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2Université Lille, 1 Place Déliot, 59024 Lille, France.
3LIPN-UMR 7030, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
4University of Hai Phong, 171, Phan Dang Luu, Kien An, Hai Phong, Viet Nam.
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INTRODUCTION 1

1. Abstract : In this work, basing on the algebraic combinatorics on non
commutative formal series with holomorphic coefficients and, on the other
hand, a Picard-Vessiot theory of noncommutative differential equations, we
give a recursive construction of solutions of Knizhnik-Zamolodchikov equations
satisfying asymptotic conditions.



Knizhnik-Zamolodchikov differential equations
Let (H(V), 1H(V)) be the ring of holomorphic functions over the manifold

V = C̃n
∗, the universal covering of the configuration space of n points, i.e.

Cn
∗ := {z = (z1, . . . , zn) ∈ Cn|zi 6= zj for i 6= j}.

Let H(V)〈〈Tn〉〉 be the ring of noncommutative series over the alphabet
Tn := {ti,j}1≤i<j≤n and with coefficients in H(V).
The following noncommutative differential equation is so called KZn

dF (z) = Ωn(z)F (z), where Ωn(z) :=
∑

1≤i<j≤n

ti,j
2iπ

d log(zi − zj)

for which solutions can be computed by convergent iterations, for the
discrete topology 2 of pointwise convergence over H(V)〈〈Tn〉〉, for instance

F0(z) = 1H(V) and Fl (z) =

∫ z

z0

Ωn(s)Fl−1(s).

Remark (dévissage)

Ωn(z) =
∑

1≤i<j≤n−1

ti,j
2iπ

d(zj − zi )

zj − zi
︸ ︷︷ ︸

Ωn−1(z)←→Tn−1

+

n−2∑

j=1

ti,n
2iπ

d(zn − zj)

zn − zj
+

tn−1,n
2iπ

d(zn − zn−1)

zn − zn−1
︸ ︷︷ ︸

for zn → zn−1, c.f. hyperlogarithms

.

2. ∀S ,T ∈ H(V)〈〈Tn〉〉, d(S ,T ) = 2̟(S−T ), where ̟ denotes the valuation, i.e.
If S 6= 0 then ̟(S) = inf{|w |,w ∈ supp(S)} else +∞.



Quadratic relations among {ti ,j}1≤i<j≤n

According to Drinfel’d, KZn is completely integrable if Ωn(z) is flat, i.e.

dΩn(z)− Ωn(z) ∧ Ωn(z) = 0.

It turns out that this condition induces the following quadratic relations
in {ti,j}1≤i<j≤n :

Rn =





[ti,k + tj,k , ti,j ] = 0 for distinct i , j , k and 1 ≤ i < j < k ≤ n,
[ti,j + ti,k , tj,k ] = 0 for distinct i , j , k and 1 ≤ i < j < k ≤ n,

[ti,j , tk,l ] = 0 for distinct i , j , k , l and
{
1 ≤ i < j ≤ n,
1 ≤ k < l ≤ n,

generating the Lie ideal JRn
.

Solutions of KZn belong now to H(V)〈〈Tn〉〉/JRn
.



Examples of KZn

Example (KZ2 : trivial case)
One has T2 = {t1,2} and dF (z) = Ω2(z)F (z), where

Ω2(z) = (t1,2/2iπ)d log(z1 − z2),

is F (z1, z2) = e(t1,2/2iπ) log(z1−z2) = (z1 − z2)
t1,2/2iπ ∈ H(C̃2

∗)〈〈T2〉〉.

Example (KZ3 : simplest non-trivial case)
One has T3 = {t1,2, t1,3, t2,3} and dF (z) = Ω3(z)F (z), where

Ω3(z) =
1

2iπ

(
t1,2

d(z1 − z2)

z1 − z2
+ t1,3

d(z1 − z3)

z1 − z3
+ t2,3

d(z2 − z3)

z2 − z3

)
.

Drinfel’d proposed a following solution on ]0, 1[

F (z) = (z1 − z2)
(t1,2+t1,3+t2,3)/2iπG

(
z3 − z2
z1 − z2

)
,

where G satisfies the following noncommuative differential equation

(DE1) dG (s) =

(
A
ds

s
− B

ds

1− s

)
G (s),

{
A := t1,2/2iπ,
B := t2,3/2iπ.

