Geometry of large biconditioned random trees

Cyril Marzouk

joint work with Igor Ковтснемsки

École polytechnique

Outlook

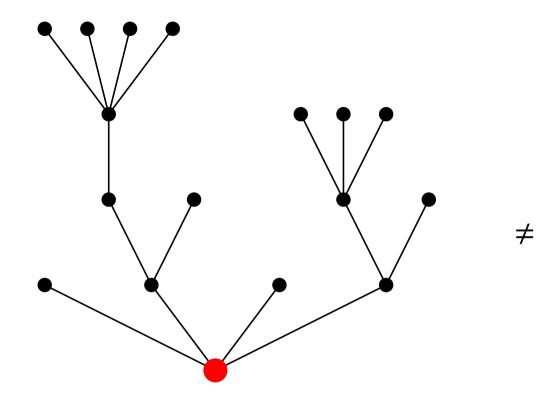
About the results:

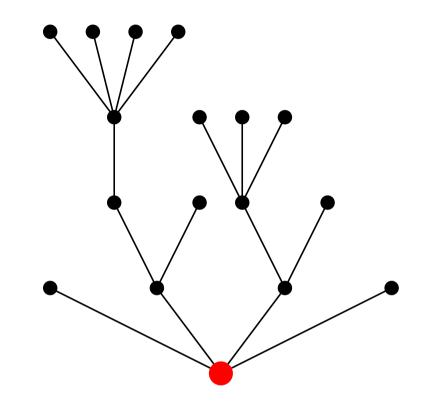
- Motivation from random maps
- Answers in this framework
- Similar questions on trees left open

About the talk:

- 1. Model and questions on trees
- 2. From trees to excursions paths and then bridges
- 3. From bridges to nondecreasing paths
- 4. From nondecreasing paths to local limit estimates
- 5. Wrap up, further results, open questions
- 6. Brief discussion on maps?

Rooted plane trees

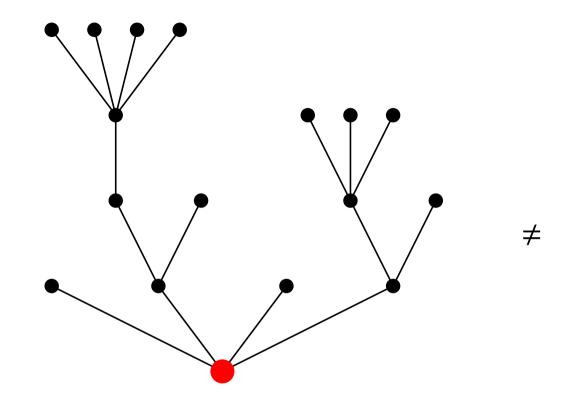


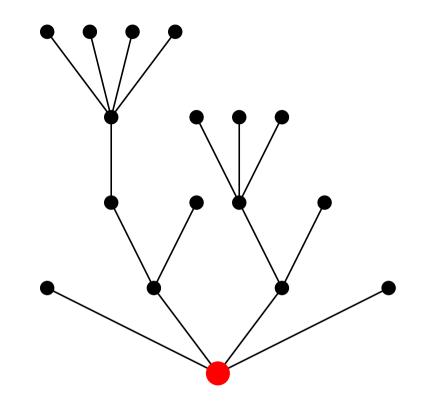


Genealogical tree:

- plane = siblings are ordered from left to right;
- rooted = ancestor and first child.

Rooted plane trees





Genealogical tree:

- plane = siblings are ordered from left to right;
- rooted = ancestor and first child.

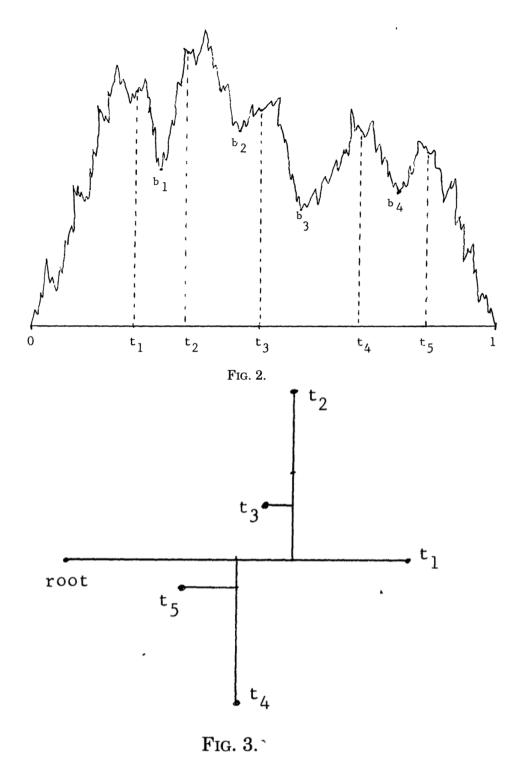
Question: What does a random tree with *n* vertices look like when $n \rightarrow \infty$?

Random trees

Aldous '93: T_n uniform random tree with n vertices

$$\frac{1}{\sqrt{2n}}T_n \quad \xrightarrow{(d)}_{n \to \infty} \quad \mathcal{T},$$

where the limit \mathcal{T} is called the **Brownian tree**.



© David Aldous

Random trees

Aldous '93: T_n uniform random tree with n vertices

$$\frac{1}{\sqrt{2n}}T_n \quad \xrightarrow[n \to \infty]{} \mathcal{T}$$

where the limit \mathcal{T} is called the **Brownian tree**.

In modern language, the topology is the **Gromov–Hausdorff–Prokhorov** topology. Intuitively, each edge is given length $1/(2\sqrt{n})$.

 T_{∞} is not a discrete tree anymore, but a continuum one, and is related to the Brownian excursion.



© Igor Kortchemski

Random trees

Aldous '93: T_n uniform random tree with n vertices

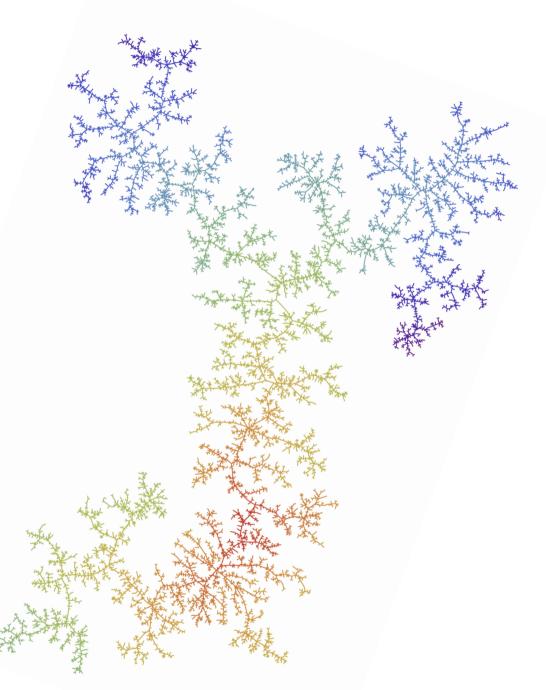
$$\frac{1}{\sqrt{2n}}T_n \quad \xrightarrow[n \to \infty]{} \mathcal{T}$$

where the limit \mathcal{T} is called the **Brownian tree**.

In modern language, the topology is the **Gromov–Hausdorff–Prokhorov** topology. Intuitively, each edge is given length $1/(2\sqrt{n})$.

 T_{∞} is not a discrete tree anymore, but a continuum one, and is related to the Brownian excursion.

Universality. Aldous in fact considers size-conditioned Bienaymé-Galton-Watson trees, a (not so) particular case of simply generated trees.



© Igor Kortchemski

Simply generated trees

Fix $\mathbf{q} = (q_k)_{k \ge 0} \in [0, \infty)^{\mathbb{Z}_+}$ and sample a tree t_n with *n* vertices with probability:

$$\mathbf{P}_n^{\mathbf{q}}(t_n) = \frac{1}{Z_n} \prod_{u \in t_n} q_{k_u},$$

where

- $u \in t_n$ is short for u is a vertex of t_n
- k_u is the offspring number of u
- Z_n is a normalising constant

Simply generated trees

Fix $\mathbf{q} = (q_k)_{k \ge 0} \in [0, \infty)^{\mathbb{Z}_+}$ and sample a tree t_n with *n* vertices with probability:

$$\mathbf{P}_n^{\mathbf{q}}(t_n) = \frac{1}{Z_n} \prod_{u \in t_n} q_{k_u},$$

where

- $u \in t_n$ is short for u is a vertex of t_n
- k_u is the offspring number of u
- Z_n is a normalising constant

Remark: we must have $Z_n \neq 0$, which means that *n* must be compatible with the support of **q**.

E.g. if $q_k \neq 0$ iff $k \in \{0, 2\}$, only binary trees, with odd size, are allowed. We will not be careful about this. Usually dealt with an aperiodicity condition.

Simply generated trees

Fix $\mathbf{q} = (q_k)_{k \ge 0} \in [0, \infty)^{\mathbb{Z}_+}$ and sample a tree t_n with *n* vertices with probability:

$$\mathbf{P}_n^{\mathbf{q}}(t_n) = \frac{1}{Z_n} \prod_{u \in t_n} q_{k_u},$$

where

- $u \in t_n$ is short for u is a vertex of t_n
- k_u is the offspring number of u
- Z_n is a normalising constant

Remark: we must have $Z_n \neq 0$, which means that *n* must be compatible with the support of **q**.

E.g. if $q_k \neq 0$ iff $k \in \{0, 2\}$, only binary trees, with odd size, are allowed. We will not be careful about this.

Usually dealt with an aperiodicity condition.

Examples:

- $q_k = 1$ for every $k \ge 1$, then $\mathbf{P}_n^{\mathbf{q}}$ is the uniform distribution on trees with *n* vertices.
- $q_k = 1$ if $k \in A$ and $q_k = 0$ otherwise, with $0 \in A$, then P_n^q is the uniform distribution on trees with *n* vertices with offspring numbers in *A*.
- If q is a probability measure with mean 1, then P^q_n is the law of a critical Bienaymé-Galton-Watson tree, i.e. each individual reproduces independently according to q, and conditioned to have *n* vertices in total.

