Geometry of large biconditioned random trees

Cyril Marzouk

joint work with Igor Kortchemski

École polytechnique

Outlook

About the results:

- Motivation from random maps
- Answers in this framework
- Similar questions on trees left open

About the talk:

1. Model and questions on trees
2. From trees to excursions paths and then bridges
3. From bridges to nondecreasing paths
4. From nondecreasing paths to local limit estimates
5. Wrap up, further results, open questions
6. Brief discussion on maps?

Rooted plane trees

Genealogical tree:

- plane = siblings are ordered from left to right;
- rooted $=$ ancestor and first child.

Rooted plane trees

Genealogical tree:

- plane = siblings are ordered from left to right;
- rooted $=$ ancestor and first child.

Question: What does a random tree with n vertices look like when $n \rightarrow \infty$?

Random trees

Aldous '93: T_{n} uniform random tree with n vertices

$$
\frac{1}{\sqrt{2 n}} T_{n} \xrightarrow[n \rightarrow \infty]{\xrightarrow{(d)}} \mathscr{T},
$$

where the limit \mathscr{T} is called the Brownian tree.

Fig. 3.
© David Aldous

Random trees

Aldous '93: T_{n} uniform random tree with n vertices

$$
\frac{1}{\sqrt{2 n}} T_{n} \xrightarrow[n \rightarrow \infty]{(d)} \mathscr{T},
$$

where the limit \mathscr{T} is called the Brownian tree.

In modern language, the topology is the Gromov-Hausdorff-Prokhorov topology. Intuitively, each edge is given length $1 /(2 \sqrt{n})$.
T_{∞} is not a discrete tree anymore, but a continuum one, and is related to the Brownian excursion.

© Igor Kortchemski

Random trees

Aldous '93: T_{n} uniform random tree with n vertices

$$
\frac{1}{\sqrt{2 n}} T_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} \mathscr{T},
$$

where the limit \mathscr{T} is called the Brownian tree.

In modern language, the topology is the Gromov-Hausdorff-Prokhorov topology. Intuitively, each edge is given length $1 /(2 \sqrt{n})$.
T_{∞} is not a discrete tree anymore, but a continuum one, and is related to the Brownian excursion.

Universality. Aldous in fact considers size-conditioned Bienaymé-Galton-Watson

Simply generated trees

Fix $\mathbf{q}=\left(q_{k}\right)_{k \geqslant 0} \in[0, \infty)^{Z_{+}}$and sample a tree t_{n} with n vertices with probability:

$$
\mathbf{P}_{n}^{\mathbf{q}}\left(t_{n}\right)=\frac{1}{Z_{n}} \prod_{u \in t_{n}} q_{k_{u}},
$$

where

- $u \in t_{n}$ is short for u is a vertex of t_{n}
- k_{u} is the offspring number of u
- Z_{n} is a normalising constant

Simply generated trees

Fix $\mathbf{q}=\left(q_{k}\right)_{k \geqslant 0} \in[0, \infty)^{Z_{+}}$and sample a tree t_{n} with n vertices with probability:

$$
\mathbf{P}_{n}^{\mathbf{q}}\left(t_{n}\right)=\frac{1}{Z_{n}} \prod_{u \in t_{n}} q_{k_{u}},
$$

where

- $u \in t_{n}$ is short for u is a vertex of t_{n}
- k_{u} is the offspring number of u
- Z_{n} is a normalising constant

Remark: we must have $Z_{n} \neq 0$, which means that n must be compatible with the support of \mathbf{q}.
E.g. if $q_{k} \neq 0$ iff $k \in\{0,2\}$, only binary trees, with odd size, are allowed.
We will not be careful about this. Usually dealt with an aperiodicity condition.

Simply generated trees

Fix $\mathbf{q}=\left(q_{k}\right)_{k \geqslant 0} \in[0, \infty)^{Z_{+}}$and sample a tree t_{n} with n vertices with probability:

$$
\mathbf{P}_{n}^{\mathrm{q}}\left(t_{n}\right)=\frac{1}{Z_{n}} \prod_{u \in t_{n}} q_{k_{u}},
$$

where

- $u \in t_{n}$ is short for u is a vertex of t_{n}
- k_{u} is the offspring number of u
- Z_{n} is a normalising constant

Remark: we must have $Z_{n} \neq 0$, which means that n must be compatible with the support of \mathbf{q}.
E.g. if $q_{k} \neq 0$ iff $k \in\{0,2\}$, only binary trees, with odd size, are allowed.
We will not be careful about this. Usually dealt with an aperiodicity condition.

Examples:

- $q_{k}=1$ for every $k \geqslant 1$, then $\mathbf{P}_{n}^{\mathbf{q}}$ is the uniform distribution on trees with n vertices.
- $q_{k}=1$ if $k \in A$ and $q_{k}=0$ otherwise, with $0 \in A$, then $\mathbf{P}_{n}^{\mathrm{q}}$ is the uniform distribution on trees with n vertices with offspring numbers in A.
- If \mathbf{q} is a probability measure with mean 1 , then $\mathbf{P}_{n}^{\mathbf{q}}$ is the law of a critical Bienaymé-Galton-Watson tree, i.e. each individual reproduces independently according to \mathbf{q}, and conditioned to have n vertices in total.