He stated that there is a unique solution G0 (resp. G1) satisfying
G0(s)∼0e

A log(s) = sA (resp. G1(s)∼1e
−B log(1−s) = (1− s)−B),

and a unique series ΦKZ , so-called Drinfel’d series 3, s.t. G0 = G1ΦKZ .

3. Cartier, Gonzalez-Lorca, Racinet defined associators as group like series
satisfying the relations duality, pentagonal and hexagonal : ΦKZ is an associator.



log ΦKZ determined by Drinfel’d

1. Assuming that [A,B] = 0, he proposed an approximation solution
for (DE1) over ]0, 1[, zA(1− z)B (a group like series) satisfying
standard asymptotic conditions. Hence, the logarithm of such
approximation solution of KZ3 belongs to

Lie
H(C̃3

∗)
〈〈t1,2, t1,3, t2,3〉〉/[LieH(C̃3

∗)
〈〈t1,2, t2,3〉〉,LieH(C̃3

∗)
〈〈t1,2, t2,3〉〉].

2. He also proposed, over ]0, 1[,
G0(z) = zA(1− z)BV0(z) and G1(z) = zA(1− z)BV1(z).

V0 and V1 have continuous extensions to ]0, 1[ and are group like
solutions of the following noncommutative differential equation

(DE2) dS(z) = Q(z)S(z), Q(z) := ead− log(1−z)B ead− log(z)A
B

z − 1
∈ p,

with the initial conditions V0(0) = 1,V1(1) = 1 and p is the
topological free Lie algebra generated by {adkA ad

l
B [A,B]}k,l≥0.

3. Since G9 = G1ΦKZ then the group like series ΦKZ equals to
V (0)V (1)−1, where V is a solution of (DE2) and then the
coefficients {ck,l}k,l≥0 of log ΦKZ are obtained, in p/[p, p], by

log ΦKZ =
∑

k,l≥0

ck,lB
k+1Al+1 =

∫ 1

0

Q(z)dz mod [p, p].



Polylogarithms
Denoting (X ∗, 1X∗) the monoid generated by X = {x0, x1}, recall that

L(s) :=
∑

w∈X∗

Liw (s)w ∈ H(B̃)〈〈X 〉〉, where B := C \ {0, 1}

where Li• is the character of (H(B̃)〈X 〉, ⊔⊔ , 1X∗) defined by
Li1X∗ = 1H(B̃), Lix0(s) = log(s), Lix1(s) = log(1− s)

and, for any xiw ∈ LynX \ X ,

Lixiw (s) =

∫ s

0

ωi (σ)Liw (σ), where

{
ω0(s) = ds/s,
ω1(s) = ds/(1− s).

{Lil}l∈LynX (resp. {Liw}w∈X∗) are C-algebraically (resp. linearly) free.

By the Friedrichs crirerion, L is group like. Thus 4,

L(s) =

ց∏

l∈LynX

eLiSl (s)Pl and then

{
lim
z→0

L(s)e−x0 log z = 1,

lim
z→1

ex1 log(1−z)L(s) = ΦKZ ,

and ΦKZ admits {Lil (1)}l∈LynX\X as convergent locale coordinates

ΦKZ :=

ց∏

l∈LynX\X

eLiSl (1)Pl ∈ R〈〈X 〉〉, for

{
x0 = t1,2/2iπ,
x1 = −t2,3/2iπ.

4. {Pl}l∈LynTn is the basis of Lie
H(B̃)〈X 〉 over which are constructed the

PBW basis {Pw}w∈T ∗
n

of U(Lie
H(B̃)〈X 〉) and its dual, {Sw}w∈X∗ , containing

the pure transcendence basis {Sl}l∈LynX



BACKGROUND ON
PV THEORY OF NONCOMMUTATIVE

DIFFERENTIAL EQUATIONS



Differential ring of holomorphic functions

◮ V : simply connected manifold of Cn (n > 0).

◮ A = (H(V), ∂1, . . . , ∂n) : the differential ring of holomorphic
functions on V and equipped 1H(V) as the neutral element.

For any f ∈ H(V), one has df = (∂1f )dz1 + . . .+ (∂nf )dzn.

◮ Let C be a sub differential ring of A (i.e. ∂iC ⊂ C, for 1 ≤ i ≤ n)
and let ς  z denotes a path (with fixed endpoints, (ς, z)) over V,
i.e. the parametrized curve γ : [0, 1] −→ V such that

γ(0) = ς = (ς1, . . . , ςn) and γ(1) = z = (z1, . . . , zn).