A straightforward calculation shows: if **p** and **q** are related by

 $p_k = ab^k q_k$ for every $k \ge 0$,

for some a, b > 0, then $\mathbf{P}_n^{\mathbf{q}} = \mathbf{P}_n^{\mathbf{p}}$.

A straightforward calculation shows: if p and q are related by

$$p_k = ab^k q_k$$
 for every $k \ge 0$,

for some a, b > 0, then $\mathbf{P}_n^{\mathbf{q}} = \mathbf{P}_n^{\mathbf{p}}$.

Given **q**, if $G(s) = \sum_{k \ge 0} s^k q_k$ has radius of convergence $\rho > 0$, then for every $b \in (0, \rho)$, the sequence $p_k = G(b)^{-1}b^k q_k$ is a probability with mean bG'(b)/G(b), which is increasing in *b*.

A straightforward calculation shows: if p and q are related by

$$p_k = ab^k q_k$$
 for every $k \ge 0$,

for some a, b > 0, then $\mathbf{P}_n^{\mathbf{q}} = \mathbf{P}_n^{\mathbf{p}}$.

Given **q**, if $G(s) = \sum_{k \ge 0} s^k q_k$ has radius of convergence $\rho > 0$, then for every $b \in (0, \rho)$, the sequence $p_k = G(b)^{-1}b^k q_k$ is a probability with mean bG'(b)/G(b), which is increasing in *b*.

Conclusion: if there exists $b \in (0, \rho]$ such that bG'(b)/G(b) = 1, then P_n^q is the law of a critical Bienaymé–Galton–Watson tree conditioned to have *n* vertices.

A straightforward calculation shows: if **p** and **q** are related by

$$p_k = ab^k q_k$$
 for every $k \ge 0$,

for some a, b > 0, then $\mathbf{P}_n^{\mathbf{q}} = \mathbf{P}_n^{\mathbf{p}}$.

Given **q**, if $G(s) = \sum_{k \ge 0} s^k q_k$ has radius of convergence $\rho > 0$, then for every $b \in (0, \rho)$, the sequence $p_k = G(b)^{-1}b^k q_k$ is a probability with mean bG'(b)/G(b), which is increasing in *b*.

Conclusion: if there exists $b \in (0, \rho]$ such that bG'(b)/G(b) = 1, then P_n^q is the law of a critical Bienaymé–Galton–Watson tree conditioned to have *n* vertices.

Theorem (Aldous '93) Suppose **p** has mean 1 and variance $\sigma^2 \in (0, \infty)$ and sample T_n from $\mathbf{P}_n^{\mathbf{p}}$, then

$$\frac{\sigma}{2\sqrt{n}}T_n \xrightarrow[n\to\infty]{(d)} \mathfrak{T},$$

where \mathcal{T} is the **Brownian tree**.

Kortchemski '12: T_n conditioned to have *n* leaves instead. Same result with a different scaling constant.

Kortchemski '12: T_n conditioned to have *n* leaves instead. Same result with a different scaling constant.

Intuitively clear: if T_n is conditioned to have *n* vertices, it has about np_0 leaves so if it is conditioned to have *n* leaves, it should resemble to a tree conditioned to have n/p_0 vertices.

Kortchemski '12: T_n conditioned to have *n* leaves instead. Same result with a different scaling constant.

Intuitively clear: if T_n is conditioned to have *n* vertices, it has about np_0 leaves so if it is conditioned to have *n* leaves, it should resemble to a tree conditioned to have n/p_0 vertices.

What if the tree is conditioned to have *n* vertices and k_n leaves, with $k_n \neq np_0$?

Kortchemski '12: T_n conditioned to have *n* leaves instead. Same result with a different scaling constant.

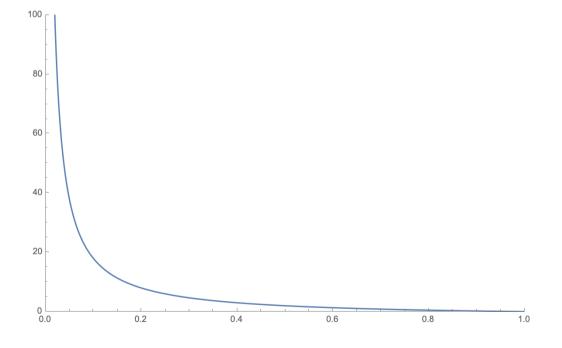
Intuitively clear: if T_n is conditioned to have *n* vertices, it has about np_0 leaves so if it is conditioned to have *n* leaves, it should resemble to a tree conditioned to have n/p_0 vertices.

What if the tree is conditioned to have *n* vertices and k_n leaves, with $k_n \neq np_0$?

Theorem (Labarbe & Marckert '07) Let T_n be a uniform random tree with *n* vertices and k_n leaves with both $k_n, n - k_n \rightarrow \infty$. Then

$$\frac{1}{\sqrt{ns(k_n/n)}}T_n \xrightarrow[n\to\infty]{(d)} \mathcal{T},$$

where s(x) = 2(1 - x)/x for every $x \in (0, 1)$.



Kortchemski '12: T_n conditioned to have *n* leaves instead. Same result with a different scaling constant.

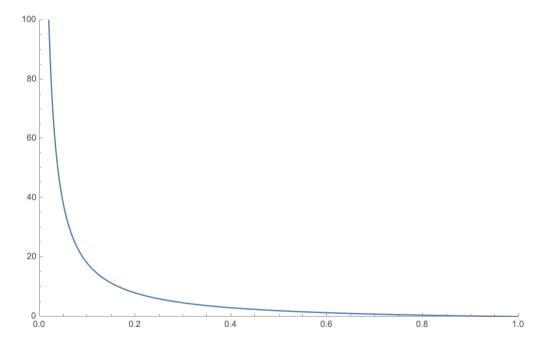
Intuitively clear: if T_n is conditioned to have *n* vertices, it has about np_0 leaves so if it is conditioned to have *n* leaves, it should resemble to a tree conditioned to have n/p_0 vertices.

What if the tree is conditioned to have *n* vertices and k_n leaves, with $k_n \neq np_0$?

Theorem (Labarbe & Marckert '07) Let T_n be a uniform random tree with *n* vertices and k_n leaves with both k_n , $n - k_n \rightarrow \infty$. Then

$$\frac{1}{\sqrt{ns(k_n/n)}}T_n \xrightarrow[n \to \infty]{(d)} \mathcal{T},$$

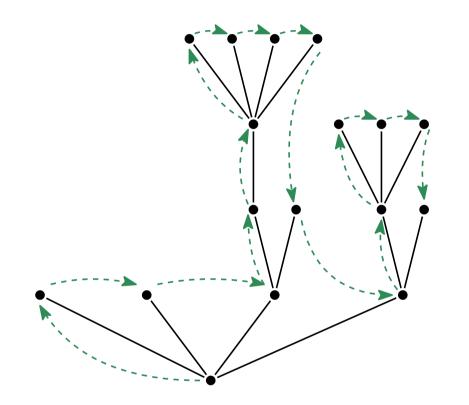
where s(x) = 2(1 - x)/x for every $x \in (0, 1)$.



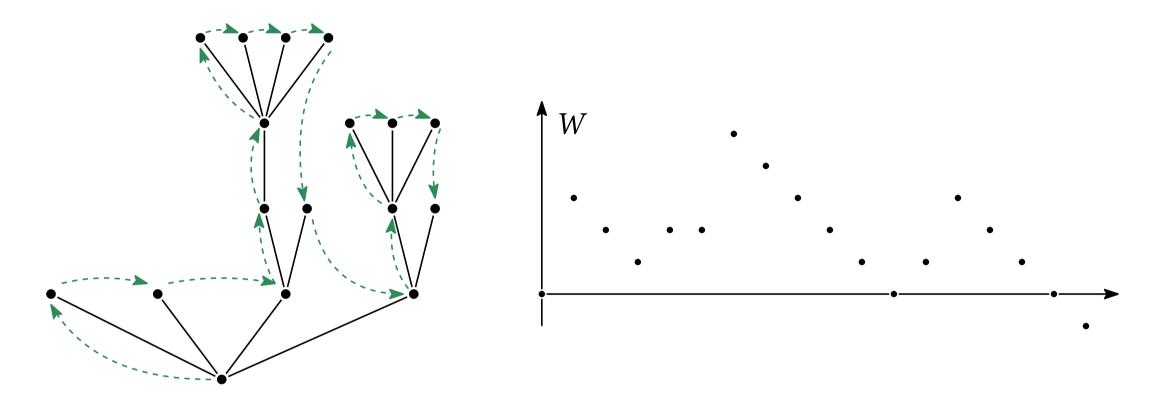
Question: What about more general biconditioned simply generated trees?

We do not aim to control the **contour** or **height** process of the trees, but only their **Łukasiewicz path** $W_j = \sum_{i \leq j} w_i$.

We do not aim to control the **contour** or **height** process of the trees, but only their **Łukasiewicz path** $W_j = \sum_{i \leq j} w_i$.