Limits of large simply generated trees

A straightforward calculation shows: if \mathbf{p} and \mathbf{q} are related by

$$
p_{k}=a b^{k} q_{k} \quad \text { for every } \quad k \geqslant 0,
$$

for some $a, b>0$, then $\mathrm{P}_{n}^{\mathrm{q}}=\mathrm{P}_{n}^{\mathrm{p}}$.

Limits of large simply generated trees

A straightforward calculation shows: if \mathbf{p} and \mathbf{q} are related by

$$
p_{k}=a b^{k} q_{k} \quad \text { for every } \quad k \geqslant 0,
$$

for some $a, b>0$, then $\mathbf{P}_{n}^{\mathrm{q}}=\mathbf{P}_{n}^{\mathrm{p}}$.
Given \mathbf{q}, if $G(s)=\sum_{k \geqslant 0} s^{k} q_{k}$ has radius of convergence $\rho>0$, then for every $b \in(0, \rho)$, the sequence $p_{k}=G(b)^{-1} b^{k} q_{k}$ is a probability with mean $b G^{\prime}(b) / G(b)$, which is increasing in b.

Limits of large simply generated trees

A straightforward calculation shows: if \mathbf{p} and \mathbf{q} are related by

$$
p_{k}=a b^{k} q_{k} \quad \text { for every } \quad k \geqslant 0,
$$

for some $a, b>0$, then $\mathbf{P}_{n}^{\mathrm{q}}=\mathbf{P}_{n}^{\mathrm{p}}$.
Given \mathbf{q}, if $G(s)=\sum_{k \geqslant 0} s^{k} q_{k}$ has radius of convergence $\rho>0$, then for every $b \in(0, \rho)$, the sequence $p_{k}=G(b)^{-1} b^{k} q_{k}$ is a probability with mean $b G^{\prime}(b) / G(b)$, which is increasing in b.
Conclusion: if there exists $b \in(0, \rho]$ such that $b G^{\prime}(b) / G(b)=1$, then $\mathrm{P}_{n}^{\mathrm{q}}$ is the law of a critical Bienaymé-Galton-Watson tree conditioned to have n vertices.

Limits of large simply generated trees

A straightforward calculation shows: if \mathbf{p} and \mathbf{q} are related by

$$
p_{k}=a b^{k} q_{k} \quad \text { for every } \quad k \geqslant 0
$$

for some $a, b>0$, then $\mathrm{P}_{n}^{\mathrm{q}}=\mathrm{P}_{n}^{\mathrm{p}}$.
Given \mathbf{q}, if $G(s)=\sum_{k \geqslant 0} s^{k} q_{k}$ has radius of convergence $\rho>0$, then for every $b \in(0, \rho)$, the sequence $p_{k}=G(b)^{-1} b^{k} q_{k}$ is a probability with mean $b G^{\prime}(b) / G(b)$, which is increasing in b.
Conclusion: if there exists $b \in(0, \rho]$ such that $b G^{\prime}(b) / G(b)=1$, then $\mathrm{P}_{n}^{\mathrm{q}}$ is the law of a critical Bienaymé-Galton-Watson tree conditioned to have n vertices.

Theorem (Aldous '93) Suppose \mathbf{p} has mean 1 and variance $\sigma^{2} \in(0, \infty)$ and sample T_{n} from $\mathrm{P}_{n}^{\mathrm{p}}$, then

$$
\frac{\sigma}{2 \sqrt{n}} T_{n} \underset{n \rightarrow \infty}{(d)} \mathscr{T}
$$

where \mathscr{T} is the Brownian tree.

Other conditionings

Kortchemski '12: T_{n} conditioned to have n leaves instead. Same result with a different scaling constant.

Other conditionings

Kortchemski '12: T_{n} conditioned to have n leaves instead. Same result with a different scaling constant.
Intuitively clear: if T_{n} is conditioned to have n vertices, it has about $n p_{0}$ leaves so if it is conditioned to have n leaves, it should resemble to a tree conditioned to have n / p_{0} vertices.

Other conditionings

Kortchemski '12: T_{n} conditioned to have n leaves instead. Same result with a different scaling constant.
Intuitively clear: if T_{n} is conditioned to have n vertices, it has about $n p_{0}$ leaves so if it is conditioned to have n leaves, it should resemble to a tree conditioned to have n / p_{0} vertices.

What if the tree is conditioned to have n vertices and k_{n} leaves, with $k_{n} \neq n p_{0}$?

Other conditionings

Kortchemski '12: T_{n} conditioned to have n leaves instead. Same result with a different scaling constant.
Intuitively clear: if T_{n} is conditioned to have n vertices, it has about $n p_{0}$ leaves so if it is conditioned to have n leaves, it should resemble to a tree conditioned to have n / p_{0} vertices.

What if the tree is conditioned to have n vertices and k_{n} leaves, with $k_{n} \neq n p_{0}$?
Theorem (Labarbe \& Marckert '07) Let T_{n} be a uniform random tree with n vertices and k_{n} leaves with both $k_{n}, n-k_{n} \rightarrow \infty$. Then

$$
\frac{1}{\sqrt{n s\left(k_{n} / n\right)}} T_{n} \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \mathscr{T}
$$

where $s(x)=2(1-x) / x$ for every $x \in(0,1)$.

