d} S=\sum_{i=1}^{n}\left(\partial_{i} S\right) d z_{i} . \\
\operatorname{Const}(\mathcal{A})=\mathbb{C} .1_{\mathcal{H}(\Omega)} \text { and } \operatorname{Const}\left(\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle\right)=\mathbb{C}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle .
\end{aligned}
$$

Lazard elimination : $\mathcal{L i} e_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle=\mathcal{I}_{n} \oplus \mathcal{L i e}_{\mathcal{A}}\left\langle T_{n}\right\rangle$

Let ρ the right normed bracketing which is the unique linear endomorphism of $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$ defined, by $\rho\left(1_{\mathcal{T}_{n}^{*}}\right)=0$ and, for $w=t_{1} \ldots t_{k} \in \mathcal{T}_{n}^{*}$, by

$$
\rho(w)=\left[t_{1},\left[\ldots,\left[t_{k-1}, t_{k}\right] \ldots\right]=\operatorname{ad}_{t_{1}} \ldots \operatorname{ad}_{t_{k-1}} t_{k}\right.
$$

\mathcal{I}_{n} : Lie subalg. generated by $\left\{\operatorname{ad}_{-T_{n}}^{k} t_{i, j}\right\}_{t_{i, j} \in \mathcal{T}_{n-1}}^{k>0}=\left\{(-1)^{\mid M} \rho(v t) /|v|!\right\}_{\substack{v \in T_{n}^{*} \\ t \in T_{n-1}}}$
By PBW, $\mathcal{U}\left(\mathcal{I}_{n}\right)$ is freely generated by

$$
\begin{aligned}
& \left\{\operatorname{ad}_{-T_{n}}^{k_{1}} t_{1} \ldots \operatorname{ad}_{-T_{n}}^{k_{p}} t_{p}\right\}_{t_{1}, \ldots, t_{p} \in \mathcal{T}_{n-1}}^{k_{1}, \ldots, k_{p} \geq 0, p \geq 0} \\
& \left.=\left.\left\{\rho\left(\left(-T_{n}\right)^{*} t_{1}\right) \cdots \rho\left(\left(-T_{n}\right)^{*} t_{k}\right)\right\}_{t_{1}, \ldots, t_{k} \in \mathcal{T}_{n-1}}^{k \geq 0}\right|^{\left|v_{1} \ldots v_{k}\right|}\left|v_{1}\right|^{-1} \ldots\left|v_{k}\right|^{-1} \rho\left(v_{1} t_{1}\right) \cdots \rho\left(v_{k} t_{k}\right)\right\}_{v_{1}, \ldots, v_{k} \in T_{n}^{*}, t_{1}, \ldots, t_{k} \in \mathcal{T}_{n-1}}^{k \geq 0}
\end{aligned}
$$

which are associated to the following family of polynomials of $\mathcal{U}\left(\mathcal{I}_{n}\right)^{\vee}$

$$
\begin{aligned}
& \left\{t_{1}\left(\bar{T}_{n}^{k_{1}} ш\left(\cdots ш\left(t_{p} \bar{T}_{n}^{k_{p}}\right) \ldots\right)\right)\right\}_{t_{1}, \ldots, t_{p} \in \mathcal{T}_{n-1}}^{k_{1}, \ldots, k_{p} \geq, p}, \\
& =\left\{t_{1}\left(\bar{v}_{1} ш\left(\cdots ш\left(t_{p} \bar{v}_{p}\right) \ldots\right)\right)\right\}^{k_{1}, \ldots, k_{p} \geq 0, p \geq 0} \\
& \begin{array}{l}
k_{1} \in T_{n}^{k_{1}}, \ldots, v_{p} \in T_{n}^{k_{p}}, t_{1}, \ldots, t_{k} \in \mathcal{T}_{n-1} \\
v_{1} \geq 0, p \geq 0
\end{array} \\
& =\left\{\left(t_{1} \bar{v}_{1}\right) \circ \cdots \circ\left(t_{p} \bar{v}_{p}\right)\right\}_{v_{1} \in T_{n}^{K_{1}}, \ldots, v_{p} \in T_{n}^{k_{p}}, t_{1}, \ldots, t_{k} \in \mathcal{T}_{n-1}}^{k_{1}, \ldots, k_{1} \geq 0,}, \\
& =\left\{\left(t_{1} \bar{T}_{n}^{k_{1}}\right) \circ \cdots \circ\left(t_{p} \bar{T}_{n}^{k_{p}}\right)\right\}_{t_{1}, \ldots, t_{p} \in T_{n-1}}^{k_{1}^{k_{1}, \ldots, k_{p} \in 0, p \geq 0},}
\end{aligned}
$$

where ${ }^{6} \bar{T}_{n}^{k}=\left\{\bar{v} \in T_{n}^{k},|v|=k\right\}$ and the composite operator \circ is defined, for any H and $R \in \mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right.$ and $t \in \mathcal{T}_{n-1}$, by

$$
\text { If } R \neq 1_{\mathcal{T}_{n}^{*}} \text { then }(t H) \circ R=t(H \amalg R) \text { else }(t H) \circ R=t H \text {. }
$$

6. \bar{v} is the polynomial $t_{1} ш \ldots ш t_{k}$ associated to $v=t_{1} \ldots t_{k}$.

