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Outlook

About the results:
• Motivation from random maps
• Answers in this framework
• Similar questions on trees le� open

About the talk:
1. Model and questions on trees
2. From trees to excursions paths and then bridges
3. From bridges to nondecreasing paths
4. From nondecreasing paths to local limit estimates
5. Wrap up, further results, open questions
6. Brief discussion on maps?
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�estion: What does a random tree with = vertices look like when = →∞?
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Aldous ’93: )= uniform random tree with =
vertices
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vertices
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where the limit T is called the Brownian tree.

Universality. Aldous in fact considers
size-conditioned Bienaymé–Galton–Watson
trees, a (not so) particular case of simply
generated trees.

)∞ is not a discrete tree anymore, but a
continuum one, and is related to the Brownian
excursion.

In modern language, the topology is the
Gromov–Hausdor�–Prokhorov topology.
Intuitively, each edge is given length 1/(2

√
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Simply generated trees

Fix q = (@: ):>0 ∈ [0,∞)Z+ and sample a tree
C= with = vertices with probability:

Pq= (C=) =
1
/=

∏
D∈C=

@:D ,

where
• D ∈ C= is short for D is a vertex of C=
• :D is the o�spring number of D
• /= is a normalising constant
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• D ∈ C= is short for D is a vertex of C=
• :D is the o�spring number of D
• /= is a normalising constant

Remark: we must have /= ≠ 0, which
means that = must be compatible
with the support of q.

E.g. if @: ≠ 0 i� : ∈ {0, 2}, only binary
trees, with odd size, are allowed.

We will not be careful about this.
Usually dealt with an aperiodicity
condition.



Simply generated trees

Fix q = (@: ):>0 ∈ [0,∞)Z+ and sample a tree
C= with = vertices with probability:

Pq= (C=) =
1
/=

∏
D∈C=

@:D ,

where
• D ∈ C= is short for D is a vertex of C=
• :D is the o�spring number of D
• /= is a normalising constant

Examples:
• @: = 1 for every : > 1, then Pq= is the uniform distribution on trees with = vertices.
• @: = 1 if : ∈ � and @: = 0 otherwise, with 0 ∈ �, then Pq= is the uniform

distribution on trees with = vertices with o�spring numbers in �.
• If q is a probability measure with mean 1, then Pq= is the law of a critical

Bienaymé–Galton–Watson tree, i.e. each individual reproduces independently
according to q, and conditioned to have = vertices in total.

Remark: we must have /= ≠ 0, which
means that = must be compatible
with the support of q.

E.g. if @: ≠ 0 i� : ∈ {0, 2}, only binary
trees, with odd size, are allowed.

We will not be careful about this.
Usually dealt with an aperiodicity
condition.



Limits of large simply generated trees

A straightforward calculation shows: if p and q are related by

?: = 01:@: for every : > 0,

for some 0, 1 > 0, then Pq= = Pp= .



Limits of large simply generated trees

A straightforward calculation shows: if p and q are related by

?: = 01:@: for every : > 0,

for some 0, 1 > 0, then Pq= = Pp= .

Given q, if � (B) = ∑
:>0 B

:@: has radius of convergence d > 0, then for every 1 ∈ (0, d),
the sequence ?: = � (1)−11:@: is a probability with mean 1� ′(1)/� (1), which is
increasing in 1.



Limits of large simply generated trees

A straightforward calculation shows: if p and q are related by

?: = 01:@: for every : > 0,

for some 0, 1 > 0, then Pq= = Pp= .

Given q, if � (B) = ∑
:>0 B

:@: has radius of convergence d > 0, then for every 1 ∈ (0, d),
the sequence ?: = � (1)−11:@: is a probability with mean 1� ′(1)/� (1), which is
increasing in 1.

Conclusion: if there exists 1 ∈ (0, d] such that 1� ′(1)/� (1) = 1, then Pq= is the law of a
critical Bienaymé–Galton–Watson tree conditioned to have = vertices.



Limits of large simply generated trees

A straightforward calculation shows: if p and q are related by

?: = 01:@: for every : > 0,

for some 0, 1 > 0, then Pq= = Pp= .

Given q, if � (B) = ∑
:>0 B

:@: has radius of convergence d > 0, then for every 1 ∈ (0, d),
the sequence ?: = � (1)−11:@: is a probability with mean 1� ′(1)/� (1), which is
increasing in 1.