Other conditionings

Kortchemski '12: T_{n} conditioned to have n leaves instead. Same result with a different scaling constant.
Intuitively clear: if T_{n} is conditioned to have n vertices, it has about $n p_{0}$ leaves so if it is conditioned to have n leaves, it should resemble to a tree conditioned to have n / p_{0} vertices.

What if the tree is conditioned to have n vertices and k_{n} leaves, with $k_{n} \neq n p_{0}$?
Theorem (Labarbe \& Marckert '07) Let T_{n} be a uniform random tree with n vertices and k_{n} leaves with both $k_{n}, n-k_{n} \rightarrow \infty$. Then

$$
\frac{1}{\sqrt{n s\left(k_{n} / n\right)}} T_{n} \underset{n \rightarrow \infty}{\xrightarrow{(d)}} \mathscr{T}
$$

where $s(x)=2(1-x) / x$ for every $x \in(0,1)$.

Question: What about more general biconditioned simply generated trees?

The Łukasiewicz path

We do not aim to control the contour or height process of the trees, but only their Łukasiewicz path $W_{j}=\sum_{i \leqslant j} w_{i}$.

The Łukasiewicz path

We do not aim to control the contour or height process of the trees, but only their Łukasiewicz path $W_{j}=\sum_{i \leqslant j} w_{i}$.

The Łukasiewicz path

We do not aim to control the contour or height process of the trees, but only their Łukasiewicz path $W_{j}=\sum_{i \leqslant j} w_{i}$.

$w_{i}=$ number of children minus 1 of the i 'th vertex in depth-first search order.

The Łukasiewicz path

We do not aim to control the contour or height process of the trees, but only their Łukasiewicz path $W_{j}=\sum_{i \leqslant j} w_{i}$.

$w_{i}=$ number of children minus 1 of the i 'th vertex in depth-first search order.

We want $a_{n}^{-1 / 2} W_{\lfloor n t\rfloor} \rightarrow B^{\text {ex }}$ a Brownian excursion under $\mathrm{P}^{\mathrm{q}}\left(\cdot \mid n\right.$ vertices $\& k_{n}$ leaves $)$.

The conjugation trick

Recall: we want $a_{n}^{-1 / 2} W_{\lfloor n t\rfloor} \rightarrow B^{\text {ex }}$, a Brownian excursion under $\mathbf{P}^{\mathrm{q}}\left(\cdot \mid n\right.$ vertices $\& k_{n}$ leaves $)$.

The conjugation trick

Recall: we want $a_{n}^{-1 / 2} W_{\lfloor n t\rfloor} \rightarrow B^{\text {ex }}$, a Brownian excursion under $\mathrm{P}^{\mathrm{q}}\left(\cdot \mid n\right.$ vertices $\& k_{n}$ leaves $)$.

The conjugation trick

Recall: we want $a_{n}^{-1 / 2} W_{\lfloor n t\rfloor} \rightarrow B^{\text {ex }}$, a Brownian excursion under $\mathrm{P}^{\mathrm{q}}\left(\cdot \mid n\right.$ vertices $\& k_{n}$ leaves $)$.

Equivalent to $a_{n}^{-1 / 2} S_{\lfloor n t\rfloor} \rightarrow B^{\mathrm{br}}$, a Brownian bridge.

The conjugation trick

Recall: we want $a_{n}^{-1 / 2} W_{\lfloor n t\rfloor} \rightarrow B^{\text {ex }}$, a Brownian excursion under $\mathbf{P}^{\mathrm{q}}\left(\cdot \mid n\right.$ vertices $\& k_{n}$ leaves).

Equivalent to $a_{n}^{-1 / 2} S_{\lfloor n t\rfloor} \rightarrow B^{\mathrm{br}}$, a Brownian bridge.
S is a random path whose increments are sampled with probability

$$
\frac{1}{Z_{n}} \prod_{i=1}^{n} q_{s_{i}+1}
$$

in the set $\left\{\left(s_{i}\right)_{1 \leqslant i \leqslant n} \in \mathbb{Z}_{\geqslant-1}^{n}: \sum_{i=1}^{n} s_{i}=-1\right.$ and $\left.\#\left\{i \leqslant n: s_{i}=-1\right\}=k_{n}\right\}$.

Simply generated bridges

Key observation: The position of the k_{n} negative increments of S is a uniform random choice. Therefore if we set $L_{j}=\left\{i \leqslant j: s_{i}=-1\right\}$, then it can be constructed from an urn.

Simply generated bridges

Key observation: The position of the k_{n} negative increments of S is a uniform random choice. Therefore if we set $L_{j}=\left\{i \leqslant j: s_{i}=-1\right\}$, then it can be constructed from an urn.

Say there are k_{n} good balls and $n-k_{n}$ bad balls. We sample balls one after the others, then L_{j} is the number of good balls after j trials.