◮ For any integers i , j such that 1 ≤ i < j ≤ n, let ωi,j denote the
1-differential forms 5, in Ω1(V), ωi,j = dξi,j , with ξi,j ∈ C.

Example (ξi ,j(z) = log(zi − zj), 1 ≤ i < j ≤ n)

Let C0 := C[{(∂1ξi,j)
±1, . . . , (∂nξi,j)

±1}1≤i<j≤n].

Then C0 is a sub differential ring of A.

5. Over V, the holomorphic function ξi,j is called a primitive for ωi,j which is
said to be a exact form and then is a closed form (i.e. dωi,j = 0).



Notations

◮ (Tn
∗, 1Tn∗) is the free monoid generated by Tn.

◮ A〈〈Tn〉〉 (resp. A〈Tn〉) is the set of series (resp. polynomials) over Tn
with coefficients in A. LynTn (resp. LynT ) is the set of Lyndon
words over Tn (resp. T ).

◮ Tk := {tj,k}1≤j≤k−1, T := {T2, . . . ,Tn} s.t. Tk = Tk ⊔ Tk−1, k ≤ n.
|Tn |= n(n − 1)/2 and |Tn |= n − 1. If n ≥ 4 then |Tn−1 |≥|Tn |.

Example

◮ T5 = {t1,2, t1,3, t1,4, t1,5, t2,3, t2,4, t2,5, t3,4, t3,5, t4,4}, one has
T5 = {t1,5, t2,5, t3,5, t4,5} and T4.

◮ T4 = {t1,2, t1,3, t1,4, t2,3, t2,4, t3,4}, one has
T4 = {t1,4, t2,4, t3,4} and T3.

◮ T3 = {t1,2, t1,3, t2,3}, one has T3 = {t1,3, t2,3} and T2 = {t1,2}.

◮ In (A〈〈Tn〉〉, ∂1, . . . , ∂n), for any S ∈ A〈〈Tn〉〉, one defines

∂iS =
∑

w∈T ∗
n

(∂i 〈S |w〉)w and dS =
n∑

i=1

(∂iS)dzi .

Const(A) = C.1H(Ω) and Const(A〈〈Tn〉〉) = C〈〈Tn〉〉.



Lazard elimination : LieA〈Tn〉 = In ⊕ LieA〈Tn〉
Let ρ the right normed bracketing which is the unique linear endomorphism
of A〈〈Tn〉〉 defined, by ρ(1T ∗

n
) = 0 and, for w = t1 . . . tk ∈ T

∗
n , by

ρ(w) = [t1, [. . . , [tk−1, tk ] . . .] = adt1 . . . adtk−1
tk .

In : Lie subalg. generated by {adk−Tn
ti,j}

k≥0
ti,j∈Tn−1

= {(−1)|v|ρ(vt)/ |v |!} v∈T∗
n

t∈Tn−1

.

By PBW, U(In) is freely generated by

{adk1−Tn
t1 . . . ad

kp
−Tn

tp}
k1,...,kp≥0,p≥0
t1,...,tp∈Tn−1

= {ρ((−Tn)
∗t1) · · · ρ((−Tn)

∗tk)}
k≥0
t1,...,tk∈Tn−1

= {(−1)|v1...vk| |v1 |!
−1 . . . |vk |!

−1ρ(v1t1) · · · ρ(vk tk)}
k≥0
v1,...,vk∈T∗

n ,t1,...,tk∈Tn−1

which are associated to the following family of polynomials of U(In)
∨

{t1(T̄
k1
n ⊔⊔(· · · ⊔⊔(tpT̄

kp
n ) . . .))}

k1,...,kp≥0,p≥0
t1,...,tp∈Tn−1

,

= {t1(v̄1 ⊔⊔(· · · ⊔⊔(tp v̄p) . . .))}
k1,...,kp≥0,p≥0

v1∈T
k1
n ,...,vp∈T

kp
n ,t1,...,tk∈Tn−1

= {(t1v̄1)◦ · · · ◦(tp v̄p)}
k1,...,kp≥0,p≥0

v1∈T
k1
n ,...,vp∈T

kp
n ,t1,...,tk∈Tn−1

,

= {(t1T̄
k1
n )◦ · · · ◦(tpT̄

kp
n )}

k1,...,kp≥0,p≥0
t1,...,tp∈Tn−1

,

where 6 T̄ k
n = {v̄ ∈ T k

n , |v |= k} and the composite operator ◦ is defined,
for any H and R ∈ A〈〈Tn〉〉 and t ∈ Tn−1, by

If R 6= 1T ∗
n
then (tH)◦R = t(H ⊔⊔ R) else (tH)◦R = tH.