Conclusion: if there exists 1 ∈ (0, d] such that 1� ′(1)/� (1) = 1, then Pq= is the law of a
critical Bienaymé–Galton–Watson tree conditioned to have = vertices.

Theorem (Aldous ’93) Suppose p has mean 1 and variance f2 ∈ (0,∞) and sample )=
from Pp= , then

f

2
√
=
)=

(3)
−→
=→∞

T,

where T is the Brownian tree.
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Other conditionings

Kortchemski ’12: )= conditioned to have = leaves instead. Same result with a di�erent
scaling constant.

Intuitively clear: if )= is conditioned to have = vertices, it has about =?0 leaves so if it is
conditioned to have = leaves, it should resemble to a tree conditioned to have =/?0
vertices.

What if the tree is conditioned to have = vertices and := leaves, with := ≠ =?0?

Theorem (Labarbe & Marckert ’07) Let )= be
a uniform random tree with = vertices and :=
leaves with both :=, = − := →∞. Then
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Other conditionings

Kortchemski ’12: )= conditioned to have = leaves instead. Same result with a di�erent
scaling constant.

Intuitively clear: if )= is conditioned to have = vertices, it has about =?0 leaves so if it is
conditioned to have = leaves, it should resemble to a tree conditioned to have =/?0
vertices.

What if the tree is conditioned to have = vertices and := leaves, with := ≠ =?0?

�estion: What about more general biconditioned simply generated trees?

Theorem (Labarbe & Marckert ’07) Let )= be
a uniform random tree with = vertices and :=
leaves with both :=, = − := →∞. Then

1√
=B (:=/=)

)=
(3)
−→
=→∞

T,

where B (G) = 2(1 − G)/G for every G ∈ (0, 1).
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The Łukasiewicz path

,

F8 = number of children minus 1 of the
8’th vertex in depth-first search order.

We want 0−1/2= , b=C c → �ex a Brownian excursion under Pq ( · | = vertices & := leaves).

We do not aim to control the contour or height process of the trees, but only their
Łukasiewicz path,9 =

∑
86 9 F8 .
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The conjugation trick
,

(Equivalent to 0−1/2= ( b=C c → �br, a
Brownian bridge.

Unif

min argmin

Recall: we want 0−1/2= , b=C c → �ex, a
Brownian excursion under
Pq ( · | = vertices & := leaves).

{
(B8 )1686= ∈ Z=

>−1 :
=∑
8=1

B8 = −1 and #{8 6 = : B8 = −1} = :=

}
.

( is a random path whose increments
are sampled with probability

1
/=

=∏
8=1

@B8+1

in the set
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Simply generated bridges

Key observation: The position of the := negative increments of ( is a uniform random
choice. Therefore if we set ! 9 = {8 6 9 : B8 = −1}, then it can be constructed from an urn.

Here we sample without replacement and thus(
! b=C c − :=C√
:= (= − :=)/=

)
06C61

(3)
−→
=→∞

�br.

Say there are := good balls and = − := bad balls. We sample balls one a�er the others,
then ! 9 is the number of good balls a�er 9 trials.

If we sample with replacement, then ! 9 ∼ Bin( 9, :=/=) and then(
! b=C c − :=C√
:= (= − :=)/=

)
06C61

(3)
−→
=→∞

�.

See e.g. the lecture notes from St-Flour by Aldous ’85.
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Simply generated bridges

Recall that(
! b=C c − :=C√
:= (= − :=)/=

)
06C61

(3)
−→
=→∞

�br .

It remains to study ( + !, not
independent from !.

(

Split the negative and nonnegative increments:

( + !

=

!

−

!

=

= =

:=
:= − 1
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Remove the negative increments from ( to get ((̃8 )0686=−:= , now independent from !.

( + ! (̃

and are sampled with probability

1
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8=1

@B̃8+1.

The increments of (̃ belong to{
(̃B8 )1686=−:= ∈ Z
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}
,
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Simply generated bridges

(

Remove the negative increments from ( to get ((̃8 )0686=−:= , now independent from !.

( + ! (̃

and are sampled with probability

1
/=

=−:=∏
8=1

@B̃8+1.