Lexicographic ordering

$\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle$ is the set of Lie polynomials over \mathcal{T}_{n} with coefficients in \mathcal{A} and is equipped with the basis $\left\{P_{1}\right\}_{\mid \in \mathcal{L} y n} \mathcal{T}_{n}$ over which are constructed the PBW basis $\left\{P_{w}\right\}_{w \in \mathcal{T}_{n}^{*}}$ of $\mathcal{U}\left(\mathcal{L i}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle\right)$ and its dual, $\left\{S_{w}\right\}_{w \in \mathcal{T}_{n}^{*}}$, containing the pure transcendence basis $\left\{S_{l}\right\}_{\mid \in \mathcal{L} y n} \mathcal{T}_{n}$ of ${ }^{7}\left(\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right)\right.$.
Example (in $K Z_{3}, \mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$ and $t_{1,2} \prec t_{1,3} \prec t_{2,3}$) $\forall k \geq 0, i=1$ or $2, \quad t_{1,2}^{k} t_{i, 3} \in \mathcal{L} y n \mathcal{T}_{3}, \quad P_{t_{1,2}^{k} t_{i, 3}}=\operatorname{ad}_{t_{1,2}}^{k} t_{i, 3}, S_{t_{1,2}^{k} t_{i, 3}}=t_{1,2}^{k} t_{i, 3}$.

In the sequel, let $\mathcal{L} y n \mathcal{T}_{n}$ (resp. T_{k}) be the set of Lyndon words over \mathcal{T}_{n} (resp. T_{k}) equipped the following total order over $T_{k}(n \geq k \geq 2)$:

$$
t_{1, k} \succ \ldots \succ t_{k-1, k}, \quad T_{2} \succ \ldots \succ T_{n}, \quad \mathcal{L} y n T_{2} \succ \ldots \succ \overline{\mathcal{L} y n} T_{n} .
$$

By the standard factorization ${ }^{8}$ of Lyndon words, one has

$$
\mathcal{L} y n \mathcal{T}_{n-1} \succ \mathcal{L} y n T_{n} \cdot \mathcal{L} y n \mathcal{T}_{n-1} \succ \mathcal{L} y n T_{n},
$$

More generally, for any $\left(t_{1}, t_{2}\right) \in T_{k_{1}} \times T_{k_{2}}, 2 \leq k_{1}<k_{2} \leq n$, one also has

$$
t_{2} t_{1} \in \mathcal{L} y n^{\mathcal{T}_{k_{2}}} \subset \mathcal{L} y n \mathcal{T}_{n} \quad \text { and } \quad t_{2} \prec t_{2} t_{1} \prec t_{1} .
$$

Diagonal series (for $K Z_{n}, n \geq 4$)

1. If $I \in \mathcal{L} y n T_{k-1}$ and $t \in T_{k}, 2 \leq k \leq n$ then $t \mid \in \mathcal{L} y n \mathcal{T}_{n}$ and $t \prec t \prec l$.
2. If $I_{1} \in \mathcal{L} y n T_{k_{1}}$ and $I_{2} \in \mathcal{L} y n T_{k_{2}}$ (for $2 \leq k_{1}<k_{2} \leq n$) then $I_{2} I_{1} \in \mathcal{L} y n \mathcal{T}_{k_{2}} \subset \mathcal{L} y n \mathcal{T}_{n}$ and $I_{2} \prec I_{2} I_{1} \prec I_{1}$.
3. If $I_{1} \in \mathcal{L} y n T_{k}$ and $I_{2} \in \mathcal{L} y n \mathcal{T}_{k-1}$ (for $2 \leq k_{1}<k_{2} \leq n$) then $I_{1} I_{2} \in \mathcal{L} y n \mathcal{T}_{n}$ and $I_{1} \prec I_{1} I_{2} \prec I_{2}$.

In $\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle \hat{\otimes} \mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle$, let $\nabla S=S-1_{\mathcal{T}_{n}^{*}} \otimes 1_{\mathcal{T}_{n}^{*}}$. The diagonal series is defined by $\mathcal{D}_{\mathcal{T}_{n}}:=\mathcal{M}^{*}$, with $\mathcal{M}:=\sum_{t \in \mathcal{T}_{n}} t \otimes t$,
and is the unique solution of $\nabla S=\mathcal{M} S$ and $\nabla S=S \mathcal{M}$. Then
where $\mathcal{D}_{\mathcal{T}_{n-1}}$ (resp. $\mathcal{D}_{T_{n}}$) denote the diagonal series, over \mathcal{T}_{n-1} (resp. T_{n}), and

$$
\mathcal{D}_{\mathcal{T}_{n-1}}=\prod_{I \in \mathcal{L} y n \mathcal{T}_{n-1}}^{\searrow} e^{S_{I} \otimes P_{1}}, \quad \text { and } \quad \mathcal{D}_{T_{n}}=\prod_{I \in \mathcal{L} y n T_{n}}^{\searrow} e^{S_{l} \otimes P_{1}} .
$$

More about notations

Let us back to the relations
$\mathcal{R}_{n}=\left\{\begin{aligned} {\left[t_{i, k}+t_{j, k}, t_{i, j}\right]=0 } & \text { for distinct } i, j, k \\ {\left[t_{i, j}+t_{i, k}, t_{j, k}\right]=0 } & \text { for distinct } i, j, k \\ {\left[t_{i, j}, t_{k, l}\right]=0 } & \text { for distinct } i, j, k, l\end{aligned} \quad\right.$ and $1 \leq i<j<k \leq n, ~ \begin{cases}1 \leq i<j \leq n, \\ 1 \leq k<l \leq n,\end{cases}$
generating the Lie ideal $\mathcal{J}_{\mathcal{R}_{n}}$.