Simply generated bridges

Key observation: The position of the k_{n} negative increments of S is a uniform random choice. Therefore if we set $L_{j}=\left\{i \leqslant j: s_{i}=-1\right\}$, then it can be constructed from an urn.

Say there are k_{n} good balls and $n-k_{n}$ bad balls. We sample balls one after the others, then L_{j} is the number of good balls after j trials.

If we sample with replacement, then $L_{j} \sim \operatorname{Bin}\left(j, k_{n} / n\right)$ and then

$$
\left(\frac{L_{\lfloor n t\rfloor}-k_{n} t}{\sqrt{k_{n}\left(n-k_{n}\right) / n}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} B .
$$

Simply generated bridges

Key observation: The position of the k_{n} negative increments of S is a uniform random choice. Therefore if we set $L_{j}=\left\{i \leqslant j: s_{i}=-1\right\}$, then it can be constructed from an urn.

Say there are k_{n} good balls and $n-k_{n}$ bad balls. We sample balls one after the others, then L_{j} is the number of good balls after j trials.

If we sample with replacement, then $L_{j} \sim \operatorname{Bin}\left(j, k_{n} / n\right)$ and then

$$
\left(\frac{L_{\lfloor n t\rfloor}-k_{n} t}{\sqrt{k_{n}\left(n-k_{n}\right) / n}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} B .
$$

Here we sample without replacement and thus

$$
\left(\frac{L_{\lfloor n t\rfloor}-k_{n} t}{\sqrt{k_{n}\left(n-k_{n}\right) / n}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} B^{\mathrm{br}} .
$$

See e.g. the lecture notes from St-Flour by Aldous ' 85 .

Simply generated bridges

Split the negative and nonnegative increments:

Simply generated bridges

Split the negative and nonnegative increments:

Simply generated bridges

Split the negative and nonnegative increments:

Recall that

$$
\left(\frac{L_{\lfloor n t\rfloor}-k_{n} t}{\sqrt{k_{n}\left(n-k_{n}\right) / n}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} B^{\mathrm{br}} .
$$

It remains to study $S+L$, not independent from L.

Simply generated bridges

Remove the negative increments from S to get $\left(\widetilde{S_{i}}\right)_{0 \leqslant i \leqslant n-k_{n}}$, now independent from L.

Simply generated bridges

Remove the negative increments from S to get $\left(\widetilde{S_{i}}\right)_{0 \leqslant i \leqslant n-k_{n}}$, now independent from L.

The increments of \widetilde{S} belong to

$$
\begin{aligned}
& \left\{\left(\widetilde{s_{i}}\right)_{1 \leqslant i \leqslant n-k_{n}} \in \mathrm{Z}_{\geqslant 0}^{n-k_{n}}: \sum_{i=1}^{n-k_{n}} \widetilde{s}_{i}=k_{n}-1\right\}, \\
& \text { and are sampled with probability }
\end{aligned}
$$

Simply generated bridges

Remove the negative increments from S to get $\left(\widetilde{S_{i}}\right)_{0 \leqslant i \leqslant n-k_{n}}$, now independent from L.

The increments of \widetilde{S} belong to

$$
\begin{aligned}
& \left\{\left(\widetilde{s_{i}}\right)_{1 \leqslant i \leqslant n-k_{n}} \in \mathrm{Z}_{\geqslant 0}^{n-k_{n}}: \sum_{i=1}^{n-k_{n}} \widetilde{s}_{i}=k_{n}-1\right\}, \\
& \text { and are sampled with probability }
\end{aligned}
$$

Scaling limits of simply generated bridges

It all boils down to proving a convergence of the form

$$
\left(\frac{S_{\lfloor n t\rfloor}-x_{n} t}{\sqrt{a_{n}}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} B^{\mathrm{br}},
$$

Change of notation!
where S is an nondecreasing bridge from 0 to x_{n} in n steps, with weight sequence \mathbf{q}.

Scaling limits of simply generated bridges

It all boils down to proving a convergence of the form

$$
\left(\frac{S_{\lfloor n t\rfloor}-x_{n} t}{\sqrt{a_{n}}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} B^{\mathrm{br}},
$$

where S is an nondecreasing bridge from 0 to x_{n} in n steps, with weight sequence \mathbf{q}.
Let us suppose that there exists a probability measure \mathbf{p} of the form $p_{k}=a b^{k} q_{k}$. Then S is a p-random walk conditioned on $S_{n}=x_{n}$.

Scaling limits of simply generated bridges

It all boils down to proving a convergence of the form

$$
\left(\frac{S_{\lfloor n t\rfloor}-x_{n} t}{\sqrt{a_{n}}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} B^{\mathrm{br}},
$$

where S is an nondecreasing bridge from 0 to x_{n} in n steps, with weight sequence \mathbf{q}.
Let us suppose that there exists a probability measure \mathbf{p} of the form $p_{k}=a b^{k} q_{k}$. Then S is a p-random walk conditioned on $S_{n}=x_{n}$.