The increments of (̃ belong to{
(̃B8 )1686=−:= ∈ Z

=−:=
>0 :

=−:=∑
8=1

B̃8 = := − 1
}
,

Nota:
=C−!b=Cc
=−:= → C in proba. so

(( + !) b=C c = (̃ b=C−!b=Cc c ≈ (̃ b (=−:=)C c
= − :==



Scaling limits of simply generated bridges

It all boils down to proving a convergence of the form(
( b=C c − G=C√

0=

)
06C61

(3)
−→
=→∞

�br,

where ( is an nondecreasing bridge from 0 to G= in = steps, with weight sequence q.
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Scaling limits of simply generated bridges

It all boils down to proving a convergence of the form(
( b=C c − G=C√

0=

)
06C61

(3)
−→
=→∞

�br,

where ( is an nondecreasing bridge from 0 to G= in = steps, with weight sequence q.

It su�ices to restrict to the interval [0, 1 − Y] for Y > 0 fixed. One can then argue by
absolute continuity: by the Markov property,

E
[
�

((
( b=C c − G=C√

0=

)
06C61−Y

) ����� (= = G=

]
= E

[
�

((
( b=C c − G=C√

0=

)
06C61−Y

)
·
P(( ′

=−b= (1−Y) c = G= − ( b= (1−Y) c)
P((= = G=)

]
,

where ( and ( ′ are two independent random walks with step distribution p.

Let us suppose that there exists a probability measure p of the form ?: = 01:@: . Then
( is a p-random walk conditioned on (= = G= .

"
Change of
notation!



Simply generated bridges & local limit estimates

Easy case: when p has mean ` and finite variance f2 and G= − `= = > (
√
=).

Then the Local Limit Theorem states that with 6C (G) = (2cC)−1/2 exp(−G2/(2C)),

sup
:∈Z

����√=f2 P((= = b`=c + :) − 61
(

:
√
=f2

)���� −→=→∞ 0.

Also (
( b=C c − `=C√

=f2

)
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a Brownian motion.



Simply generated bridges & local limit estimates

Easy case: when p has mean ` and finite variance f2 and G= − `= = > (
√
=).

Then the Local Limit Theorem states that with 6C (G) = (2cC)−1/2 exp(−G2/(2C)),

sup
:∈Z

����√=f2 P((= = b`=c + :) − 61
(

:
√
=f2

)���� −→=→∞ 0.

Also (
( b=C c − `=C√

=f2

)
06C61

(3)
−→
=→∞

�,

a Brownian motion.

E
[
�

((
( b=C c − G=C√

=f2

)
06C61−Y

) ����� (= = G=

]
−→
=→∞

E
[
�

(
(�C )06C61−Y

)
· 6Y (−�1−Y)

61 (0)

]
,

Then with the previous decomposition,

and the right-hand side equals E
[
� ((�br

C )06C61−Y)
]
.



Simply generated bridges & local limit estimates

More generally, given G= , one looks for a probability p= of the form ?=
:
= 0=1
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=@: and

with mean close to G=/=, for which we can prove for some 0= →∞,
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√
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Simply generated bridges & local limit estimates

More generally, given G= , one looks for a probability p= of the form ?=
:
= 0=1

:
=@: and

with mean close to G=/=, for which we can prove for some 0= →∞,

sup
:∈Z

����√0= P((== = G= + :) − 61
(
:
√
0=

)���� −→=→∞ 0.

Theorem (Kortchemski & © ’21+). This estimates holds in each of the following cases:
1. lim= G=/= ∈ (8q, d� ′(d)/� (d)) where 8q = min{8 : @8 > 0} and � (B) = ∑

: B
:@:

with radius of convergence d . Here

0=

=
=
12=�

(2) (1=) + 1=� ′(1=)
� (1=)

−
(
1=�

′(1=)
� (1=)

)2
where 1=

� ′(1=)
� (1=)

=
G=

=
.

2. lim= G=/= = 0, @0, @1 > 0. Here 0= = G= .
3. lim= G=/= = ∞, � is Δ-analytic, and there exist 2, U > 0 such that � (d − I) ∼ 2I−U

as I → 0 with Re(I) > 0. Here 0= = G2=/(U=).



Simply generated bridges & local limit estimates

More generally, given G= , one looks for a probability p= of the form ?=
:
= 0=1

:
=@: and

with mean close to G=/=, for which we can prove for some 0= →∞,

sup
:∈Z

����√0= P((== = G= + :) − 61
(
:
√
0=

)���� −→=→∞ 0.

Theorem (Kortchemski & © ’21+). This estimates holds in each of the following cases:
1. lim= G=/= ∈ (8q, d� ′(d)/� (d)) where 8q = min{8 : @8 > 0} and � (B) = ∑

: B
:@:

with radius of convergence d . Here

0=

=
=
12=�

(2) (1=) + 1=� ′(1=)
� (1=)

−
(
1=�

′(1=)
� (1=)

)2
where 1=

� ′(1=)
� (1=)

=
G=

=
.