6. v̄ is the polynomial t1 ⊔⊔ . . . ⊔⊔ tk associated to v = t1 . . . tk .



Lexicographic ordering

LieA〈Tn〉 is the set of Lie polynomials over Tn with coefficients in A and
is equipped with the basis {Pl}l∈LynTn over which are constructed the
PBW basis {Pw}w∈T ∗

n
of U(LieA〈Tn〉) and its dual, {Sw}w∈T ∗

n
,

containing the pure transcendence basis {Sl}l∈LynTn of 7 (A〈Tn〉, ⊔⊔ , 1T ∗
n
).

Example (in KZ3, T3 = {t1,2, t1,3, t2,3} and t1,2 ≺ t1,3 ≺ t2,3)
∀k ≥ 0, i = 1 or 2, tk1,2ti,3 ∈ LynT3, Ptk1,2ti,3

= adkt1,2 ti,3, Stk1,2ti,3 = tk1,2ti,3.

In the sequel, let LynTn (resp. Tk) be the set of Lyndon words over Tn
(resp. Tk) equipped the following total order over Tk (n ≥ k ≥ 2) :

t1,k ≻ . . . ≻ tk−1,k , T2 ≻ . . . ≻ Tn, LynT2 ≻ . . . ≻ LynTn.

By the standard factorization 8 of Lyndon words, one has
LynTn−1 ≻ LynTn.LynTn−1 ≻ LynTn,

More generally, for any (t1, t2) ∈ Tk1 ×Tk2 , 2 ≤ k1 < k2 ≤ n, one also has
t2t1 ∈ LynTk2 ⊂ LynTn and t2 ≺ t2t1 ≺ t1.

7. in which one defines ∆⊔⊔ x = x ⊗ 1Tn
∗ + 1Tn

∗ ⊗ x , or equivalently,
u ⊔⊔ 1Tn

∗ = 1Tn
∗ ⊔⊔ u = u and xu ⊔⊔ yv = x(u ⊔⊔ yv) + y(xu ⊔⊔ v).

8. i.e. st(l) = (l1, l2), where l2 is the longest nontrivial proper right factor of a
Lyndon word l , or equivalently, its smallest such for the lexicographic ordering.



Diagonal series (for KZn, n ≥ 4)

1. If l ∈ LynTk−1 and t ∈ Tk , 2 ≤ k ≤ n then tl ∈ LynTn and
t ≺ tl ≺ l .

2. If l1 ∈ LynTk1 and l2 ∈ LynTk2 (for 2 ≤ k1 < k2 ≤ n) then
l2l1 ∈ LynTk2 ⊂ LynTn and l2 ≺ l2l1 ≺ l1.

3. If l1 ∈ LynTk and l2 ∈ LynTk−1 (for 2 ≤ k1 < k2 ≤ n) then
l1l2 ∈ LynTn and l1 ≺ l1l2 ≺ l2.

In A〈Tn〉⊗̂A〈Tn〉, let ∇S = S − 1T ∗
n
⊗ 1T ∗

n
. The diagonal series is defined by

DTn :=M
∗, with M :=

∑

t∈Tn

t ⊗ t,

and is the unique solution of ∇S =MS and ∇S = SM. Then

DTn = DTn−1

( ց∏

l=l1 l2
l2∈LynTn−1,l1∈LynTn

eSl⊗Pl

)
DTn

, for n > 2.

where DTn−1
(resp. DTn

) denote the diagonal series, over Tn−1 (resp. Tn), and

DTn−1
=

ց∏

l∈LynTn−1

eSl⊗Pl , and DTn
=

ց∏

l∈LynTn

eSl⊗Pl .



More about notations
Let us back to the relations

Rn =





[ti,k + tj,k , ti,j ] = 0 for distinct i , j , k and 1 ≤ i < j < k ≤ n,
[ti,j + ti,k , tj,k ] = 0 for distinct i , j , k and 1 ≤ i < j < k ≤ n,

[ti,j , tk,l ] = 0 for distinct i , j , k , l and
{
1 ≤ i < j ≤ n,
1 ≤ k < l ≤ n,

generating the Lie ideal JRn
.

◮ The monoid (resp. the set of Lyndon words) generated by Tn
satisfying the relations Rn is denoted by 〈T ∗n ;JRn

〉 (resp.
〈LynTn;JRn

〉).