- The monoid (resp. the set of Lyndon words) generated by \mathcal{T}_{n} satisfying the relations \mathcal{R}_{n} is denoted by $\left\langle\mathcal{T}_{n}^{*} ; \mathcal{J}_{\mathcal{R}_{n}}\right\rangle$ (resp. $\left.\left\langle\mathcal{L} y n T_{n} ; \mathcal{J}_{\mathcal{R}_{n}}\right\rangle\right)$.
- The set of noncommutative polynomials (resp. series) with coefficients in \mathcal{A}, over \mathcal{T}_{n}, satisfying \mathcal{R}_{n}, is denoted by $\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$ (resp. $\mathcal{A}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$).
- The set of Lie polynomials (resp. Lie series) with coefficients in \mathcal{A}, over \mathcal{T}_{n}, satisfying \mathcal{R}_{n}, is denoted by $\mathcal{L i e}_{\mathcal{A}}\left\langle\mathcal{T}_{n}\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}$ (resp. $\left.\mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}\right)$.
- $H_{\amalg}\left(\mathcal{T}_{n}\right) / \mathcal{J}_{\mathcal{R}_{n}}$ denotes $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle / \mathcal{J}_{\mathcal{R}_{n}}\right.$, conc, $\left.\Delta_{\amalg}, 1_{\mathcal{T}_{n}^{*}}\right)$.

Iterated integrals and Chen series

The iterated integral associated, of the 1-differential forms $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along the path $\varsigma \rightsquigarrow z$, is given by $\alpha_{\varsigma}^{z}\left(1_{\mathcal{T}_{n}^{*}}\right)=1_{\mathcal{H}(\mathcal{V})}$ and, for any $w=t_{i_{1}, j_{1}} t_{i_{2}, j_{2}} \ldots t_{i_{k}, j_{k}} \in \mathcal{T}_{n}^{*}$,

$$
\alpha_{\varsigma}^{z}(w):=\int_{\varsigma}^{\frac{k_{2}}{2}} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \int_{\varsigma}^{s_{1}} \omega_{i_{2}, j_{2}}\left(s_{2}\right) \ldots \int_{\varsigma}^{s_{k-1}} \omega_{i_{k}, j_{k}}\left(s_{k}\right) \in \mathcal{H}(\mathcal{V}),
$$

where $\left(\varsigma, s_{1} \ldots, s_{k-1}, z\right)$ is a subdivision of $\varsigma \rightsquigarrow z$.
The Chen series, of the differential forms $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n}$ and along a path $\varsigma \rightsquigarrow z$, is the following noncommutative generating series

$$
C_{\varsigma \rightsquigarrow z}:=\sum_{w \in \mathcal{T}_{n}^{*}} \alpha_{\varsigma}^{z}(w) w \in \mathcal{H}(\mathcal{V})\left\langle\left\langle\mathcal{T}_{n}^{*}\right\rangle\right\rangle
$$

Proposition

1. $\forall u, v$ in $\mathcal{T}_{n}^{*}, \alpha_{\varsigma}^{z}(u ш v)=\alpha_{\varsigma}^{z}(u) \alpha_{\varsigma}^{z}(v)$ (Chen's lemma).
2. $\forall t \in \mathcal{T}_{n}, k \geq 0, \alpha_{\varsigma}^{z}\left(t^{k}\right)=\left(\alpha_{\varsigma}^{z}(t)\right)^{k} / k$! and then $\alpha_{\varsigma}^{z}\left(t^{*}\right)=e^{\alpha_{\varsigma}^{z}(t)}$.
3. For any compact $K \subset \mathcal{V}$, there is $c>0$ and a morphism of monoids $\mu: \mathcal{T}_{n}^{*} \longrightarrow \mathbb{R}_{\geq 0}$ s.t. $\left\|\left\langle C_{\varsigma \rightsquigarrow z} \mid w\right\rangle\right\|_{K} \leq c \mu(w)|w|^{-1}$, for $w \in \mathcal{T}_{n}^{*}$, and then $C_{\varsigma \rightsquigarrow z}$ is said to be exponentially bounded from above.

Basic triangular theorem over a differential ring

Let \mathcal{C} be a sub differential ring of \mathcal{A}.
For any $S \in \mathcal{C}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$, let $\mathcal{F}(S):=\operatorname{span}_{\mathcal{C}}\{\langle S \mid w\rangle\}_{w \in \mathcal{T}_{n}^{*}}$
Lemma
The following assertions are equivalent ${ }^{9}$

1. The following map is injective

$$
\left(\mathcal{C}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right) \longrightarrow\left(\mathcal{H}(\mathcal{V}), *, 1_{\mathcal{H}(\mathcal{V})}\right), \quad w \longmapsto \alpha_{\varsigma}^{z}(w)
$$

2. $\left\{\alpha_{\varsigma}^{z}(w)\right\}_{w \in \mathcal{T}_{n}^{*}}$ is linearly free over \mathcal{C}.
3. $\left\{\alpha_{\varsigma}^{z}(I)\right\}_{I \in \mathcal{L} y n} \mathcal{T}_{n}$ is algebraically free over \mathcal{C}.
4. $\left\{\alpha_{\varsigma}^{z}(t)\right\}_{t \in \mathcal{T}_{n}}$ is algebraically free over \mathcal{C}.
5. $\left\{\alpha_{\varsigma}^{z}(t)\right\}_{t \in \mathcal{T}_{n} \cup\left\{1_{\mathcal{T}_{n}^{*}}\right\}}$ is linearly free over \mathcal{C}.
6. For any $C \in \mathcal{L} \operatorname{ie}_{\mathcal{C}}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$, there is an automorphism ψ of $\mathcal{F}\left(C_{\varsigma \rightsquigarrow z}\right)$ such that $\psi\left(C_{\varsigma \rightsquigarrow z}\right)=C_{\varsigma \rightsquigarrow z} e^{C}$.
7. This is the abstract form, over ring, of (Deneufchâtel, Duchamp, HNM \& Solomon, 2011).