It suffices to restrict to the interval $[0,1-\varepsilon]$ for $\varepsilon>0$ fixed. One can then argue by absolute continuity: by the Markov property,

$$
\begin{aligned}
& \mathbf{E}\left[\left.F\left(\left(\frac{S_{\lfloor n t\rfloor}-x_{n} t}{\sqrt{a_{n}}}\right)_{0 \leqslant t \leqslant 1-\varepsilon}\right) \right\rvert\, S_{n}=x_{n}\right] \\
& =\mathbf{E}\left[F\left(\left(\frac{S_{\lfloor n t\rfloor}-x_{n} t}{\sqrt{a_{n}}}\right)_{0 \leqslant t \leqslant 1-\varepsilon}\right) \cdot \frac{\mathbf{P}\left(S_{n-\lfloor n(1-\varepsilon)\rfloor}^{\prime}=x_{n}-S_{\lfloor n(1-\varepsilon)\rfloor}\right)}{\mathbf{P}\left(S_{n}=x_{n}\right)}\right],
\end{aligned}
$$

where S and S^{\prime} are two independent random walks with step distribution \mathbf{p}.

Simply generated bridges \& local limit estimates

Easy case: when \mathbf{p} has mean μ and finite variance σ^{2} and $x_{n}-\mu n=o(\sqrt{n})$.
Then the Local Limit Theorem states that with $g_{t}(x)=(2 \pi t)^{-1 / 2} \exp \left(-x^{2} /(2 t)\right)$,

$$
\sup _{k \in \mathbf{Z}}\left|\sqrt{n \sigma^{2}} \mathbf{P}\left(S_{n}=\lfloor\mu n\rfloor+k\right)-g_{1}\left(\frac{k}{\sqrt{n \sigma^{2}}}\right)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

Also

$$
\left(\frac{S_{\lfloor n t\rfloor}-\mu n t}{\sqrt{n \sigma^{2}}}\right)_{0 \leqslant t \leqslant 1} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} B,
$$

a Brownian motion.

Simply generated bridges \& local limit estimates

Easy case: when \mathbf{p} has mean μ and finite variance σ^{2} and $x_{n}-\mu n=o(\sqrt{n})$.
Then the Local Limit Theorem states that with $g_{t}(x)=(2 \pi t)^{-1 / 2} \exp \left(-x^{2} /(2 t)\right)$,

$$
\sup _{k \in \mathbf{Z}}\left|\sqrt{n \sigma^{2}} \mathbf{P}\left(S_{n}=\lfloor\mu n\rfloor+k\right)-g_{1}\left(\frac{k}{\sqrt{n \sigma^{2}}}\right)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

Also

$$
\left(\frac{S_{\lfloor n t\rfloor}-\mu n t}{\sqrt{n \sigma^{2}}}\right)_{0 \leqslant t \leqslant 1} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} B,
$$

a Brownian motion.
Then with the previous decomposition,

$$
\mathbf{E}\left[\left.F\left(\left(\frac{S_{\lfloor n t\rfloor}-x_{n} t}{\sqrt{n \sigma^{2}}}\right)_{0 \leqslant t \leqslant 1-\varepsilon}\right) \right\rvert\, S_{n}=x_{n}\right] \underset{n \rightarrow \infty}{\longrightarrow} \mathbf{E}\left[F\left(\left(B_{t}\right)_{0 \leqslant t \leqslant 1-\varepsilon}\right) \cdot \frac{g_{\varepsilon}\left(-B_{1-\varepsilon}\right)}{g_{1}(0)}\right],
$$

and the right-hand side equals $\mathrm{E}\left[F\left(\left(B_{t}^{\mathrm{br}}\right)_{0 \leqslant t \leqslant 1-\varepsilon}\right)\right]$.

Simply generated bridges \& local limit estimates

More generally, given x_{n}, one looks for a probability \mathbf{p}^{n} of the form $p_{k}^{n}=a_{n} b_{n}^{k} q_{k}$ and with mean close to x_{n} / n, for which we can prove for some $a_{n} \rightarrow \infty$,

$$
\sup _{k \in \mathrm{Z}}\left|\sqrt{a_{n}} \mathbf{P}\left(S_{n}^{n}=x_{n}+k\right)-g_{1}\left(\frac{k}{\sqrt{a_{n}}}\right)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0 .
$$

Simply generated bridges \& local limit estimates

More generally, given x_{n}, one looks for a probability \mathbf{p}^{n} of the form $p_{k}^{n}=a_{n} b_{n}^{k} q_{k}$ and with mean close to x_{n} / n, for which we can prove for some $a_{n} \rightarrow \infty$,

$$
\sup _{k \in \mathrm{Z}}\left|\sqrt{a_{n}} \mathbf{P}\left(S_{n}^{n}=x_{n}+k\right)-g_{1}\left(\frac{k}{\sqrt{a_{n}}}\right)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Theorem (Kortchemski \& © ' $21+$). This estimates holds in each of the following cases:

1. $\lim _{n} x_{n} / n \in\left(i_{\mathbf{q}}, \rho G^{\prime}(\rho) / G(\rho)\right)$ where $i_{\mathrm{q}}=\min \left\{i: q_{i}>0\right\}$ and $G(s)=\sum_{k} s^{k} q_{k}$ with radius of convergence ρ. Here

$$
\frac{a_{n}}{n}=\frac{b_{n}^{2} G^{(2)}\left(b_{n}\right)+b_{n} G^{\prime}\left(b_{n}\right)}{G\left(b_{n}\right)}-\left(\frac{b_{n} G^{\prime}\left(b_{n}\right)}{G\left(b_{n}\right)}\right)^{2} \quad \text { where } \quad b_{n} \frac{G^{\prime}\left(b_{n}\right)}{G\left(b_{n}\right)}=\frac{x_{n}}{n}
$$