2. lim= G=/= = 0, @0, @1 > 0. Here 0= = G= .
3. lim= G=/= = ∞, � is Δ-analytic, and there exist 2, U > 0 such that � (d − I) ∼ 2I−U

as I → 0 with Re(I) > 0. Here 0= = G2=/(U=).

The last case was motivated by uniform random bipartite maps which are related to
@: =

(2:+1
:+1

)
, which satisfies all the assumptions and 8q = 0 and d� ′(d)/� (d) = ∞.
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Other behaviours

When lim= G=/= = d� ′(d)/� (d) < ∞, one needs to look closer and the behaviour
depends on the speed of convergence.

Then an unconditioned random walk ( satisfies(
=−1/U

(
( b=C c − `=C

) )
C>0

(3)
−→
=→∞

-U ,

where -U is an U-stable Lévy process with no negative jump.

Say q is a probability with finite mean ` and in the domain of a�raction of a stable
law with index U ∈ (1, 2). For concreteness: for some � > 0,

� (B) =
∑
:>0

B:@: = 1 − ` + `B +� (1 − B)U .

So d = 1 and d� ′(d)/� (d) = `.
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Now if we condition on (= = G= where

G= = `= + _= with =−1/U_= −→
=→∞

_ ∈ [−∞,∞],

then (( b=C c − G=C)C ∈[0,1] converges a�er scaling towards:

1. The bridge of (-U
C − _C)C if _ ∈ (−∞,∞). (Informally -U conditioned on -U

1 = _.)

2. A Brownian bridge if _ = −∞.

3. The path 1* 6C − C where* ∼ Unif (0, 1) when _ = ∞.

Recall
� (B) =

∑
:>0

B:@: = 1 − ` + `B +� (1 − B)U ,

with U ∈ (1, 2). So (
=−1/U

(
( b=C c − `=C

) )
C>0

(3)
−→
=→∞

-U .
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�estion: What about the height process? By a more general work (in preparation,
hopefully Kortchemski & © ’21b) we have the convergence of the marginals, but
tightness is missing in general (only available for the moment in a finite variance
regime).

�estion: The proofs are based on the idea of replacing q by p= in a very particular
way; what about q=-simply generated trees with size = in general? General limits of
the Łukasiewicz paths are (non stable) Lévy processes. What motivation?

About planar maps: Bipartite planar maps are bijectively related to decorated trees
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hopefully Kortchemski & © ’21b) we have the convergence of the marginals, but
tightness is missing in general (only available for the moment in a finite variance
regime).

�estion: The proofs are based on the idea of replacing q by p= in a very particular
way; what about q=-simply generated trees with size = in general? General limits of
the Łukasiewicz paths are (non stable) Lévy processes. What motivation?

About planar maps: Bipartite planar maps are bijectively related to decorated trees
by Janson & Stefánsson ’15. The convergence of the Łukasiewicz path to the Brownian
excursion is (kind of) su�icient to prove the convergence of the associated
Boltzmann map conditioned on its number of vertices, edges, and faces at the same
time towards the Brownian sphere by the criterion of © ’21+.

Thank you!



Planar maps

A (planar) map can be seen as the topological
gluing of polygons, by identifying pairs of
edges, to form a sphere.



Planar maps

A (planar) map can be seen as the topological
gluing of polygons, by identifying pairs of
edges, to form a sphere.



Planar maps

A (planar) map can be seen as the topological
gluing of polygons, by identifying pairs of
edges, to form a sphere.

Dual definition: a (planar) map is a graph
embedded in the sphere; we shall deal with
rooted maps in which an oriented edge is
distinguished.



Planar maps

A (planar) map can be seen as the topological
gluing of polygons, by identifying pairs of
edges, to form a sphere.

Dual definition: a (planar) map is a graph
embedded in the sphere; we shall deal with
rooted maps in which an oriented edge is
distinguished.



Planar maps

A (planar) map can be seen as the topological
gluing of polygons, by identifying pairs of
edges, to form a sphere.

Dual definition: a (planar) map is a graph
embedded in the sphere; we shall deal with
rooted maps in which an oriented edge is
distinguished.

Interest in planar maps:
• combinatorics: enumeration formulae, bijections;
• theoretical physics: matrix integral, quantum gravity;
• probability: behaviour of large random maps

– model of discrete surfaces, scaling limit towards continuum surfaces?
– di�erences between abstract graphs and embedded graphs?