Noncommutative differential equations

$(N C D E) \quad \mathbf{d} S=M_{n} S$, where ${ }^{10} \quad M_{n}=\sum_{1 \leq i<j \leq n} \omega_{i, j} t_{i, j}$.

Proposition

1. $C_{\varsigma \rightsquigarrow z}$, satisfying $(N C D E)$, is group-like and $\log C_{\varsigma \rightsquigarrow z}$ is primitive :

$$
C_{\varsigma \rightsquigarrow z}=\prod_{I \in \mathcal{L} y n \mathcal{T}_{n}}^{l} e^{\alpha_{\varsigma}^{z}\left(S_{l}\right) P_{l}} \quad \text { and } \quad \log C_{\varsigma \rightsquigarrow z}=\sum_{w \in \mathcal{T}_{n}^{*}} \alpha_{\varsigma}^{z}(w) \pi_{1}(w),
$$

$$
\text { where } \pi_{1}(w)=\sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in \mathcal{T}_{n} \mathcal{T}_{n}^{*}}\left\langle w \mid u_{1} ш \ldots ш u_{k}\right\rangle u_{1} \ldots u_{k} \text {. }
$$

2. Let $C \in \mathbb{C}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle,\left\langle C \mid 1_{\mathcal{T}_{n}^{*}}\right\rangle=1$. Then $C_{\zeta \rightsquigarrow z} C$ satisfies (NCDE). Moreover, $C_{\varsigma \rightsquigarrow z} C$ is group-like if and only if C is group-like.

From this, it follows that the differential Galois group of (NCDE) + group-like solutions is ${ }^{11}$ the group $\left.\left\{e^{C}\right\}_{\left.C \in \mathcal{L} e_{C .1} \mathcal{H}_{\mathcal{V}}\right)}\langle\mathcal{X}\rangle\right\rangle$. Which leads to the definition of the PV extension related to (NCDE) as $\widehat{\mathcal{C}_{0} \cdot \mathcal{X}}\left\{C_{\mathrm{z}_{0} \rightsquigarrow \mathrm{z}}\right\}$. 10. $M_{n} \in \Omega^{1}(\mathcal{V})\left\langle\mathcal{T}_{n}\right\rangle$ and $\Delta_{\amalg} M_{n}=1_{\mathcal{T}_{n}^{*}} \otimes M_{n}+M_{n} \otimes 1_{\mathcal{T}_{n}^{*}}$.
11. In fact, the Hausdorff group (group of characters) of " $\left(\mathcal{A}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right)$.

ALGORITHMIC AND COMPUTATIONAL ASPECTS OF SOLUTIONS OF $K Z_{n}$ BY DEVISSAGE

Solutions of $(N C D E)$ by $\left\{V_{m}(\varsigma, z)\right\}_{m \geq 0}(1 / 2)$

$$
\begin{aligned}
V_{m}(\varsigma, z) & =V_{0}(\varsigma, z) \sum_{t_{i, j} \in \mathcal{T}_{n-1}} \int_{\varsigma}^{L} e^{\sum_{t \in \mathcal{T}_{n}} \text { ad } \alpha_{-}^{s}(t) t} \omega_{i, j}(s) t_{i, j} V_{m-1}(\varsigma, s), \\
V_{0}(\varsigma, z) & =\prod_{l \in \mathcal{\mathcal { L }} \boldsymbol{y n} T_{n}}^{\geq} e^{\alpha_{\varsigma}^{z}\left(S_{l}\right) P_{l}} \bmod \left[\mathcal{L} i e_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle, \mathcal{L i} e_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle\right] \\
& =e^{\sum_{t \in T_{n}} \alpha_{\varsigma}^{z}(t) t} .
\end{aligned}
$$

1. $\left(\alpha_{\varsigma}^{2} \otimes \mathrm{Id}\right) \mathcal{D}_{T_{n}}$ satisfies the differential equation $\mathbf{d} F=N_{n-1} F$, where.

$$
N_{n-1}:=\sum_{k=1}^{n-1} \omega_{k, n} t_{k, n} \quad \in \quad \mathcal{L i} e_{\Omega^{1}(\mathcal{V})}\left\langle T_{n}\right\rangle .
$$

2. V_{0} satisfies the partial differential equation $\partial_{n} f=N_{n-1} f$.
3. For any $m \geq 1$, on obtains explicitly

$$
V_{m}(\varsigma, z)=\sum_{w=t_{1}, j_{1} \ldots t_{i m}, j_{m} \in \mathcal{T}_{n-1}^{*}} \int_{\varsigma}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \cdots \int_{\varsigma}^{s_{m-1}} \omega_{i_{m}, j_{m}}\left(s_{m}\right) \kappa_{w}\left(z, s_{1}, \cdots, s_{m}\right),
$$

where (using the identity $e^{-a} b e^{a}=e^{a_{-a}} b$)

$$
\begin{aligned}
& V_{0}(\varsigma, z)^{-1} \kappa_{w}\left(z, s_{1}, \cdots, s_{m}\right) \\
& =\prod_{p=1}^{m} e^{\mathrm{ad}_{-\Sigma_{t \in T_{n}}}^{\alpha_{\varsigma}^{s_{p}}(t) t}} t_{i_{p}, j_{p}}=\sum_{q_{1}, \cdots, q_{k} \geq 0} \prod_{p=1}^{m} \frac{1}{q_{p}!} \operatorname{ad}_{-\sum_{t \in T_{n}}^{q_{p}} \alpha_{\varsigma}^{s_{p}}(t) t} t_{p_{p}, j_{p}}
\end{aligned}
$$