2. $\lim _{n} x_{n} / n=0, q_{0}, q_{1}>0$. Here $a_{n}=x_{n}$.
3. $\lim _{n} x_{n} / n=\infty, G$ is Δ-analytic, and there exist $c, \alpha>0$ such that $G(\rho-z) \sim c z^{-\alpha}$ as $z \rightarrow 0$ with $\operatorname{Re}(z)>0$. Here $a_{n}=x_{n}^{2} /(\alpha n)$.

Simply generated bridges \& local limit estimates

More generally, given x_{n}, one looks for a probability \mathbf{p}^{n} of the form $p_{k}^{n}=a_{n} b_{n}^{k} q_{k}$ and with mean close to x_{n} / n, for which we can prove for some $a_{n} \rightarrow \infty$,

$$
\sup _{k \in \mathrm{Z}}\left|\sqrt{a_{n}} \mathbf{P}\left(S_{n}^{n}=x_{n}+k\right)-g_{1}\left(\frac{k}{\sqrt{a_{n}}}\right)\right| \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Theorem (Kortchemski \& ; ' ${ }^{\prime 21+\text {). This estimates holds in each of the following cases: }}$

1. $\lim _{n} x_{n} / n \in\left(i_{\mathrm{q}}, \rho G^{\prime}(\rho) / G(\rho)\right)$ where $i_{\mathrm{q}}=\min \left\{i: q_{i}>0\right\}$ and $G(s)=\sum_{k} s^{k} q_{k}$ with radius of convergence ρ. Here

$$
\frac{a_{n}}{n}=\frac{b_{n}^{2} G^{(2)}\left(b_{n}\right)+b_{n} G^{\prime}\left(b_{n}\right)}{G\left(b_{n}\right)}-\left(\frac{b_{n} G^{\prime}\left(b_{n}\right)}{G\left(b_{n}\right)}\right)^{2} \quad \text { where } \quad b_{n} \frac{G^{\prime}\left(b_{n}\right)}{G\left(b_{n}\right)}=\frac{x_{n}}{n}
$$

2. $\lim _{n} x_{n} / n=0, q_{0}, q_{1}>0$. Here $a_{n}=x_{n}$.
3. $\lim _{n} x_{n} / n=\infty, G$ is Δ-analytic, and there exist $c, \alpha>0$ such that $G(\rho-z) \sim c z^{-\alpha}$ as $z \rightarrow 0$ with $\operatorname{Re}(z)>0$. Here $a_{n}=x_{n}^{2} /(\alpha n)$.

The last case was motivated by uniform random bipartite maps which are related to $q_{k}=\binom{2 k+1}{k+1}$, which satisfies all the assumptions and $i_{\mathbf{q}}=0$ and $\rho G^{\prime}(\rho) / G(\rho)=\infty$.

Other behaviours

When $\lim _{n} x_{n} / n=\rho G^{\prime}(\rho) / G(\rho)<\infty$, one needs to look closer and the behaviour depends on the speed of convergence.

Other behaviours

When $\lim _{n} x_{n} / n=\rho G^{\prime}(\rho) / G(\rho)<\infty$, one needs to look closer and the behaviour depends on the speed of convergence.

Say q is a probability with finite mean μ and in the domain of attraction of a stable law with index $\alpha \in(1,2)$. For concreteness: for some $C>0$,

$$
G(s)=\sum_{k \geqslant 0} s^{k} q_{k}=1-\mu+\mu s+C(1-s)^{\alpha} .
$$

So $\rho=1$ and $\rho G^{\prime}(\rho) / G(\rho)=\mu$.

Other behaviours

When $\lim _{n} x_{n} / n=\rho G^{\prime}(\rho) / G(\rho)<\infty$, one needs to look closer and the behaviour depends on the speed of convergence.

Say q is a probability with finite mean μ and in the domain of attraction of a stable law with index $\alpha \in(1,2)$. For concreteness: for some $C>0$,

$$
G(s)=\sum_{k \geqslant 0} s^{k} q_{k}=1-\mu+\mu s+C(1-s)^{\alpha} .
$$

So $\rho=1$ and $\rho G^{\prime}(\rho) / G(\rho)=\mu$.

Then an unconditioned random walk S satisfies

$$
\left(n^{-1 / \alpha}\left(S_{\lfloor n t\rfloor}-\mu n t\right)\right)_{t \geqslant 0} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} X^{\alpha},
$$

where X^{α} is an α-stable Lévy process with no negative jump.