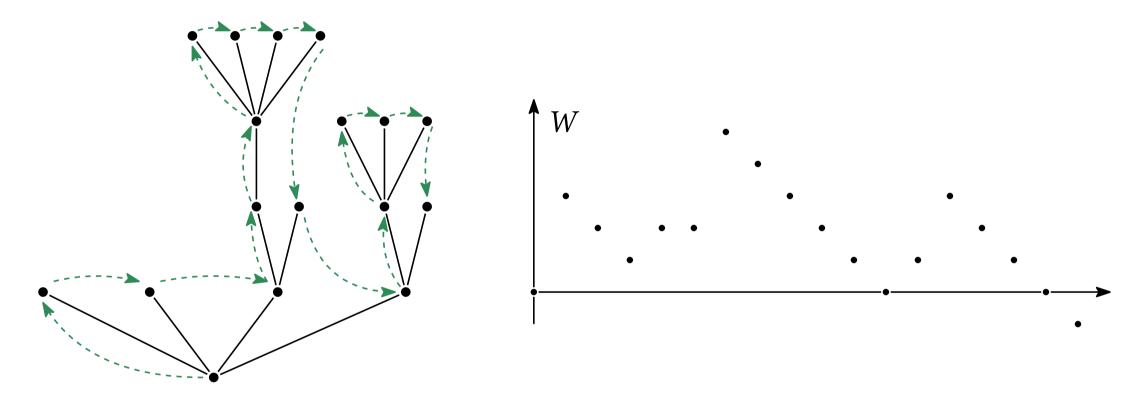


We do not aim to control the **contour** or **height** process of the trees, but only their **Łukasiewicz path** $W_j = \sum_{i \leq j} w_i$.



 w_i = number of children minus 1 of the *i*'th vertex in depth-first search order.

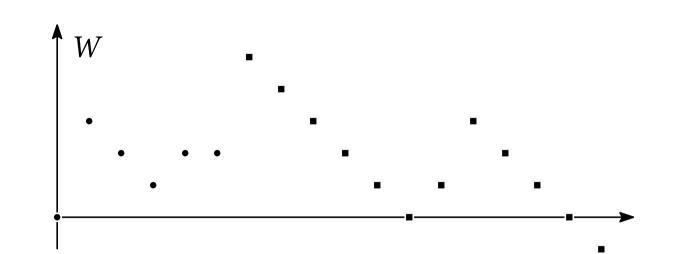
We do not aim to control the **contour** or **height** process of the trees, but only their **Łukasiewicz path** $W_j = \sum_{i \leq j} w_i$.



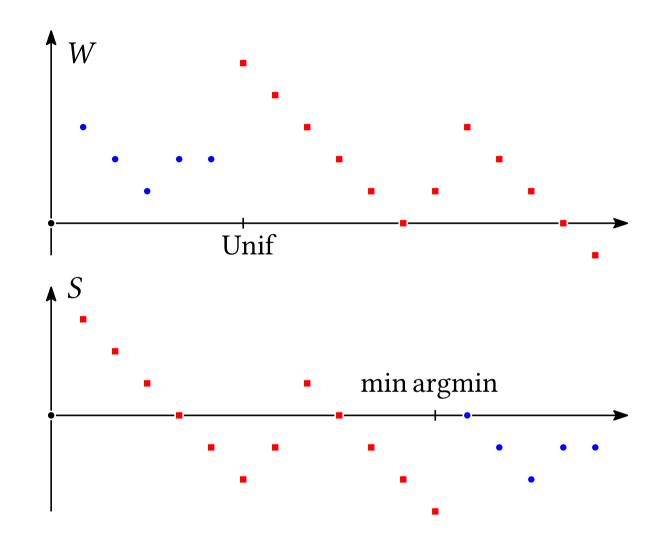
 w_i = number of children minus 1 of the *i*'th vertex in depth-first search order.

We want $a_n^{-1/2}W_{\lfloor nt \rfloor} \to B^{ex}$ a Brownian excursion under $\mathbf{P}^{\mathbf{q}}(\cdot \mid n \text{ vertices } \& k_n \text{ leaves})$.

Recall: we want $a_n^{-1/2}W_{\lfloor nt \rfloor} \rightarrow B^{\text{ex}}$, a Brownian excursion under $\mathbf{P}^{\mathbf{q}}(\cdot \mid n \text{ vertices } \& k_n \text{ leaves}).$

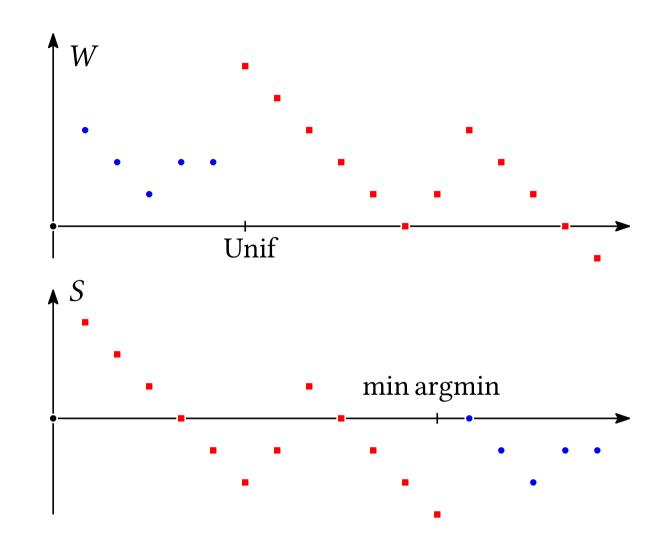


Recall: we want $a_n^{-1/2}W_{\lfloor nt \rfloor} \rightarrow B^{\text{ex}}$, a Brownian excursion under $\mathbf{P}^{\mathbf{q}}(\cdot \mid n \text{ vertices } \& k_n \text{ leaves}).$



Recall: we want $a_n^{-1/2}W_{\lfloor nt \rfloor} \rightarrow B^{\text{ex}}$, a Brownian excursion under $\mathbf{P}^{\mathbf{q}}(\cdot \mid n \text{ vertices } \& k_n \text{ leaves}).$

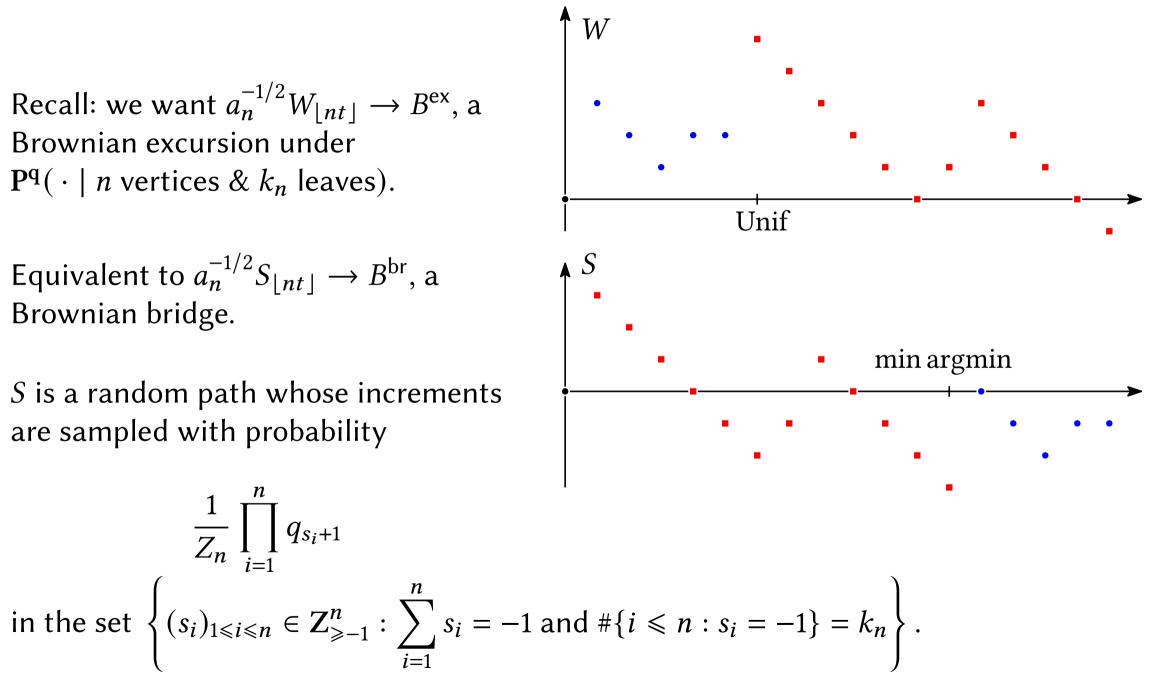
Equivalent to $a_n^{-1/2}S_{\lfloor nt \rfloor} \rightarrow B^{br}$, a Brownian bridge.



Recall: we want $a_n^{-1/2}W_{|nt|} \rightarrow B^{\text{ex}}$, a Brownian excursion under $\mathbf{P}^{\mathbf{q}}(\cdot \mid n \text{ vertices } \& k_n \text{ leaves}).$

Equivalent to $a_n^{-1/2}S_{|nt|} \rightarrow B^{br}$, a Brownian bridge.

S is a random path whose increments are sampled with probability



Key observation: The position of the k_n negative increments of *S* is a uniform random choice. Therefore if we set $L_j = \{i \le j : s_i = -1\}$, then it can be constructed from an urn.

Key observation: The position of the k_n negative increments of *S* is a uniform random choice. Therefore if we set $L_j = \{i \le j : s_i = -1\}$, then it can be constructed from an urn.

Say there are k_n good balls and $n - k_n$ bad balls. We sample balls one after the others, then L_j is the number of good balls after j trials.

Key observation: The position of the k_n negative increments of *S* is a uniform random choice. Therefore if we set $L_j = \{i \le j : s_i = -1\}$, then it can be constructed from an urn.

Say there are k_n good balls and $n - k_n$ bad balls. We sample balls one after the others, then L_j is the number of good balls after j trials.

If we sample with replacement, then $L_j \sim Bin(j, k_n/n)$ and then

$$\left(\frac{L_{\lfloor nt \rfloor} - k_n t}{\sqrt{k_n (n - k_n)/n}}\right)_{0 \le t \le 1} \xrightarrow[n \to \infty]{(d)} B.$$

Key observation: The position of the k_n negative increments of *S* is a uniform random choice. Therefore if we set $L_j = \{i \le j : s_i = -1\}$, then it can be constructed from an urn.

Say there are k_n good balls and $n - k_n$ bad balls. We sample balls one after the others, then L_j is the number of good balls after j trials.