Planar maps

A (planar) map can be seen as the topological
gluing of polygons, by identifying pairs of
edges, to form a sphere.

Dual definition: a (planar) map is a graph
embedded in the sphere; we shall deal with
rooted maps in which an oriented edge is
distinguished.

Interest in planar maps:
• combinatorics: enumeration formulae, bijections;
• theoretical physics: matrix integral, quantum gravity;
• probability: behaviour of large random maps

– model of discrete surfaces, scaling limit towards continuum surfaces?
– di�erences between abstract graphs and embedded graphs?

Technical restriction: We only consider bipartite maps.
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Convergence of maps

Theorem (Le Gall ’13 and Miermont ’13)
If &= is a quadrangulation with = faces
sampled uniformly at randon, then(

9
8=

) 1/4
&=

(3)
−→
=→∞

S,

where S is the Brownian sphere.

As for trees, we extract the theoretical graph, and forget about the embedding, and give
to each edge a length with tends to 0 with the size of the map.

Extended since to many other models of
random maps, but always using the
known case of quadrangulations as an
input.

Shas the topology of the sphere (Le Gall
& Paulin ’08, Miermont ’08) and
Hausdor� dimension 4 (Le Gall ’07).
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where deg(5 ) is the number of incident edges, with multiplicity, which is always even
for bipartite maps.
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General model: fix q = (@: ):>1 ∈ [0,∞)N and sample a map<= with size = with
probability:

Pq= (<=) =
1
/=

∏
face 5

@deg(5 )/2,

where deg(5 ) is the number of incident edges, with multiplicity, which is always even
for bipartite maps.

Application. If q satisfies some criticality and finite variance assumption, then( 2
=

) 1/4
"=

(3)
−→
=→∞

S,

where 2 depends both on q and the notion of size: either vertices, edges, or faces.
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Theorem (Kortchemski & © ’21+). If "= is a
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uniformly at random, then(
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S,

where B (G) = (1 − G) (3 + G +
√
(1 − G) (9 − G))/(12G).

What about q-Boltzmann maps with = edges and := vertices, and so = − := + 2 faces
by Euler’s formula? We assume both :=, = − := →∞.

Actually nothing special about the uniform distribution, it is just a Boltzmann law
with a sequence q with nice properties.

The scaling factor is of order:
• =2/4 when := = =2 with 2 ∈ (0, 1)
• = (2−2)/4 when = − := = =2 with 2 ∈ (0, 1)

In both cases this was predicted by Fusy & Gui�er ’14.

B (G) ∼0 1/(2G)

B (G) ∼1 (1 − G)/3



Back to trees
Combining bijections due to Bou�ier, di Francesco &
Gui�er ’04 and to Janson & Stefánsson ’15 shows
that bipartite maps with a distinguished non
oriented edge and a vertex correspond to trees
carrying some labels.
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Key properties of the bijection " ↔ ) :
1. faces of " ↔ internal vertices of ) and the

number of children is half the degree of the face;
2. non distinguished vertices of " ↔ leaves of )

and the labels describe distances in " to the
distinguished vertex;

3. edges of " ↔ edges of ) .

Consequence: a q" -Boltzmann map with = edges
and := vertices corresponds to a simply generated
tree with = + 1 vertices and := − 1 leaves, sampled
from the weights

@)0 = 1 and @)
:
=

(
2: − 1
: − 1

)
@"
:
(: > 1).



Back to trees

Conclusion: In order to deduce that, for some deterministic sequence 0= →∞,(
9
40=

) 1/4
"=

(3)
−→
=→∞

S,

when "= is a q" -Boltzmann bipartite map conditioned to have = edges and :=
vertices, it su�ices to prove that, in a q) simply generated tree with = + 1 vertices and
:= − 1 leaves, where

@)0 = 1 and @)
:
=

(
2: − 1
: − 1

)
@"
:
(: > 1),

it holds that ∑
D :D (:D − 1)

0=

P−→
=→∞

1 and
maxD :D (:D − 1)

0=

P−→
=→∞

0.



Final remarks & open questions

When lim= G=/= = d� ′(d)/� (d) < ∞, one needs to look closer and the behaviour
depends on the speed of convergence. If q is a probability wih finite mean and in the
domain of a�raction of a stable law with index U ∈ (1, 2), the we can get a Brownian
bridge, or a bridge of a stable process with a dri�, or a one-big-jump principle.
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