Other behaviours

Recall

$$
G(s)=\sum_{k \geqslant 0} s^{k} q_{k}=1-\mu+\mu s+C(1-s)^{\alpha}
$$

with $\alpha \in(1,2)$. So

$$
\left(n^{-1 / \alpha}\left(S_{\lfloor n t\rfloor}-\mu n t\right)\right)_{t \geqslant 0} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} X^{\alpha} .
$$

Other behaviours

Recall

$$
G(s)=\sum_{k \geqslant 0} s^{k} q_{k}=1-\mu+\mu s+C(1-s)^{\alpha}
$$

with $\alpha \in(1,2)$. So

$$
\left(n^{-1 / \alpha}\left(S_{\lfloor n t\rfloor}-\mu n t\right)\right)_{t \geqslant 0} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} X^{\alpha} .
$$

Now if we condition on $S_{n}=x_{n}$ where

$$
x_{n}=\mu n+\lambda_{n} \quad \text { with } \quad n^{-1 / \alpha} \lambda_{n} \quad \underset{n \rightarrow \infty}{\longrightarrow} \lambda \in[-\infty, \infty] \text {, }
$$

then $\left(S_{\lfloor n t\rfloor}-x_{n} t\right)_{t \in[0,1]}$ converges after scaling towards:

Other behaviours

Recall

$$
G(s)=\sum_{k \geqslant 0} s^{k} q_{k}=1-\mu+\mu s+C(1-s)^{\alpha}
$$

with $\alpha \in(1,2)$. So

$$
\left(n^{-1 / \alpha}\left(S_{\lfloor n t\rfloor}-\mu n t\right)\right)_{t \geqslant 0} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} X^{\alpha} .
$$

Now if we condition on $S_{n}=x_{n}$ where

$$
x_{n}=\mu n+\lambda_{n} \quad \text { with } \quad n^{-1 / \alpha} \lambda_{n} \quad \underset{n \rightarrow \infty}{\longrightarrow} \lambda \in[-\infty, \infty] \text {, }
$$

then $\left(S_{\lfloor n t\rfloor}-x_{n} t\right)_{t \in[0,1]}$ converges after scaling towards:

1. The bridge of $\left(X_{t}^{\alpha}-\lambda t\right)_{t}$ if $\lambda \in(-\infty, \infty)$. (Informally X^{α} conditioned on $X_{1}^{\alpha}=\lambda$.)

Other behaviours

Recall

$$
G(s)=\sum_{k \geqslant 0} s^{k} q_{k}=1-\mu+\mu s+C(1-s)^{\alpha}
$$

with $\alpha \in(1,2)$. So

$$
\left(n^{-1 / \alpha}\left(S_{\lfloor n t\rfloor}-\mu n t\right)\right)_{t \geqslant 0} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} X^{\alpha} .
$$

Now if we condition on $S_{n}=x_{n}$ where

$$
x_{n}=\mu n+\lambda_{n} \quad \text { with } \quad n^{-1 / \alpha} \lambda_{n} \underset{n \rightarrow \infty}{\longrightarrow} \lambda \in[-\infty, \infty] \text {, }
$$

then $\left(S_{\lfloor n t\rfloor}-x_{n} t\right)_{t \in[0,1]}$ converges after scaling towards:

1. The bridge of $\left(X_{t}^{\alpha}-\lambda t\right)_{t}$ if $\lambda \in(-\infty, \infty)$. (Informally X^{α} conditioned on $X_{1}^{\alpha}=\lambda$.)
2. A Brownian bridge if $\lambda=-\infty$.

Other behaviours

Recall

$$
G(s)=\sum_{k \geqslant 0} s^{k} q_{k}=1-\mu+\mu s+C(1-s)^{\alpha}
$$

with $\alpha \in(1,2)$. So

$$
\left(n^{-1 / \alpha}\left(S_{\lfloor n t\rfloor}-\mu n t\right)\right)_{t \geqslant 0} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} X^{\alpha} .
$$

Now if we condition on $S_{n}=x_{n}$ where

$$
x_{n}=\mu n+\lambda_{n} \quad \text { with } \quad n^{-1 / \alpha} \lambda_{n} \quad \underset{n \rightarrow \infty}{\longrightarrow} \lambda \in[-\infty, \infty] \text {, }
$$

then $\left(S_{\lfloor n t\rfloor}-x_{n} t\right)_{t \in[0,1]}$ converges after scaling towards:

1. The bridge of $\left(X_{t}^{\alpha}-\lambda t\right)_{t}$ if $\lambda \in(-\infty, \infty)$. (Informally X^{α} conditioned on $X_{1}^{\alpha}=\lambda$.)
2. A Brownian bridge if $\lambda=-\infty$.
3. The path $1_{U \leqslant t}-t$ where $U \sim \operatorname{Unif}(0,1)$ when $\lambda=\infty$.

Final remarks \& open questions

Question: What about the height process? By a more general work (in preparation, hopefully Kortchemski \& ; ; '21b) we have the convergence of the marginals, but tightness is missing in general (only available for the moment in a finite variance regime).

Final remarks \& open questions

Question: What about the height process? By a more general work (in preparation, hopefully Kortchemski \& ; ' ${ }^{\prime 21}$ b) we have the convergence of the marginals, but tightness is missing in general (only available for the moment in a finite variance regime).

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^{n} in a very particular way; what about q^{n}-simply generated trees with size n in general? General limits of the Łukasiewicz paths are (non stable) Lévy processes. What motivation?