If we sample with replacement, then $L_j \sim Bin(j, k_n/n)$ and then

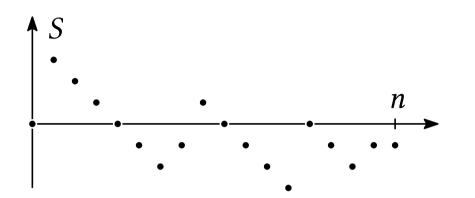
$$\left(\frac{L_{\lfloor nt \rfloor} - k_n t}{\sqrt{k_n (n - k_n)/n}}\right)_{0 \le t \le 1} \quad \frac{(d)}{n \to \infty} \quad B.$$

Here we sample without replacement and thus

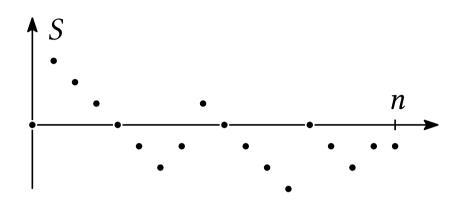
$$\left(\frac{L_{\lfloor nt \rfloor} - k_n t}{\sqrt{k_n(n - k_n)/n}}\right)_{0 \le t \le 1} \xrightarrow[n \to \infty]{(d)} B^{\text{br}}.$$

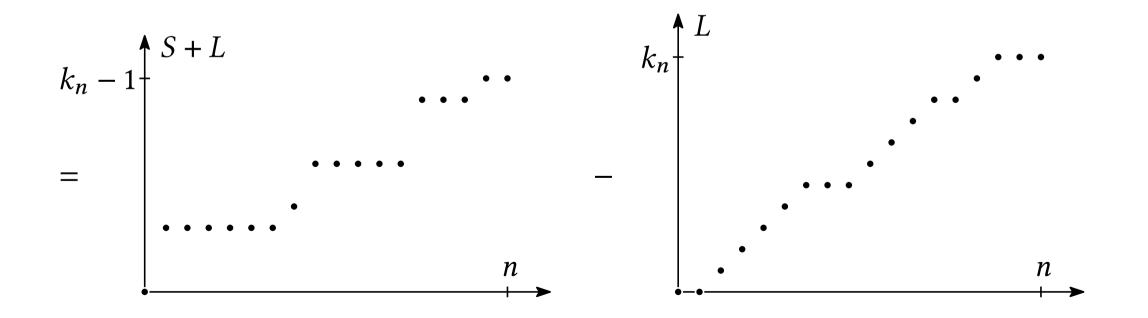
See e.g. the lecture notes from St-Flour by Aldous '85.

Split the negative and nonnegative increments:

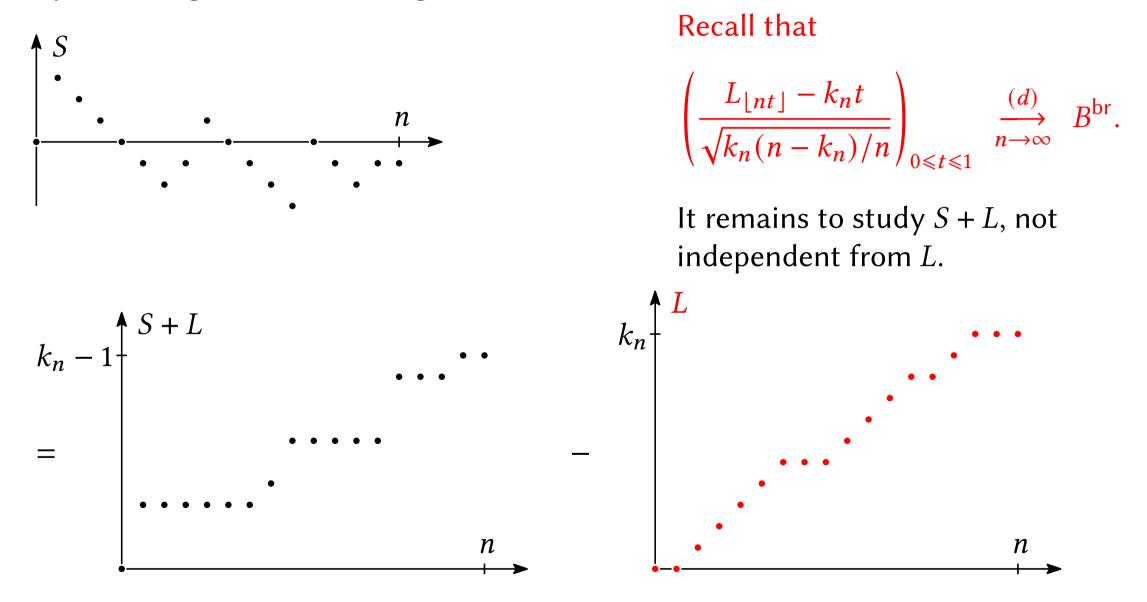


Split the negative and nonnegative increments:

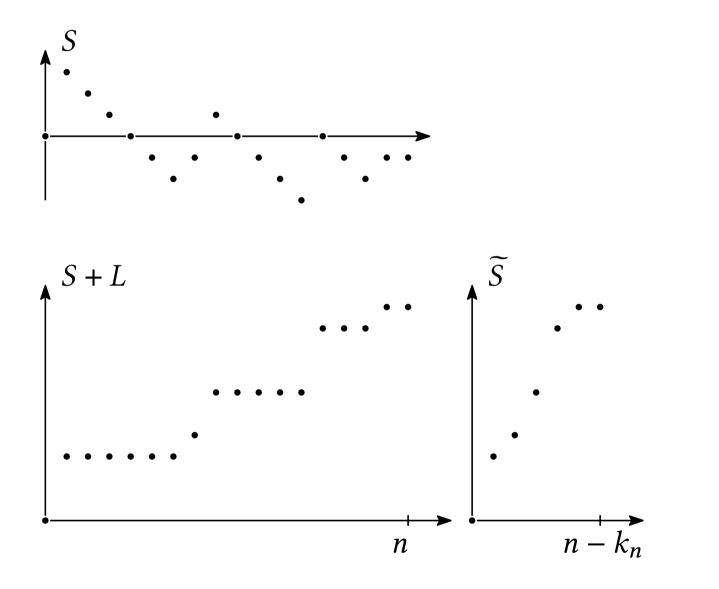




Split the negative and nonnegative increments:



Remove the negative increments from *S* to get $(\tilde{S}_i)_{0 \le i \le n-k_n}$, now independent from *L*.



Remove the negative increments from *S* to get $(\tilde{S}_i)_{0 \le i \le n-k_n}$, now independent from *L*.

 \widetilde{S} S + L $n-k_n$ n

The increments of \widetilde{S} belong to

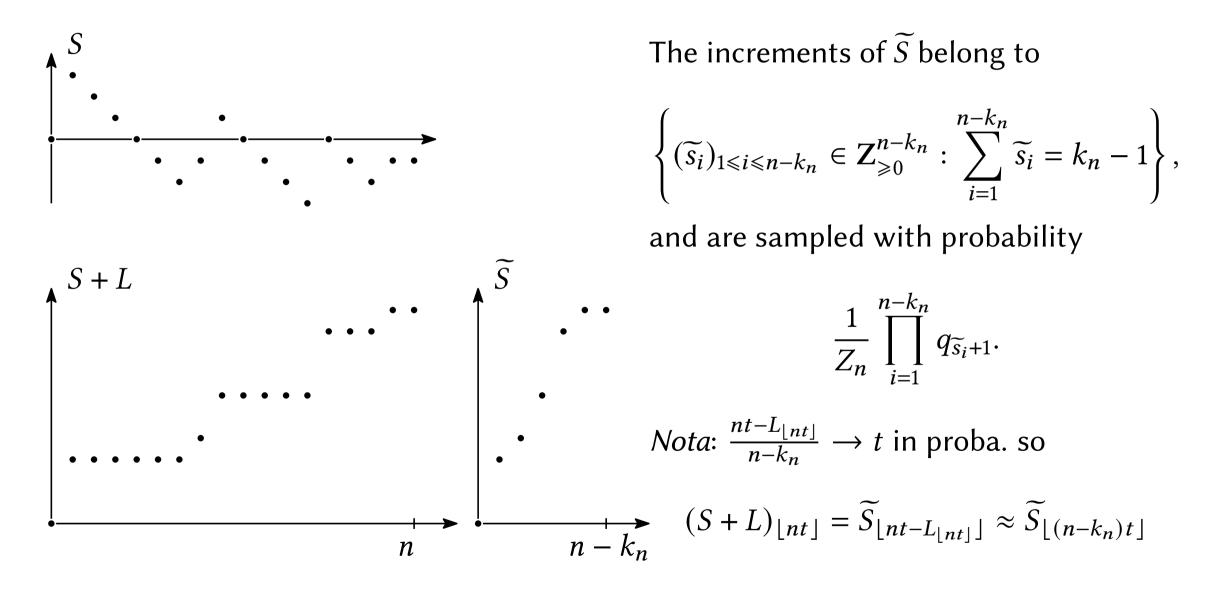
$$\left\{ (\widetilde{s}_i)_{1 \leq i \leq n-k_n} \in \mathbb{Z}_{\geq 0}^{n-k_n} : \sum_{i=1}^{n-k_n} \widetilde{s}_i = k_n - 1 \right\},\$$

and are sampled with probability

$$\frac{1}{Z_n}\prod_{i=1}^{n-k_n}q_{\widetilde{s}_i+1}.$$

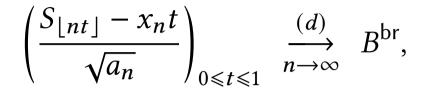
Simply generated bridges

Remove the negative increments from *S* to get $(\tilde{S}_i)_{0 \le i \le n-k_n}$, now independent from *L*.



Scaling limits of simply generated bridges

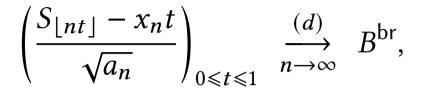
It all boils down to proving a convergence of the form



where S is an nondecreasing bridge from 0 to x_n in n steps, with weight sequence **q**.