Solutions of $(N C D E)$ by $\left\{V_{m}(\varsigma, z)\right\}_{m \geq 0}(2 / 2)$

Proposition

1. (NCDE) admits $V_{0}(\varsigma, z) G(\varsigma, z)$ as solution, with

$$
\begin{aligned}
& G(\varsigma, z)=\left(\alpha_{\varsigma}^{z} \otimes \mathrm{Id}\right) \sum_{k \geq 0} \sum_{\substack{v_{i}, j_{j}, \ldots, v_{i_{2}, j} \in \in \mathcal{T}_{n}^{*} \\
t_{i_{1}, 1, j}, \ldots, t_{k}, j_{k} \in \tau_{n-1}}} \frac{(-1)^{\left|v_{i_{1}, j_{1}} \ldots v_{i_{k}, j_{k}}\right|}}{\left|v_{i_{1}, j_{1}}\right|!\ldots\left|v_{i_{k}, j_{k}}\right|!} \\
& \left(t_{i_{1}, j_{1}} \bar{v}_{i_{1}, j_{1}}\right) \circ \cdots \circ\left(t_{i_{k}, j_{k}} \bar{v}_{i_{k}, j_{k}}\right) \otimes \rho\left(v_{i_{1}, j_{1}} t_{i_{1}, j_{1}}\right) \ldots \rho\left(v_{i_{k}, j_{k}} t_{i_{k}, j_{k}}\right)
\end{aligned}
$$

2. There is a diffeomorphism g of \mathcal{V} s.t. $G(\varsigma, z)$ is group like series and is the Chen series, along the path $g(\varsigma \rightsquigarrow z)$ and of the differential forms $\left\{\omega_{i, j}\right\}_{1 \leq i<j \leq n-1}$, and then satisfies
$\mathbf{d} S=\mathcal{M}^{*}{ }_{n-1} S$, where $\quad \mathcal{M}^{*}{ }_{n-1}=\sum_{1 \leq i<j \leq n-1} g^{*} \omega_{i, j} t_{i, j} \in \mathcal{L i e}_{\Omega^{1}(\mathcal{V})}\left\langle\mathcal{T}_{n-1}\right\rangle$.
3. If the restricted ш-morphism α_{ς}^{z}, on $\mathbb{C}\left\langle\mathcal{T}_{n}\right\rangle$, is injective then there is a primitive series $C \in \mathcal{L i e} e_{\mathbb{C}}\left\langle\left\langle\mathcal{T}_{n-1}\right\rangle\right\rangle$ such that

$$
G(\varsigma, z)=\left(\sum_{w \in T_{n-1}^{*}} \alpha_{\varsigma}^{z}(w) w\right) e^{c}
$$

Solutions of $K Z_{n}(n \geq 4)$

For any $1 \leq i<j \leq n-1$, let $\left(P_{i, j}\right): z_{i}-z_{j}=1$.
Theorem $\left(\omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right), t_{i, j} \leftarrow t_{i, j} / 2 \mathrm{i} \pi\right)$
For $z_{n} \rightarrow z_{n-1}$, solution of $\mathbf{d} F=M_{n} F$ can be put in the form $f(z) G\left(z_{1}, \ldots, z_{n-1}\right)$ such that

1. $f(z) \sim\left(z_{n-1}-z_{n}\right)^{t_{n-1, n}}$ satisfying $\partial_{n} f=N_{n-1} f$, where

$$
N_{n-1}(z)=\sum_{k=1}^{n-1} t_{k, n} \frac{d z_{n}}{z_{n}-z_{k}}=\sum_{k=1}^{n-1} t_{k, n} \frac{d s}{s-s_{k}}, \quad \text { with }\left\{\begin{array}{l}
s=z_{n} \\
s_{k}=z_{n}-z_{k}
\end{array}\right.
$$

2. $G\left(z_{1}, \ldots, z_{n-1}\right)$ is solution of $\mathbf{d} S=M_{n-1}^{t_{0}, n} S$, where

$$
\begin{aligned}
M_{n-1}^{t_{0}, n}(z) & \sim \sum_{1 \leq i<j \leq n-1} \varphi_{t_{0, n}}^{(\varsigma, z)}\left(t_{i, j}\right) d \log \left(z_{i}-z_{j}\right), \\
\varphi_{t_{0}, n}^{(\varsigma, z)}\left(t_{i, j}\right) & =e^{1 \leq \operatorname{ld}_{-\sum_{1 \leq k<n} \log \left(z_{k}-z_{n-1}\right) t_{k, n}} t_{i, j}} \bmod \mathcal{J}_{\mathcal{R}_{n}} .
\end{aligned}
$$

Moreover, $M_{n-1}^{t_{0}, n}$ exactly coincides with M_{n-1} in the intersection of affine planes $\bigcap_{1 \leq i<n-1}\left(P_{i, n-1}\right)$.
Conversely, if f satisfies $\partial_{n} f=N_{n-1} f$ and $G\left(z_{1}, \ldots, z_{n-1}\right)$ satisfies $\mathbf{d} S=M_{n-1}^{t_{\mathbf{0}}, n} S$ then $f(z) G\left(z_{1}, \ldots, z_{n-1}\right)$ satisfies $\mathbf{d} F=M_{n} F$.