◮ The set of noncommutative polynomials (resp. series) with
coefficients in A, over Tn, satisfying Rn, is denoted by A〈Tn〉/JRn

(resp. A〈〈Tn〉〉/JRn
).

◮ The set of Lie polynomials (resp. Lie series) with coefficients in A,
over Tn, satisfying Rn, is denoted by LieA〈Tn〉/JRn

(resp.
LieA〈〈Tn〉〉/JRn

).

◮ H⊔⊔ (Tn)/JRn
denotes (A〈Tn〉/JRn

, conc,∆⊔⊔ , 1T ∗
n
).



Iterated integrals and Chen series
The iterated integral associated, of the 1-differential forms {ωi,j}1≤i<j≤n

and along the path ς  z , is given by αz
ς (1T ∗

n
) = 1H(V) and, for any

w = ti1,j1ti2,j2 . . . tik ,jk ∈ T
∗
n ,

αz
ς (w) :=

∫ z

ς

ωi1,j1(s1)

∫ s1

ς

ωi2,j2(s2) . . .

∫ sk−1

ς

ωik ,jk (sk) ∈ H(V),

where (ς, s1 . . . , sk−1, z) is a subdivision of ς  z .

The Chen series, of the differential forms {ωi,j}1≤i<j≤n and along a path
ς  z , is the following noncommutative generating series

Cς z :=
∑

w∈T ∗
n

αz
ς (w)w ∈ H(V)〈〈T ∗n 〉〉.

Proposition

1. ∀u, v in T ∗n , α
z
ς (u ⊔⊔ v) = αz

ς (u)α
z
ς (v) (Chen’s lemma).

2. ∀t ∈ Tn, k ≥ 0, αz
ς (t

k) = (αz
ς (t))

k/k! and then αz
ς (t
∗) = eα

z
ς (t).

3. For any compact K ⊂ V, there is c > 0 and a morphism of monoids
µ : T ∗n −→ R≥0 s.t. ‖〈Cς z |w〉‖K ≤ cµ(w) |w |!−1, for w ∈ T ∗n ,
and then Cς z is said to be exponentially bounded from above.



Basic triangular theorem over a differential ring

Let C be a sub differential ring of A.
For any S ∈ C〈〈Tn〉〉, let F(S) := spanC{〈S |w〉}w∈T ∗

n

Lemma
The following assertions are equivalent 9

1. The following map is injective

(C〈Tn〉, ⊔⊔ , 1T ∗
n
) −→ (H(V), ∗, 1H(V)), w 7−→ αz

ς (w).

2. {αz
ς (w)}w∈T ∗

n
is linearly free over C.

3. {αz
ς (l)}l∈LynTn is algebraically free over C.

4. {αz
ς (t)}t∈Tn is algebraically free over C.

5. {αz
ς (t)}t∈Tn∪{1T ∗

n
} is linearly free over C.

6. For any C ∈ LieC〈〈Tn〉〉, there is an automorphism ψ of F(Cς z)
such that ψ(Cς z) = Cς ze

C .

9. This is the abstract form, over ring, of (Deneufchâtel, Duchamp, HNM &
Solomon, 2011).



Noncommutative differential equations
(NCDE ) dS = MnS , where 10 Mn =

∑

1≤i<j≤n

ωi,j ti,j .

Proposition

1. Cς z , satisfying (NCDE ), is group-like and logCς z is primitive :

Cς z =

ց∏

l∈LynTn

eα
z
ς (Sl )Pl and logCς z =

∑

w∈T ∗
n

αz
ς (w)π1(w),

where π1(w) =
∑

k≥1

(−1)k−1

k

∑

u1,...,uk∈TnT ∗
n

〈w |u1 ⊔⊔ . . . ⊔⊔ uk〉u1 . . . uk .

2. Let C ∈ C〈〈Tn〉〉, 〈C |1T ∗
n
〉 = 1. Then Cς zC satisfies (NCDE ).

Moreover, Cς zC is group-like if and only if C is group-like.

From this, it follows that the differential Galois group of (NCDE ) +
group-like solutions is 11 the group {eC}C∈LieC.1H(V)

〈〈X〉〉. Which leads to

the definition of the PV extension related to (NCDE ) as Ĉ0.X{Cz0 z}.

10. Mn ∈ Ω1(V)〈Tn〉 and ∆⊔⊔Mn = 1T ∗
n
⊗Mn +Mn ⊗ 1T ∗

n
.