Scaling limits of simply generated bridges

It all boils down to proving a convergence of the form

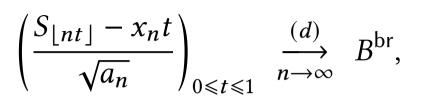


where S is an nondecreasing bridge from 0 to x_n in n steps, with weight sequence **q**.

Let us suppose that there exists a probability measure **p** of the form $p_k = ab^k q_k$. Then *S* is a **p**-random walk conditioned on $S_n = x_n$.

Scaling limits of simply generated bridges

It all boils down to proving a convergence of the form



where S is an nondecreasing bridge from 0 to x_n in n steps, with weight sequence **q**.

Let us suppose that there exists a probability measure **p** of the form $p_k = ab^k q_k$. Then *S* is a **p**-random walk conditioned on $S_n = x_n$.

It suffices to restrict to the interval $[0, 1 - \varepsilon]$ for $\varepsilon > 0$ fixed. One can then argue by **absolute continuity**: by the Markov property,

$$\begin{split} \mathbf{E}\left[F\left(\left(\frac{S_{\lfloor nt \rfloor} - x_n t}{\sqrt{a_n}}\right)_{0 \le t \le 1-\varepsilon}\right) \middle| S_n = x_n\right] \\ &= \mathbf{E}\left[F\left(\left(\frac{S_{\lfloor nt \rfloor} - x_n t}{\sqrt{a_n}}\right)_{0 \le t \le 1-\varepsilon}\right) \cdot \frac{\mathbf{P}(S'_{n-\lfloor n(1-\varepsilon) \rfloor} = x_n - S_{\lfloor n(1-\varepsilon) \rfloor})}{\mathbf{P}(S_n = x_n)}\right], \end{split}$$

where S and S' are two independent random walks with step distribution p.

Easy case: when **p** has mean μ and finite variance σ^2 and $x_n - \mu n = o(\sqrt{n})$.

Then the Local Limit Theorem states that with $g_t(x) = (2\pi t)^{-1/2} \exp(-x^2/(2t))$,

$$\sup_{k \in \mathbb{Z}} \left| \sqrt{n\sigma^2} \mathbf{P}(S_n = \lfloor \mu n \rfloor + k) - g_1 \left(\frac{k}{\sqrt{n\sigma^2}} \right) \right| \xrightarrow[n \to \infty]{} 0.$$

Also

$$\left(\frac{S_{\lfloor nt \rfloor} - \mu nt}{\sqrt{n\sigma^2}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \to \infty]{(d)} B,$$

a Brownian motion.

Easy case: when **p** has mean μ and finite variance σ^2 and $x_n - \mu n = o(\sqrt{n})$.

Then the Local Limit Theorem states that with $g_t(x) = (2\pi t)^{-1/2} \exp(-x^2/(2t))$,

$$\sup_{k \in \mathbb{Z}} \left| \sqrt{n\sigma^2} \mathbf{P}(S_n = \lfloor \mu n \rfloor + k) - g_1 \left(\frac{k}{\sqrt{n\sigma^2}} \right) \right| \xrightarrow[n \to \infty]{} 0.$$

Also

$$\left(\frac{S_{\lfloor nt \rfloor} - \mu nt}{\sqrt{n\sigma^2}}\right)_{0 \le t \le 1} \xrightarrow[n \to \infty]{(d)} B,$$

a Brownian motion.

Then with the previous decomposition,

$$\mathbf{E}\left[F\left(\left(\frac{S_{\lfloor nt \rfloor} - x_n t}{\sqrt{n\sigma^2}}\right)_{0 \le t \le 1-\varepsilon}\right) \middle| S_n = x_n\right] \xrightarrow[n \to \infty]{} \mathbf{E}\left[F\left((B_t)_{0 \le t \le 1-\varepsilon}\right) \cdot \frac{g_{\varepsilon}(-B_{1-\varepsilon})}{g_1(0)}\right],$$

and the right-hand side equals $\mathbb{E}\left[F((B_t^{br})_{0 \leq t \leq 1-\varepsilon})\right]$.

More generally, given x_n , one looks for a probability \mathbf{p}^n of the form $p_k^n = a_n b_n^k q_k$ and with mean close to x_n/n , for which we can prove for some $a_n \to \infty$,

$$\sup_{k \in \mathbb{Z}} \left| \sqrt{a_n} \, \mathbb{P}(S_n^n = x_n + k) - g_1\left(\frac{k}{\sqrt{a_n}}\right) \right| \xrightarrow[n \to \infty]{} 0.$$

More generally, given x_n , one looks for a probability \mathbf{p}^n of the form $p_k^n = a_n b_n^k q_k$ and with mean close to x_n/n , for which we can prove for some $a_n \to \infty$,

$$\sup_{k \in \mathbb{Z}} \left| \sqrt{a_n} \, \mathbb{P}(S_n^n = x_n + k) - g_1\left(\frac{k}{\sqrt{a_n}}\right) \right| \xrightarrow[n \to \infty]{} 0.$$

Theorem (Kortchemski & \bigcirc '21+). This estimates holds in each of the following cases: 1. $\lim_{n} x_n/n \in (i_q, \rho G'(\rho)/G(\rho))$ where $i_q = \min\{i : q_i > 0\}$ and $G(s) = \sum_k s^k q_k$ with radius of convergence ρ . Here

$$\frac{a_n}{n} = \frac{b_n^2 G^{(2)}(b_n) + b_n G'(b_n)}{G(b_n)} - \left(\frac{b_n G'(b_n)}{G(b_n)}\right)^2 \quad \text{where} \quad b_n \frac{G'(b_n)}{G(b_n)} = \frac{x_n}{n}$$

2. $\lim_n x_n/n = 0, q_0, q_1 > 0$. Here $a_n = x_n$.

3. $\lim_{n \to \infty} x_n/n = \infty$, *G* is Δ -analytic, and there exist $c, \alpha > 0$ such that $G(\rho - z) \sim cz^{-\alpha}$ as $z \to 0$ with $\operatorname{Re}(z) > 0$. Here $a_n = x_n^2/(\alpha n)$.

More generally, given x_n , one looks for a probability \mathbf{p}^n of the form $p_k^n = a_n b_n^k q_k$ and with mean close to x_n/n , for which we can prove for some $a_n \to \infty$,

$$\sup_{k \in \mathbb{Z}} \left| \sqrt{a_n} \, \mathbb{P}(S_n^n = x_n + k) - g_1\left(\frac{k}{\sqrt{a_n}}\right) \right| \xrightarrow[n \to \infty]{} 0.$$

Theorem (Kortchemski & \bigcirc '21+). This estimates holds in each of the following cases: 1. $\lim_{n} x_n/n \in (i_q, \rho G'(\rho)/G(\rho))$ where $i_q = \min\{i : q_i > 0\}$ and $G(s) = \sum_k s^k q_k$ with radius of convergence ρ . Here

$$\frac{a_n}{n} = \frac{b_n^2 G^{(2)}(b_n) + b_n G'(b_n)}{G(b_n)} - \left(\frac{b_n G'(b_n)}{G(b_n)}\right)^2 \quad \text{where} \quad b_n \frac{G'(b_n)}{G(b_n)} = \frac{x_n}{n}$$

2. $\lim_{n \to \infty} x_n/n = 0, q_0, q_1 > 0$. Here $a_n = x_n$.

3. $\lim_{n \to \infty} x_n/n = \infty$, *G* is Δ -analytic, and there exist $c, \alpha > 0$ such that $G(\rho - z) \sim cz^{-\alpha}$ as $z \to 0$ with $\operatorname{Re}(z) > 0$. Here $a_n = x_n^2/(\alpha n)$.

The last case was motivated by uniform random bipartite maps which are related to $q_k = \binom{2k+1}{k+1}$, which satisfies all the assumptions and $i_q = 0$ and $\rho G'(\rho)/G(\rho) = \infty$.

When $\lim_{n \to \infty} x_n/n = \rho G'(\rho)/G(\rho) < \infty$, one needs to look closer and the behaviour depends on the speed of convergence.

When $\lim_n x_n/n = \rho G'(\rho)/G(\rho) < \infty$, one needs to look closer and the behaviour depends on the speed of convergence.

Say **q** is a probability with finite mean μ and in the domain of attraction of a stable law with index $\alpha \in (1, 2)$. For concreteness: for some C > 0,

$$G(s) = \sum_{k \ge 0} s^k q_k = 1 - \mu + \mu s + C(1 - s)^{\alpha}.$$

So $\rho = 1$ and $\rho G'(\rho)/G(\rho) = \mu$.

When $\lim_n x_n/n = \rho G'(\rho)/G(\rho) < \infty$, one needs to look closer and the behaviour depends on the speed of convergence.

Say **q** is a probability with finite mean μ and in the domain of attraction of a stable law with index $\alpha \in (1, 2)$. For concreteness: for some C > 0,

$$G(s) = \sum_{k \ge 0} s^k q_k = 1 - \mu + \mu s + C(1 - s)^{\alpha}.$$

So $\rho = 1$ and $\rho G'(\rho)/G(\rho) = \mu$.

Then an unconditioned random walk S satisfies

$$\left(n^{-1/\alpha}\left(S_{\lfloor nt \rfloor}-\mu nt\right)\right)_{t\geqslant 0} \xrightarrow[n\to\infty]{(d)} X^{\alpha},$$

where X^{α} is an α -stable Lévy process with no negative jump.