Solutions of $K Z_{n}(n \geq 4)$ with asymptotic conditions

Let $F_{\bullet}:\left(\mathbb{C}\left\langle\mathcal{T}_{n}\right\rangle, ш, 1_{\mathcal{T}_{n}^{*}}\right) \rightarrow\left(\mathcal{H}(\mathcal{V}), *, 1_{\mathcal{H}(\mathcal{V})}\right)$ be the character defined by $F_{1_{\mathcal{T}_{n}^{*}}}=1_{\mathcal{H}(\mathcal{V})}, \forall t_{i, j} \in \mathcal{T}_{n}, F_{t_{i, j}}(z)=\log \left(z_{i}-z_{j}\right), \forall t_{i, j} w \in \mathcal{L} y n \mathcal{T}_{n} \backslash \mathcal{T}_{n}$,

$$
F_{t_{i, j w}}(z)=\int_{0}^{z} \omega_{i, j}(s) F_{w}(s), \quad \text { where } \quad \omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right)
$$

Corollary $\left(\omega_{i, j}(z)=d \log \left(z_{i}-z_{j}\right), t_{i, j} \leftarrow t_{i, j} / 2 i \pi\right)$

1. $\left\{F_{t}\right\}_{t \in \mathcal{T}_{n} \cup\left\{1 \mathcal{T}_{n}^{*}\right\}}$ are \mathcal{C}_{0}-linearly free.
2. The graph of F_{\bullet}, F, is unique solution of $\mathbf{d} F=M_{n} F$ and

$$
\mathrm{F}(z)=\prod_{l \in \mathcal{L} y n \mathcal{T}_{n}}^{\downarrow} e^{F_{S_{l}}(z) P_{I}} \sim_{\substack{z_{i} \sim z_{i} \\ 1<i \leq n}}\left(z_{i-1}-z_{i}\right)^{t_{i-1, i}} G_{i}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{l}\right.
$$

where $G_{i}\left(z_{1}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{n}\right)$ satisfies $\mathbf{d} S=M_{n-1}^{t_{0}, n} S$ and, for

$$
\begin{aligned}
& y_{1}=z_{1}, \ldots, y_{i-1}=z_{i-1}, y_{i}=z_{i+1}, \ldots, y_{n-1}=z_{n} \text {, one has } \\
& M_{n-1}^{t_{0}, n}(y)=\sum_{1 \leq i<j \leq n-1} e^{e^{\text {da }}-\Sigma_{1 \leq k \leq n-1} \log \left(y_{k}-y_{n-1}\right)_{t, n}} t_{i, j} d \log \left(y_{i}-y_{j}\right) \bmod \mathcal{J}_{\mathcal{R}_{n}}
\end{aligned}
$$

and $M_{n-1}^{t_{0}, n}$ exactly coincides with M_{n-1} in $\bigcap_{1 \leq k<n-1}\left(P_{i, n-1}\right)$.
3. In $\mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle /\left[\mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle, \mathcal{L i e}_{\mathcal{A}}\left\langle\left\langle T_{n}\right\rangle\right\rangle\right]$, one has

$$
\mathrm{F}(z)=e^{\sum_{i=1}^{n-1} \log \left(z_{n}-z_{i}\right) t_{i, n}} \sum_{\substack{k \geq 0, l_{1}, \ldots, l_{k} \geq 0 \\ t_{1}, \ldots, t_{k} \in \mathcal{T}_{n-1}}} F_{\left(t_{1} \bar{T}_{n}^{/_{1}}\right) \circ \ldots \circ\left(t_{k} \bar{T}_{n}^{\prime k}\right)}(z) \prod_{1 \leq j \leq k} \operatorname{ad}_{-T_{n}}^{l_{j}} t_{j}
$$

$K Z_{3}$: Simplest non-trivial case $(1 / 3)$

One has $\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$ and

$$
\Omega_{3}(z)=\frac{1}{2 i \pi}\left(t_{1,2} \frac{d\left(z_{1}-z_{2}\right)}{z_{1}-z_{2}}+t_{1,3} \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+t_{2,3} \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right) .
$$

Solution of $\mathbf{d} F(z)=\Omega_{3}(z) F(z)$ can be computed as limit of the sequence $\left\{F_{l}\right\}_{\mid \geq 0}$, in $\mathcal{H}\left(\mathbb{C}_{*}^{3}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle$, by convergent Picard's iteration :

$$
F_{0}(z)=1_{\mathcal{H}(\mathcal{V})} \quad \text { and } \quad F_{l}(z)=\int_{0}^{z} \Omega_{3}(s) F_{l-1}(s)
$$

Let us compute, by another way, a solution of $\mathbf{d} F(z)=\Omega_{3}(z) F(z)$ as the limit of the sequence $\left\{V_{1}\right\}_{1 \geq 0}$, in $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle$, iteratively obtained by

$$
\begin{aligned}
V_{0}(z) & =e^{\left(t_{1,2} / 2 i \pi\right) \log \left(z_{1}-z_{2}\right)}, \\
V_{l}(z) & =\int_{0}^{z} e^{\left(t_{1,2} / 2 i \pi\right)\left(\log \left(z_{1}-z_{2}\right)-\log \left(s_{1}-s_{2}\right)\right)} \tilde{\Omega}_{2}(s) V_{l-1}(s) \\
& =V_{0}(z) \int_{0}^{z} e^{-\left(t_{1,2} / 2 i \pi\right) \log \left(s_{1}-s_{2}\right)} \tilde{\Omega}_{2}(s) V_{l-1}(s), \\
\text { with } \tilde{\Omega}_{2}(z) & =\frac{1}{2 \mathrm{i} \pi}\left(t_{1,3} \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+t_{2,3} \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right) .
\end{aligned}
$$