11. In fact, the Hausdorff group (group of characters) of (A〈Tn〉, ⊔⊔ , 1T ∗
n
).



ALGORITHMIC AND COMPUTATIONAL
ASPECTS OF SOLUTIONS OF KZn BY

DEVISSAGE



Solutions of (NCDE ) by {Vm(ς, z)}m≥0 (1/2)
Vm(ς, z) = V0(ς, z)

∑

ti,j∈Tn−1

∫ z

ς

e
∑

t∈Tn
ad−αs

ς (t)tωi,j(s)ti,jVm−1(ς, s),

V0(ς, z) =

ց∏

l∈LynTn

eα
z
ς (Sl )Pl mod [LieA〈〈Tn〉〉,LieA〈〈Tn〉〉]

= e
∑

t∈Tn
αz

ς (t)t .

1. (αz
ς ⊗ Id)DTn

satisfies the differential equation dF = Nn−1F , where.

Nn−1 :=

n−1∑

k=1

ωk,ntk,n ∈ LieΩ1(V)〈Tn〉.

2. V0 satisfies the partial differential equation ∂nf = Nn−1f .

3. For any m ≥ 1, on obtains explicitly

Vm(ς, z) =
∑

w=ti1,j1 ...tim,jm∈T
∗
n−1

∫ z

ς

ωi1,j1(s1) · · ·

∫ sm−1

ς

ωim,jm(sm)κw (z , s1, · · · , sm),

where (using the identity e−abea = ead−ab)
V0(ς, z)

−1κw (z , s1, · · · , sm)

=

m∏

p=1

e
ad

−
∑

t∈Tn
α
sp
ς (t)t tip,jp =

∑

q1,··· ,qk≥0

m∏

p=1

1

qp!
ad

qp

−
∑

t∈Tn
α

sp
ς (t)t

tip,jp .



Solutions of (NCDE ) by {Vm(ς, z)}m≥0 (2/2)

Proposition

1. (NCDE ) admits V0(ς, z)G (ς, z) as solution, with

G (ς, z) = (αz
ς ⊗ Id)

∑

k≥0

∑

vi1,j1
,...,vik ,jk

∈T∗
n

ti1,j1
,...,tik ,jk

∈Tn−1

(−1)|vi1,j1 ...vik ,jk|

|vi1,j1 |! . . . |vik ,jk |!

(ti1,j1 v̄i1,j1) ◦ · · · ◦ (tik ,jk v̄ik ,jk )⊗ ρ(vi1,j1ti1,j1) . . . ρ(vik ,jk tik ,jk )

2. There is a diffeomorphism g of V s.t. G (ς, z) is group like series and
is the Chen series, along the path g(ς  z) and of the differential
forms {ωi,j}1≤i<j≤n−1, and then satisfies

dS =M∗n−1S , where M∗n−1 =
∑

1≤i<j≤n−1

g∗ωi,j ti,j ∈ LieΩ1(V)〈Tn−1〉.

3. If the restricted ⊔⊔-morphism αz
ς , on C〈Tn〉, is injective then there is

a primitive series C ∈ LieC〈〈Tn−1〉〉 such that

G (ς, z) =

( ∑

w∈T∗
n−1

αz
ς (w)w

)
eC .



Solutions of KZn (n ≥ 4)

For any 1 ≤ i < j ≤ n − 1, let (Pi,j) : zi − zj = 1.

Theorem (ωi ,j(z) = d log(zi − zj), ti ,j ← ti ,j/2iπ)

For zn → zn−1, solution of dF = MnF can be put in the form
f (z)G (z1, . . . , zn−1) such that

1. f (z) ∼ (zn−1 − zn)
tn−1,n satisfying ∂nf = Nn−1f , where

Nn−1(z) =

n−1∑

k=1

tk,n
dzn

zn − zk
=

n−1∑

k=1

tk,n
ds

s − sk
, with

{
s = zn,
sk = zn − zk .

2. G (z1, . . . , zn−1) is solution of dS = M
t•,n
n−1S, where

M
t•,n
n−1(z) ∼

∑

1≤i<j≤n−1

ϕ
(ς,z)
t•,n (ti,j)d log(zi − zj),

ϕ
(ς,z)
t•,n (ti,j) = e

ad−
∑

1≤k<n log(zk−zn−1)tk,n ti,j mod JRn
.

Moreover, M
t•,n
n−1 exactly coincides with Mn−1 in the intersection of

affine planes
⋂

1≤i<n−1 (Pi,n−1).