Recall

$$G(s) = \sum_{k \ge 0} s^k q_k = 1 - \mu + \mu s + C(1 - s)^{\alpha},$$

with $\alpha \in (1, 2)$. So

$$\left(n^{-1/\alpha}\left(S_{\lfloor nt\rfloor}-\mu nt\right)\right)_{t\geq 0} \xrightarrow[n\to\infty]{(d)} X^{\alpha}.$$

Recall

$$G(s) = \sum_{k \ge 0} s^k q_k = 1 - \mu + \mu s + C(1 - s)^{\alpha},$$

with $\alpha \in (1, 2)$. So

$$\left(n^{-1/\alpha}\left(S_{\lfloor nt \rfloor}-\mu nt\right)\right)_{t\geq 0} \xrightarrow[n\to\infty]{(d)} X^{\alpha}.$$

Now if we condition on $S_n = x_n$ where

$$x_n = \mu n + \lambda_n$$
 with $n^{-1/\alpha} \lambda_n \xrightarrow[n \to \infty]{} \lambda \in [-\infty, \infty],$

then $(S_{\lfloor nt \rfloor} - x_n t)_{t \in [0,1]}$ converges after scaling towards:

Recall

$$G(s) = \sum_{k \ge 0} s^k q_k = 1 - \mu + \mu s + C(1 - s)^{\alpha},$$

with $\alpha \in (1, 2)$. So

$$\left(n^{-1/\alpha}\left(S_{\lfloor nt \rfloor}-\mu nt\right)\right)_{t\geq 0} \xrightarrow[n\to\infty]{(d)} X^{\alpha}.$$

Now if we condition on $S_n = x_n$ where

$$x_n = \mu n + \lambda_n$$
 with $n^{-1/\alpha} \lambda_n \xrightarrow[n \to \infty]{} \lambda \in [-\infty, \infty],$

then $(S_{\lfloor nt \rfloor} - x_n t)_{t \in [0,1]}$ converges after scaling towards:

1. The bridge of $(X_t^{\alpha} - \lambda t)_t$ if $\lambda \in (-\infty, \infty)$. (Informally X^{α} conditioned on $X_1^{\alpha} = \lambda$.)

Recall

$$G(s) = \sum_{k \ge 0} s^k q_k = 1 - \mu + \mu s + C(1 - s)^{\alpha},$$

with $\alpha \in (1, 2)$. So

$$\left(n^{-1/\alpha}\left(S_{\lfloor nt \rfloor}-\mu nt\right)\right)_{t\geq 0} \xrightarrow[n\to\infty]{(d)} X^{\alpha}.$$

Now if we condition on $S_n = x_n$ where

$$x_n = \mu n + \lambda_n$$
 with $n^{-1/\alpha} \lambda_n \xrightarrow[n \to \infty]{} \lambda \in [-\infty, \infty],$

then $(S_{\lfloor nt \rfloor} - x_n t)_{t \in [0,1]}$ converges after scaling towards:

- 1. The bridge of $(X_t^{\alpha} \lambda t)_t$ if $\lambda \in (-\infty, \infty)$. (Informally X^{α} conditioned on $X_1^{\alpha} = \lambda$.)
- 2. A Brownian bridge if $\lambda = -\infty$.

Recall

$$G(s) = \sum_{k \ge 0} s^k q_k = 1 - \mu + \mu s + C(1 - s)^{\alpha},$$

with $\alpha \in (1, 2)$. So

$$\left(n^{-1/\alpha}\left(S_{\lfloor nt \rfloor}-\mu nt\right)\right)_{t\geq 0} \xrightarrow[n\to\infty]{(d)} X^{\alpha}.$$

Now if we condition on $S_n = x_n$ where

$$x_n = \mu n + \lambda_n$$
 with $n^{-1/\alpha} \lambda_n \xrightarrow[n \to \infty]{} \lambda \in [-\infty, \infty],$

then $(S_{\lfloor nt \rfloor} - x_n t)_{t \in [0,1]}$ converges after scaling towards:

- 1. The bridge of $(X_t^{\alpha} \lambda t)_t$ if $\lambda \in (-\infty, \infty)$. (Informally X^{α} conditioned on $X_1^{\alpha} = \lambda$.)
- 2. A Brownian bridge if $\lambda = -\infty$.
- 3. The path $1_{U \leq t} t$ where $U \sim \text{Unif}(0, 1)$ when $\lambda = \infty$.

Question: What about the height process? By a more general work (in preparation, hopefully Kortchemski & \bigcirc '21b) we have the convergence of the marginals, but tightness is missing in general (only available for the moment in a finite variance regime).

Question: What about the height process? By a more general work (in preparation, hopefully Kortchemski & \bigcirc '21b) we have the convergence of the marginals, but tightness is missing in general (only available for the moment in a finite variance regime).

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^n in a very particular way; what about \mathbf{q}^n -simply generated trees with size n in general? General limits of the Łukasiewicz paths are (non stable) Lévy processes. What motivation?

Question: What about the height process? By a more general work (in preparation, hopefully Kortchemski & \bigcirc '21b) we have the convergence of the marginals, but tightness is missing in general (only available for the moment in a finite variance regime).

Question: The proofs are based on the idea of replacing q by p^n in a very particular way; what about q^n -simply generated trees with size n in general? General limits of the Łukasiewicz paths are (non stable) Lévy processes. What motivation?

About planar maps: Bipartite planar maps are bijectively related to decorated trees by Janson & Stefánsson '15. The convergence of the Łukasiewicz path to the Brownian excursion is (kind of) sufficient to prove the convergence of the associated **Boltzmann map** conditioned on its number of vertices, edges, and faces at the same time towards the **Brownian sphere** by the criterion of © '21+.

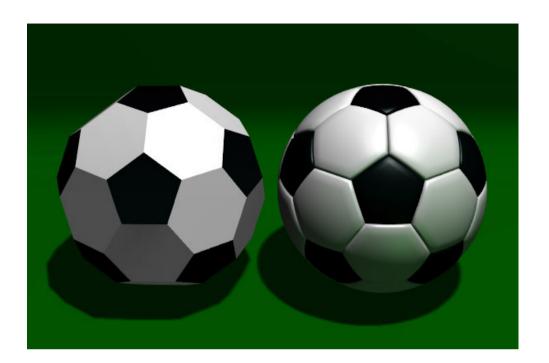
Question: What about the height process? By a more general work (in preparation, hopefully Kortchemski & \bigcirc '21b) we have the convergence of the marginals, but tightness is missing in general (only available for the moment in a finite variance regime).

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^n in a very particular way; what about \mathbf{q}^n -simply generated trees with size n in general? General limits of the Łukasiewicz paths are (non stable) Lévy processes. What motivation?

About planar maps: Bipartite planar maps are bijectively related to decorated trees by Janson & Stefánsson '15. The convergence of the Łukasiewicz path to the Brownian excursion is (kind of) sufficient to prove the convergence of the associated **Boltzmann map** conditioned on its number of vertices, edges, and faces at the same time towards the **Brownian sphere** by the criterion of © '21+.

Thank you!

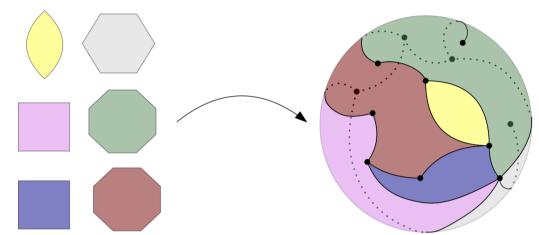
A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.



A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

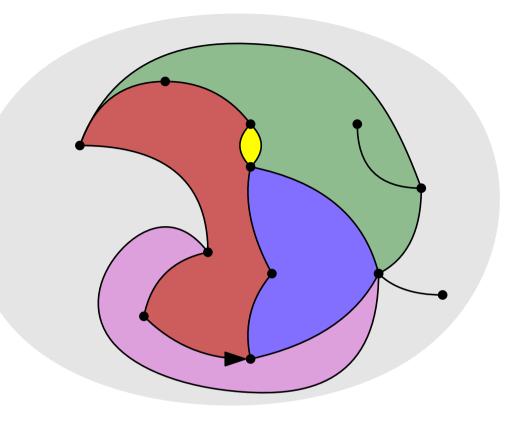
A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Dual definition: a (planar) map is a graph **embedded** in the sphere; we shall deal with **rooted** maps in which an oriented edge is distinguished.



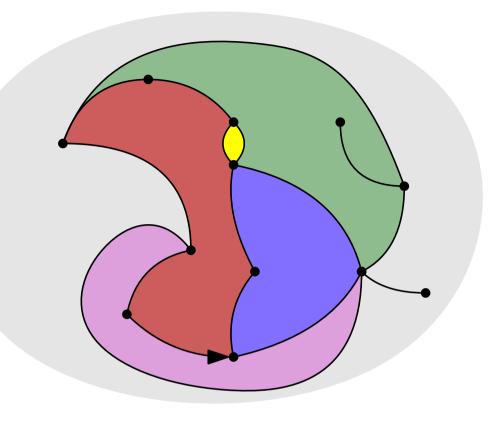
A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Dual definition: a (planar) map is a graph **embedded** in the sphere; we shall deal with **rooted** maps in which an oriented edge is distinguished.



A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Dual definition: a (planar) map is a graph **embedded** in the sphere; we shall deal with **rooted** maps in which an oriented edge is distinguished.

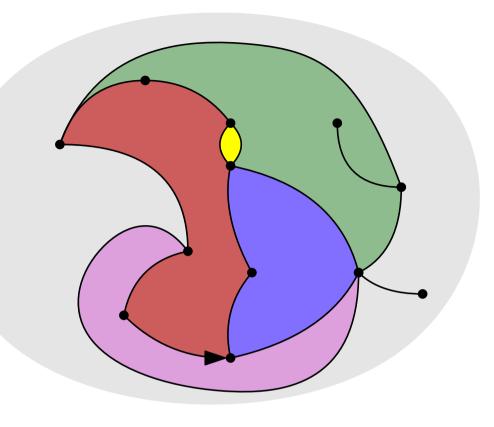


Interest in planar maps:

- combinatorics: enumeration formulae, bijections;
- theoretical physics: matrix integral, quantum gravity;
- probability: behaviour of large random maps
 - model of discrete surfaces, scaling limit towards continuum surfaces?
 - differences between abstract graphs and embedded graphs?

A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Dual definition: a (planar) map is a graph **embedded** in the sphere; we shall deal with **rooted** maps in which an oriented edge is distinguished.