$K Z_{3}:$ Simplest non-trivial case $(2 / 3)$

Explicit solution is $F=V_{0} G$, where $V_{0}(z)=\left(z_{1}-z_{2}\right)^{t_{1,2} / 2 i \pi}$ and $G(z)=\sum_{t_{1}, j_{1} \cdots t_{i m}, j_{m} \in\left\{t_{1}, 3, t_{2}, 3\right\}^{*}} \int_{0}^{z} \omega_{i_{1}, j_{1}}\left(s_{1}\right) \varphi^{s_{1}}\left(t_{i_{1}, j_{1}}\right) \ldots \int_{0}^{s_{m-1}} \omega_{i_{m}, j_{m}}\left(s_{m}\right) \varphi^{s_{m}}\left(t_{i_{m}, j_{m}}\right)$, where $\omega_{1,3}(z)=d \log \left(z_{1}-z_{3}\right)$ and $\omega_{2,3}(z)=d \log \left(z_{2}-z_{3}\right)$ and φ is the following automorphism of Lie algebra, $\mathcal{L} e_{\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{n}}\right)}\left\langle\mathcal{T}_{3}\right\rangle$,

$$
\varphi^{z}=e^{\mathrm{ad}_{-\left(t_{1,2} / 2 i \pi\right)} \log \left(z_{1}-z_{2}\right)}=\sum_{k \geq 0} \frac{\log ^{k}\left(z_{1}-z_{2}\right)}{(-2 \mathrm{i} \pi)^{k} k!} \mathrm{ad}_{t_{1,2}}^{k} .
$$

Since $t_{1,2} \prec t_{1,3} \prec t_{2,3}$ and, for $k \geq 0$ and $i=1$ or $2, t_{1,2}^{k} t_{i, 3} \in \mathcal{L} y n \mathcal{T}_{3}$ then

$$
P_{t_{1,2}^{k}} t_{i, 3}=\operatorname{ad}_{t_{1,2}}^{k} t_{i, 3} \quad \text { and } \quad S_{t_{1,2}^{k} t_{i, 3}}=t_{1,2}^{k} t_{i, 3}
$$

and then

$$
\varphi^{z}\left(t_{i, 3}\right)=\sum_{k \geq 0} \frac{\log ^{k}\left(z_{1}-z_{2}\right)}{(-2 \mathrm{i} \pi)^{k} k!} P_{t_{1,2}^{k} t_{i, 3}}, \quad \breve{\varphi}^{z}\left(t_{i, 3}\right)=\sum_{k \geq 0} \frac{\log ^{k}\left(z_{1}-z_{2}\right)}{(-2 \mathrm{i} \pi)^{k} k!} S_{t_{1,2}^{k}, t_{i, 3}},
$$

where $\check{\varphi}$ (adjoint to φ) is the following automorphism of $\left(\mathcal{A}\left\langle\mathcal{T}_{3}\right\rangle, ш, 1_{\mathcal{T}_{3}{ }^{*}}\right.$)

$$
\breve{\varphi}^{z}=e^{-\left(t_{1,2} / 2 i \pi\right) \log \left(z_{1}-z_{2}\right)}=\sum_{k \geq 0} \frac{\log ^{k}\left(z_{1}-z_{2}\right)}{(-2 i \pi)^{k} k!} t_{1,2}^{k} .
$$

$K Z_{3}$: Simplest non-trivial case $(3 / 3)$

Belonging to $\mathcal{H}\left(\widetilde{\mathbb{C}_{*}^{3}}\right)\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle, G$ satisfies $\mathbf{d} G(z)=\bar{\Omega}_{2}(z) G(z)$, where

$$
\bar{\Omega}_{2}(z)=\frac{1}{2 \mathrm{i} \pi}\left(\varphi^{z}\left(t_{1,3}\right) \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+\varphi^{z}\left(t_{2,3}\right) \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right) .
$$

In the affine plan $\left(P_{1,2}\right): z_{1}-z_{2}=1$, one has

$$
\log \left(z_{1}-z_{2}\right)=0 \quad \text { and then } \quad \varphi \equiv \operatorname{Id} .
$$

Setting $x_{0}=t_{1,3} / 2 \mathrm{i} \pi, x_{1}=-t_{2,3} / 2 \mathrm{i} \pi$ and $z_{1}=1, z_{2}=0, z_{3}=s$, one has

$$
\bar{\Omega}_{2}(z)=\frac{1}{2 \mathrm{i} \pi}\left(t_{1,3} \frac{d\left(z_{1}-z_{3}\right)}{z_{1}-z_{3}}+t_{2,3} \frac{d\left(z_{2}-z_{3}\right)}{z_{2}-z_{3}}\right)=x_{1} \frac{d s}{1-s}+x_{0} \frac{d s}{s} .
$$

$K Z_{3}$ admits then the noncommutative generating series of polylogarithms, L , as the actual solution satisfying the Drinfel'd asymptotic conditions.
Via L and the homographic substitution $g: z_{3} \longmapsto\left(z_{3}-z_{2}\right) /\left(z_{1}-z_{2}\right)$, mapping $\left\{z_{2}, z_{1}\right\}$ to $\{0,1\}, \mathrm{L}\left(\left(z_{3}-z_{2}\right) /\left(z_{1}-z_{2}\right)\right)$ is a particular solution of $K Z_{3}$, in $\left(P_{1,2}\right)$. So is $\mathrm{L}\left(\left(z_{3}-z_{2}\right) /\left(z_{1}-z_{2}\right)\right)\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{1,3}+t_{2}, 3\right) / 2 i \pi}$.
To end with $K Z_{3}$, by braid relations, $\left[t_{1,2}+t_{2,3}+t_{1,3}, t\right]=0$, for $t \in \mathcal{T}_{3}$, meaning that t commutes with $\left.\left(z_{1}-z_{2}\right)^{\left(t_{1}, 2+t_{2}, 3\right.}+t_{1,3}\right) / 2 i \pi ~ a n d ~ t h e n ~ \mathcal{A}\left\langle\left\langle\mathcal{T}_{3}\right\rangle\right\rangle$ commutes with $\left(z_{1}-z_{2}\right)^{\left(t_{1,2}+t_{1,3}+t_{2,3}\right) / 2 i \pi}$.
Thus, $K Z_{3}$ also admits $\left(z_{1}-z_{2}\right)^{\left(t_{1}, 2+t_{1,3}+t_{2,3}\right) / 2 i \pi} \mathrm{~L}\left(\left(z_{3}-z_{2}\right) /\left(z_{1}-z_{2}\right)\right)$ as a particular solution in $\left(P_{1,2}\right)$.