Conversely, if f satisfies ∂nf = Nn−1f and G (z1, . . . , zn−1) satisfies
dS = M

t•,n
n−1S then f (z)G (z1, . . . , zn−1) satisfies dF = MnF .



Solutions of KZn (n ≥ 4) with asymptotic conditions
Let F• : (C〈Tn〉, ⊔⊔ , 1T ∗

n
)→ (H(V), ∗, 1H(V)) be the character defined by

F1T ∗
n
= 1H(V), ∀ti,j ∈ Tn, Fti,j (z) = log(zi − zj), ∀ti,jw ∈ LynTn \ Tn,

Fti,jw (z) =

∫ z

0

ωi,j(s)Fw (s), where ωi,j(z) = d log(zi − zj).

Corollary (ωi ,j(z) = d log(zi − zj), ti ,j ← ti ,j/2iπ)

1. {Ft}t∈Tn∪{1T ∗
n
} are C0-linearly free.

2. The graph of F•, F, is unique solution of dF = MnF and

F(z) =

ց∏

l∈LynTn

eFSl
(z)Pl ∼ zi zi−1

1<i≤n
(zi−1 − zi )

ti−1,iGi (z1, . . . , zi−1, zi+1, . . . , zn

where Gi (z1, . . . , zi−1, zi+1, . . . , zn) satisfies dS = M
t•,n
n−1S and, for

y1 = z1, . . . , yi−1 = zi−1, yi = zi+1, . . . , yn−1 = zn, one has

M
t•,n
n−1(y) =

∑

1≤i<j≤n−1

e
ad−

∑
1≤k≤n−1 log(yk−yn−1)tk,n ti,jd log(yi − yj) mod JRn

and M
t•,n
n−1 exactly coincides with Mn−1 in

⋂
1≤k<n−1 (Pi,n−1).

3. In LieA〈〈Tn〉〉/[LieA〈〈Tn〉〉,LieA〈〈Tn〉〉], one has

F(z) = e
∑n−1

i=1 log(zn−zi )ti,n
∑

k≥0,l1,...,lk≥0
t1,...,tk∈Tn−1

F
(t1T̄

l1
n )◦...◦(tk T̄

lk
n )
(z)

∏

1≤j≤k

ad
lj
−Tn

tj .



KZ3 : Simplest non-trivial case (1/3)
One has T3 = {t1,2, t1,3, t2,3} and

Ω3(z) =
1

2iπ

(
t1,2

d(z1 − z2)

z1 − z2
+ t1,3

d(z1 − z3)

z1 − z3
+ t2,3

d(z2 − z3)

z2 − z3

)
.

Solution of dF (z) = Ω3(z)F (z) can be computed as limit of the

sequence {Fl}l≥0, in H(C̃3
∗)〈〈T3〉〉, by convergent Picard’s iteration :

F0(z) = 1H(V) and Fl (z) =

∫ z

0

Ω3(s)Fl−1(s).

Let us compute, by another way, a solution of dF (z) = Ω3(z)F (z) as the

limit of the sequence {Vl}l≥0, in H(C̃3
∗)〈〈T3〉〉, iteratively obtained by

V0(z) = e(t1,2/2iπ) log(z1−z2),

Vl (z) =

∫ z

0

e(t1,2/2iπ)(log(z1−z2)−log(s1−s2))Ω̃2(s)Vl−1(s)

= V0(z)

∫ z

0

e−(t1,2/2iπ) log(s1−s2)Ω̃2(s)Vl−1(s),

with Ω̃2(z) =
1

2iπ

(
t1,3

d(z1 − z3)

z1 − z3
+ t2,3

d(z2 − z3)

z2 − z3

)
.



KZ3 : Simplest non-trivial case (2/3)

Explicit solution is F = V0G , where V0(z) = (z1 − z2)
t1,2/2iπ and

G (z) =
∑

ti1,j1
...tim,jm

∈{t1,3,t2,3}
∗

m≥0

∫ z

0

ωi1,j1(s1)ϕ
s1(ti1,j1) . . .

∫ sm−1

0

ωim,jm(sm)ϕ
sm(tim,jm),

where ω1,3(z) = d log(z1 − z3) and ω2,3(z) = d log(z2 − z3) and ϕ is the
following automorphism of Lie algebra, Lie

H(C̃n
∗)
〈T3〉,

ϕz = ead−(t1,2/2iπ) log(z1−z2) =
∑

k≥0

logk(z1 − z2)

(−2iπ)kk!
adkt1,2 .