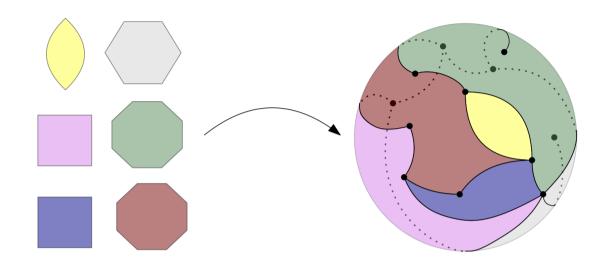


Interest in planar maps:

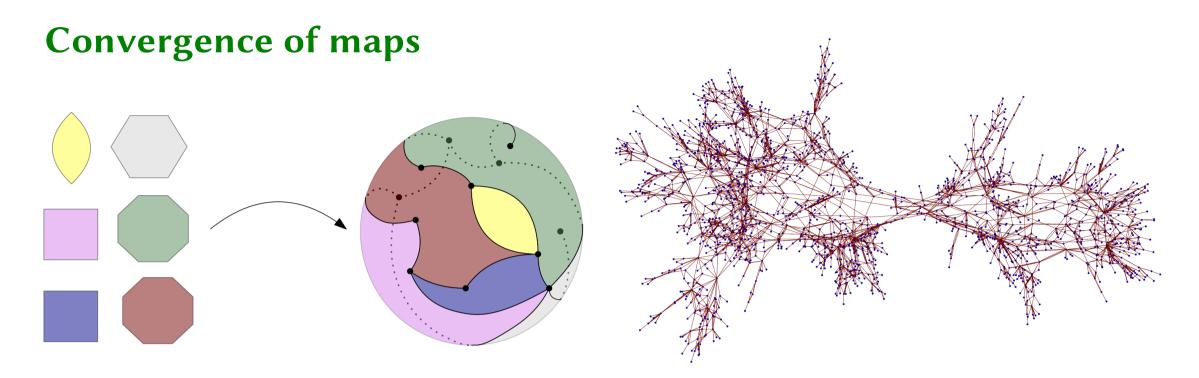
- combinatorics: enumeration formulae, bijections;
- theoretical physics: matrix integral, quantum gravity;
- probability: behaviour of large random maps
 - model of discrete surfaces, scaling limit towards continuum surfaces?
 - differences between abstract graphs and embedded graphs?

Technical restriction: We only consider bipartite maps.

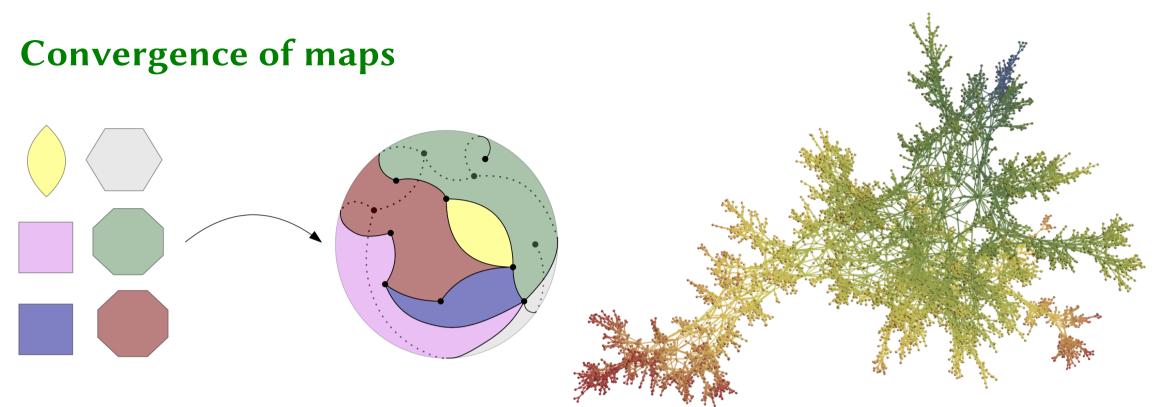
Convergence of maps



What topology do we put on maps?



As for trees, we extract the theoretical graph, and forget about the embedding, and give to each edge a length with tends to 0 with the size of the map.



As for trees, we extract the theoretical graph, and forget about the embedding, and give to each edge a length with tends to 0 with the size of the map.

Theorem (Le Gall '13 and Miermont '13) If Q_n is a quadrangulation with n faces sampled uniformly at randon, then

$$\left(\frac{9}{8n}\right)^{1/4} Q_n \quad \xrightarrow[n \to \infty]{} S$$

where \mathcal{S} is the **Brownian sphere**.

& has the topology of the sphere (Le Gall & Paulin '08, Miermont '08) and Hausdorff dimension 4 (Le Gall '07).

Extended since to many other models of random maps, but always using the known case of quadrangulations as an input.

Boltzmann random maps

General model: fix $\mathbf{q} = (q_k)_{k \ge 1} \in [0, \infty)^N$ and sample a map m_n with size n with probability:

$$\mathbf{P}_n^{\mathbf{q}}(m_n) = \frac{1}{Z_n} \prod_{\text{face } f} q_{\deg(f)/2},$$

where deg(f) is the number of incident edges, with multiplicity, which is always even for bipartite maps.

Boltzmann random maps

General model: fix $\mathbf{q} = (q_k)_{k \ge 1} \in [0, \infty)^N$ and sample a map m_n with size n with probability:

$$\mathbf{P}_n^{\mathbf{q}}(m_n) = \frac{1}{Z_n} \prod_{\text{face } f} q_{\deg(f)/2},$$

where deg(f) is the number of incident edges, with multiplicity, which is always even for bipartite maps.

Theorem (③ '21+). If M_n sampled from $\mathbf{P}_n^{\mathbf{q}}$ satisfies with high probability $\max_f \deg(f)(\deg(f) - 2) \ll \sum_f \deg(f)(\deg(f) - 2)$, then

$$\left(\frac{9}{\sum_{f} \deg(f)(\deg(f)-2)}\right)^{1/4} M_n \xrightarrow[n \to \infty]{} \mathcal{S}$$

Boltzmann random maps

General model: fix $\mathbf{q} = (q_k)_{k \ge 1} \in [0, \infty)^N$ and sample a map m_n with size n with probability:

$$\mathbf{P}_n^{\mathbf{q}}(m_n) = \frac{1}{Z_n} \prod_{\text{face } f} q_{\deg(f)/2},$$

where deg(f) is the number of incident edges, with multiplicity, which is always even for bipartite maps.

Theorem (③ '21+). If M_n sampled from $\mathbf{P}_n^{\mathbf{q}}$ satisfies with high probability $\max_f \deg(f)(\deg(f) - 2) \ll \sum_f \deg(f)(\deg(f) - 2)$, then

$$\left(\frac{9}{\sum_{f} \deg(f)(\deg(f)-2)}\right)^{1/4} M_n \xrightarrow[n \to \infty]{} \mathcal{S}$$

Application. If q satisfies some criticality and finite variance assumption, then

$$\left(\frac{c}{n}\right)^{1/4} M_n \xrightarrow[n \to \infty]{} \mathcal{S},$$

where *c* depends both on **q** and the notion of size: either vertices, edges, or faces.

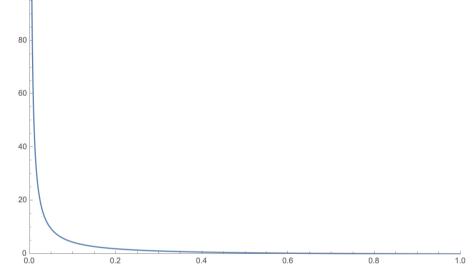
What about **q**-Boltzmann maps with *n* edges and k_n vertices, and so $n - k_n + 2$ faces by Euler's formula? We assume both $k_n, n - k_n \rightarrow \infty$.

What about **q**-Boltzmann maps with *n* edges and k_n vertices, and so $n - k_n + 2$ faces by Euler's formula? We assume both $k_n, n - k_n \rightarrow \infty$.

Theorem (Kortchemski & \bigcirc '21+). If M_n is a bipartite map with *n* edges and k_n vertices sampled uniformly at random, then

$$\left(s\left(\frac{k_n}{n}\right)\frac{9}{4n}\right)^{1/4}M_n \quad \xrightarrow[n\to\infty]{} \mathcal{S},$$

where $s(x) = (1 - x)(3 + x + \sqrt{(1 - x)(9 - x)})/(12x)$.



What about **q**-Boltzmann maps with *n* edges and k_n vertices, and so $n - k_n + 2$ faces by Euler's formula? We assume both $k_n, n - k_n \rightarrow \infty$.

Theorem (Kortchemski & \bigcirc '21+). If M_n is a bipartite map with n edges and k_n vertices sampled uniformly at random, then $\left(s\left(\frac{k_n}{n}\right)\frac{9}{4n}\right)^{1/4}M_n \xrightarrow[n\to\infty]{(d)} S,$ $where s(x) = (1-x)(3+x+\sqrt{(1-x)(9-x)})/(12x).$

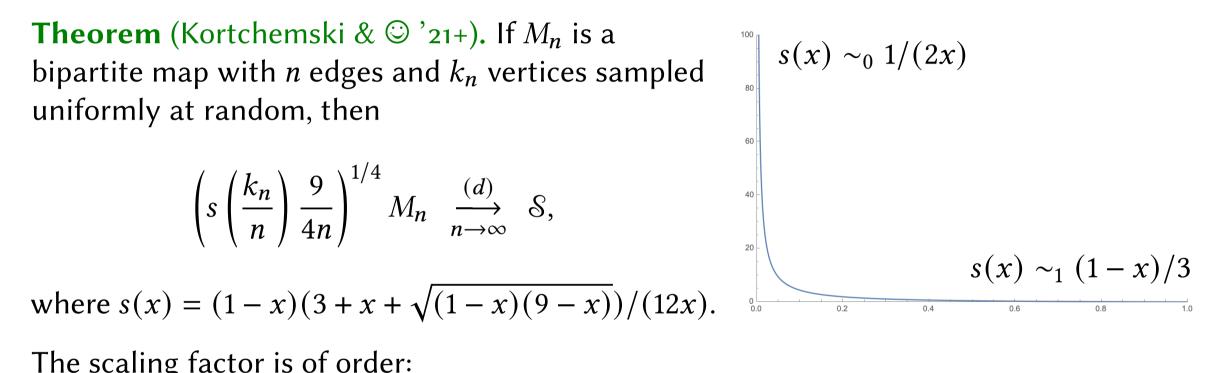
The scaling factor is of order:

•
$$n^{c/4}$$
 when $k_n = n^c$ with $c \in (0, 1)$

• $n^{(2-c)/4}$ when $n - k_n = n^c$ with $c \in (0, 1)$

In both cases this was predicted by Fusy & Guitter '14.