Other example of non-trivial case : $K Z_{4}\left(t_{i, j} \leftarrow t_{i, j} / 2 \mathrm{i} \pi\right)$

For $n=4$, one has $\mathcal{T}_{4}=\left\{t_{1,2}, t_{1,3}, t_{1,4}, t_{2,3}, t_{2,4}, t_{3,4}\right\}$ and then $\mathcal{T}_{3}=\left\{t_{1,2}, t_{1,3}, t_{2,3}\right\}$ and $T_{4}=\left\{t_{1,4}, t_{2,4}, t_{3,4}\right\}$. Then

$$
\varphi_{T_{4}}^{(\varsigma, z)}=e^{\operatorname{ad}_{-\sum_{t \in T_{4}} \alpha_{\varsigma}^{z}(t) t}}
$$

and for any $t_{i, j} \in \mathcal{T}_{3}$,

$$
\varphi_{t_{0,4}}^{(\varsigma, z)}\left(t_{i, j}\right)=\varphi_{T_{4}}^{(\varsigma, z)}\left(t_{i, j}\right) \quad \bmod \mathcal{J}_{\mathcal{R}_{n}} .
$$

If $z_{4} \rightarrow z_{3}$ then

$$
F(z)=V_{0}(z) G\left(z_{1}, z_{2}, z_{3}\right) \text {, where } \quad V_{0}(z)=e^{\sum_{1 \leq i \leq 4} t_{i, 4} \log \left(z_{i}-z_{4}\right)}
$$

and $G\left(z_{1}, z_{2}, z_{3}\right)$ satisfies $\mathbf{d} S=M_{3}^{t_{0}, 4} S$ with

$$
\begin{aligned}
M_{3}^{t_{0,4}}(z) & =\varphi_{\mathbf{t}_{4}, z}^{\left(z^{0}, z\right)}\left(t_{1,2}\right) d \log \left(z_{1}-z_{2}\right) \\
& +\varphi_{t_{\mathbf{0}, 4}}^{\left(z^{0}, z\right)}\left(t_{1,3}\right) d \log \left(z_{1}-z_{3}\right) \\
& +\varphi_{t_{\mathbf{0}, 4}}^{\left(z_{0}^{0}, z\right)}\left(t_{2,3}\right) d \log \left(z_{2}-z_{3}\right) .
\end{aligned}
$$

Considering $\quad\left(P_{1,4}\right): z_{1}-z_{4}=1, \quad\left(P_{2,4}\right): z_{2}-z_{4}=1, \quad\left(P_{3,4}\right): z_{3}-z_{4}=1$, in the intersection $\left(P_{1,3}\right) \cap\left(P_{2,3}\right)$, one has $\log \left(z_{1}-z_{3}\right)=\log \left(z_{2}-z_{3}\right)=0$ and $\varphi_{\mathbf{t}_{\bullet}, 4} \equiv \mathrm{Id}$ and then $M_{3}^{\boldsymbol{t}_{\mathbf{0}}, 4}$ exactly coincides with M_{3}.

Bibliography

J．Berstel \＆C．Reutenauer．－Rational series and their languages，Springer－Verlag， 1988.
P．Cartier．－Jacobiennes généralisées，monodromie unipotente et intégrales itérées，Séminaire Bourbaki， 687 （1987），31－52．

P．Cartier－Fonctions polylogarithmes，nombres polyzetas et groupes pro－unipotents．－Séminaire BOURBAKI， $53^{\text {ème }, ~} n^{\circ} 885,2000-2001$ ．

K．－T．Chen．－Iterated integrals and exponential homomorphisms，Proc．Lond．Math．Soc． 4 （1954）502－512．
M．Deneufchâtel，G．H．E．Duchamp，Hoang Ngoc Minh，A．I．Solomon．－Independence of hyperlogarithms over function fields via algebraic combinatorics，dans Lec．N．in Comp．Sc．（2011），V．6742／2011，127－139．

V．Drinfel＇d－On quasitriangular quasi－Hopf algebras and on a group that is closely connected with Gal（ $\overline{\mathbb{Q}} / \mathbb{Q})$ ，Leningrad Math．J．，4，829－860， 1991.

G．Duchamp，V．Hoang Ngoc Minh，V．Nguyen Dinh．－Towards a noncommutative Picard－Vessiot theory， arXiv ：2008．10872

V．Hoang Ngoc Minh，On the solutions of universal differential equation with three singularities，in Confluentes Mathematici，Tome 11 （2019）no．2，p．25－64．

M．Lothaire．－Combinatorics on Words，Encyclopedia of Math．and its App．，Addison－Wesley， 1983.
G．Racinet．－Séries génératrices non－commutatives de polyzêtas et associateurs de Drinfel＇d，thèse（2000）．
Ree R．，－Lie elements and an algebra associated with shuffles Ann．Math 68 210－220， 1958.
Reutenauer C．－Free Lie Algebras，London Math．Soc．Monographs（1993）．
G．Viennot．－Algèbres de Lie libres et monoïdes libres，Lec．Notes in Math．，Springer－Verlag，691， 1978.