Since t1,2 ≺ t1,3 ≺ t2,3 and, for k ≥ 0 and i = 1 or 2, tk1,2ti,3 ∈ LynT3 then

Ptk1,2ti,3
= adkt1,2 ti,3 and Stk1,2ti,3 = tk1,2ti,3

and then

ϕz(ti,3) =
∑

k≥0

logk(z1 − z2)

(−2iπ)kk!
Ptk1,2ti,3

, ϕ̌z(ti,3) =
∑

k≥0

logk(z1 − z2)

(−2iπ)kk!
Stk1,2ti,3 ,

where ϕ̌ (adjoint to ϕ) is the following automorphism of (A〈T3〉, ⊔⊔ , 1T ∗
3
)

ϕ̌z = e−(t1,2/2iπ) log(z1−z2) =
∑

k≥0

logk(z1 − z2)

(−2iπ)kk!
tk1,2.



KZ3 : Simplest non-trivial case (3/3)

Belonging to H(C̃3
∗)〈〈T3〉〉, G satisfies dG (z) = Ω̄2(z)G (z), where

Ω̄2(z) =
1

2iπ

(
ϕz(t1,3)

d(z1 − z3)

z1 − z3
+ ϕz(t2,3)

d(z2 − z3)

z2 − z3

)
.

In the affine plan (P1,2) : z1 − z2 = 1, one has
log(z1 − z2) = 0 and then ϕ ≡ Id.

Setting x0 = t1,3/2iπ, x1 = −t2,3/2iπ and z1 = 1, z2 = 0, z3 = s, one has

Ω̄2(z) =
1

2iπ

(
t1,3

d(z1 − z3)

z1 − z3
+ t2,3

d(z2 − z3)

z2 − z3

)
= x1

ds

1− s
+ x0

ds

s
.

KZ3 admits then the noncommutative generating series of polylogarithms,
L, as the actual solution satisfying the Drinfel’d asymptotic conditions.

Via L and the homographic substitution g : z3 7−→ (z3 − z2)/(z1 − z2),
mapping {z2, z1} to {0, 1}, L((z3 − z2)/(z1 − z2)) is a particular solution
of KZ3, in (P1,2). So is L((z3 − z2)/(z1 − z2))(z1 − z2)

(t1,2+t1,3+t2,3)/2iπ.

To end with KZ3, by braid relations, [t1,2 + t2,3 + t1,3, t] = 0, for t ∈ T3,
meaning that t commutes with (z1 − z2)

(t1,2+t2,3+t1,3)/2iπ and then A〈〈T3〉〉
commutes with (z1 − z2)

(t1,2+t1,3+t2,3)/2iπ.
Thus, KZ3 also admits (z1 − z2)

(t1,2+t1,3+t2,3)/2iπL((z3 − z2)/(z1 − z2)) as
a particular solution in (P1,2).



Other example of non-trivial case : KZ4 (ti ,j ← ti ,j/2iπ)
For n = 4, one has T4 = {t1,2, t1,3, t1,4, t2,3, t2,4, t3,4} and then
T3 = {t1,2, t1,3, t2,3} and T4 = {t1,4, t2,4, t3,4}. Then

ϕ
(ς,z)
T4

= e
ad−

∑
t∈T4

αz
ς (t)t ,

and for any ti,j ∈ T3,

ϕ
(ς,z)
t•,4 (ti,j) = ϕ

(ς,z)
T4

(ti,j) mod JRn
.

If z4 → z3 then

F (z) = V0(z)G (z1, z2, z3), where V0(z) = e
∑

1≤i≤4 ti,4 log(zi−z4)

and G (z1, z2, z3) satisfies dS = M
t•,4
3 S with

M
t•,4
3 (z) = ϕ

(z0,z)
t•,4 (t1,2)d log(z1 − z2)

+ ϕ
(z0,z)
t•,4 (t1,3)d log(z1 − z3)

+ ϕ
(z0,z)
t•,4 (t2,3)d log(z2 − z3).

Considering (P1,4) : z1 − z4 = 1, (P2,4) : z2 − z4 = 1, (P3,4) : z3 − z4 = 1,
in the intersection (P1,3)∩ (P2,3), one has log(z1− z3) = log(z2− z3) = 0

and ϕt•,4 ≡ Id and then M
t•,4
3 exactly coincides with M3.
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