What about q-Boltzmann maps with n edges and k_n vertices, and so $n - k_n + 2$ faces by Euler's formula? We assume both $k_n, n - k_n \rightarrow \infty$.



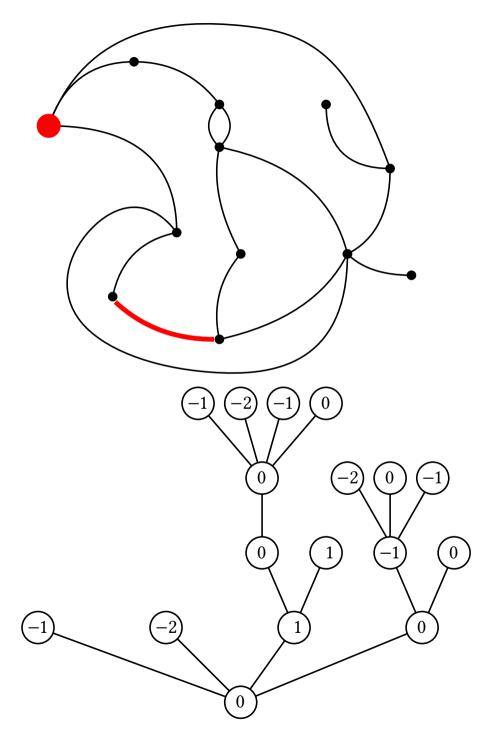
The scaling factor is of order:

•
$$n^{c/4}$$
 when $k_n = n^c$ with $c \in (0, 1)$

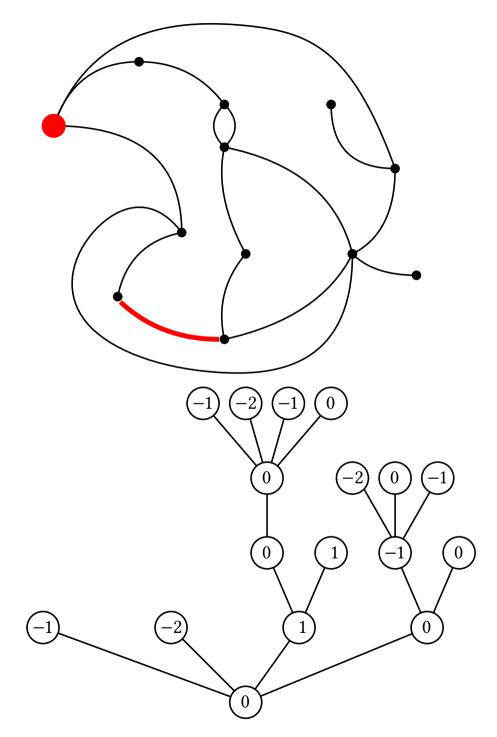
• $n^{(2-c)/4}$ when $n - k_n = n^c$ with $c \in (0, 1)$

In both cases this was predicted by Fusy & Guitter '14.

Actually nothing special about the uniform distribution, it is just a Boltzmann law with a sequence **q** with nice properties.



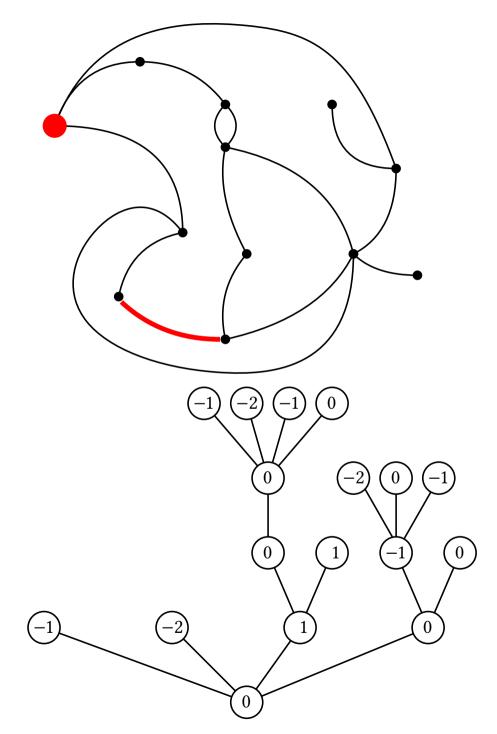
Combining bijections due to Bouttier, di Francesco & Guitter '04 and to Janson & Stefánsson '15 shows that bipartite maps with a distinguished non oriented edge and a vertex correspond to trees carrying some labels.



Combining bijections due to Bouttier, di Francesco & Guitter '04 and to Janson & Stefánsson '15 shows that bipartite maps with a distinguished non oriented edge and a vertex correspond to trees carrying some labels.

Key properties of the bijection $M \leftrightarrow T$:

- 1. faces of $M \leftrightarrow$ internal vertices of T and the number of children is half the degree of the face;
- 2. non distinguished vertices of $M \leftrightarrow$ leaves of Tand the labels describe distances in M to the distinguished vertex;
- 3. edges of $M \leftrightarrow$ edges of T.



Combining bijections due to Bouttier, di Francesco & Guitter '04 and to Janson & Stefánsson '15 shows that bipartite maps with a distinguished non oriented edge and a vertex correspond to trees carrying some labels.

Key properties of the bijection $M \leftrightarrow T$:

- 1. faces of $M \leftrightarrow$ internal vertices of T and the number of children is half the degree of the face;
- 2. non distinguished vertices of $M \leftrightarrow$ leaves of Tand the labels describe distances in M to the distinguished vertex;
- 3. edges of $M \leftrightarrow$ edges of T.

Consequence: a q^M -Boltzmann map with *n* edges and k_n vertices corresponds to a simply generated tree with n + 1 vertices and $k_n - 1$ leaves, sampled from the weights

$$q_0^T = 1$$
 and $q_k^T = \begin{pmatrix} 2k-1\\ k-1 \end{pmatrix} q_k^M$ $(k \ge 1).$

Conclusion: In order to deduce that, for some deterministic sequence $a_n \rightarrow \infty$,

$$\left(\frac{9}{4a_n}\right)^{1/4} M_n \quad \xrightarrow[n \to \infty]{} \mathcal{S},$$

when M_n is a \mathbf{q}^M -Boltzmann bipartite map conditioned to have n edges and k_n vertices, it suffices to prove that, in a \mathbf{q}^T simply generated tree with n + 1 vertices and $k_n - 1$ leaves, where

$$q_0^T = 1$$
 and $q_k^T = {\binom{2k-1}{k-1}} q_k^M$ $(k \ge 1),$

it holds that

$$\frac{\sum_{u} k_{u}(k_{u}-1)}{a_{n}} \xrightarrow[n \to \infty]{} 1 \text{ and } \frac{\max_{u} k_{u}(k_{u}-1)}{a_{n}} \xrightarrow[n \to \infty]{} 0.$$

When $\lim_n x_n/n = \rho G'(\rho)/G(\rho) < \infty$, one needs to look closer and the behaviour depends on the speed of convergence. If **q** is a probability wih finite mean and in the domain of attraction of a stable law with index $\alpha \in (1, 2)$, the we can get a Brownian bridge, or a bridge of a stable process with a drift, or a one-big-jump principle.

When $\lim_n x_n/n = \rho G'(\rho)/G(\rho) < \infty$, one needs to look closer and the behaviour depends on the speed of convergence. If **q** is a probability wih finite mean and in the domain of attraction of a stable law with index $\alpha \in (1, 2)$, the we can get a Brownian bridge, or a bridge of a stable process with a drift, or a one-big-jump principle.

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^n in a very particular way; what about \mathbf{q}^n -Boltzmann maps with size n in general? What motivation? Continuum objects (non stable Lévy maps) studied in a forthcoming paper (Hölder continuity estimates, fractal dimensions).

When $\lim_n x_n/n = \rho G'(\rho)/G(\rho) < \infty$, one needs to look closer and the behaviour depends on the speed of convergence. If **q** is a probability wih finite mean and in the domain of attraction of a stable law with index $\alpha \in (1, 2)$, the we can get a Brownian bridge, or a bridge of a stable process with a drift, or a one-big-jump principle.

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^n in a very particular way; what about \mathbf{q}^n -Boltzmann maps with size n in general? What motivation? Continuum objects (non stable Lévy maps) studied in a forthcoming paper (Hölder continuity estimates, fractal dimensions).

Question: What about trees? By a more general work (another forthcoming paper) we have the convergence of the marginals of the tree, but tightness is missing in general.

When $\lim_n x_n/n = \rho G'(\rho)/G(\rho) < \infty$, one needs to look closer and the behaviour depends on the speed of convergence. If **q** is a probability wih finite mean and in the domain of attraction of a stable law with index $\alpha \in (1, 2)$, the we can get a Brownian bridge, or a bridge of a stable process with a drift, or a one-big-jump principle.

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^n in a very particular way; what about \mathbf{q}^n -Boltzmann maps with size n in general? What motivation? Continuum objects (non stable Lévy maps) studied in a forthcoming paper (Hölder continuity estimates, fractal dimensions).

Question: What about trees? By a more general work (another forthcoming paper) we have the convergence of the marginals of the tree, but tightness is missing in general.

Thank you!