Final remarks \& open questions

Question: What about the height process? By a more general work (in preparation, hopefully Kortchemski \& ; ; '21b) we have the convergence of the marginals, but tightness is missing in general (only available for the moment in a finite variance regime).

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^{n} in a very particular way; what about q^{n}-simply generated trees with size n in general? General limits of the Łukasiewicz paths are (non stable) Lévy processes. What motivation?

About planar maps: Bipartite planar maps are bijectively related to decorated trees by Janson \& Stefánsson ' 15 . The convergence of the Łukasiewicz path to the Brownian excursion is (kind of) sufficient to prove the convergence of the associated Boltzmann map conditioned on its number of vertices, edges, and faces at the same time towards the Brownian sphere by the criterion of $)$ ' $21+$.

Final remarks \& open questions

Question: What about the height process? By a more general work (in preparation, hopefully Kortchemski \& ; ; '21b) we have the convergence of the marginals, but tightness is missing in general (only available for the moment in a finite variance regime).

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^{n} in a very particular way; what about q^{n}-simply generated trees with size n in general? General limits of the Łukasiewicz paths are (non stable) Lévy processes. What motivation?

About planar maps: Bipartite planar maps are bijectively related to decorated trees by Janson \& Stefánsson ' 15 . The convergence of the Łukasiewicz path to the Brownian excursion is (kind of) sufficient to prove the convergence of the associated Boltzmann map conditioned on its number of vertices, edges, and faces at the same time towards the Brownian sphere by the criterion of $)$ ' $21+$.

Thank you!

Planar maps

A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Planar maps

A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Planar maps

A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Dual definition: a (planar) map is a graph embedded in the sphere; we shall deal with rooted maps in which an oriented edge is
 distinguished.

Planar maps

A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Dual definition: a (planar) map is a graph embedded in the sphere; we shall deal with rooted maps in which an oriented edge is distinguished.

Planar maps

A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Dual definition: a (planar) map is a graph embedded in the sphere; we shall deal with rooted maps in which an oriented edge is distinguished.

Interest in planar maps:

- combinatorics: enumeration formulae, bijections;
- theoretical physics: matrix integral, quantum gravity;
- probability: behaviour of large random maps
- model of discrete surfaces, scaling limit towards continuum surfaces?
- differences between abstract graphs and embedded graphs?

Planar maps

A (planar) map can be seen as the topological gluing of polygons, by identifying pairs of edges, to form a sphere.

Dual definition: a (planar) map is a graph embedded in the sphere; we shall deal with rooted maps in which an oriented edge is distinguished.

Interest in planar maps:

- combinatorics: enumeration formulae, bijections;
- theoretical physics: matrix integral, quantum gravity;
- probability: behaviour of large random maps
- model of discrete surfaces, scaling limit towards continuum surfaces?
- differences between abstract graphs and embedded graphs?

Technical restriction: We only consider bipartite maps.

Convergence of maps

What topology do we put on maps?

Convergence of maps

As for trees, we extract the theoretical graph, and forget about the embedding, and give to each edge a length with tends to 0 with the size of the map.

Convergence of maps

As for trees, we extract the theoretical graph, and forget about the embedding, and give to each edge a length with tends to 0 with the size of the map.

Theorem (Le Gall '13 and Miermont '13) If Q_{n} is a quadrangulation with n faces sampled uniformly at randon, then

$$
\left(\frac{9}{8 n}\right)^{1 / 4} Q_{n} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \delta,
$$

where δ is the Brownian sphere.
δ has the topology of the sphere (Le Gall \& Paulin '08, Miermont 'o8) and Hausdorff dimension 4 (Le Gall '07).

Extended since to many other models of random maps, but always using the known case of quadrangulations as an input.

Boltzmann random maps

General model: fix $\mathbf{q}=\left(q_{k}\right)_{k \geqslant 1} \in[0, \infty)^{\mathbf{N}}$ and sample a map m_{n} with size n with probability:

$$
\mathbf{P}_{n}^{\mathbf{q}}\left(m_{n}\right)=\frac{1}{Z_{n}} \prod_{\text {face } f} q_{\operatorname{deg}(f) / 2}
$$

where $\operatorname{deg}(f)$ is the number of incident edges, with multiplicity, which is always even for bipartite maps.

Boltzmann random maps

General model: fix $\mathbf{q}=\left(q_{k}\right)_{k \geqslant 1} \in[0, \infty)^{\mathbf{N}}$ and sample a map m_{n} with size n with probability:

$$
\mathbf{P}_{n}^{\mathbf{q}}\left(m_{n}\right)=\frac{1}{Z_{n}} \prod_{\text {face } f} q_{\operatorname{deg}(f) / 2}
$$

where $\operatorname{deg}(f)$ is the number of incident edges, with multiplicity, which is always even for bipartite maps.

Theorem (:) '21+). If M_{n} sampled from $\mathrm{P}_{n}^{\mathrm{q}}$ satisfies with high probability $\max _{f} \operatorname{deg}(f)(\operatorname{deg}(f)-2) \ll \sum_{f} \operatorname{deg}(f)(\operatorname{deg}(f)-2)$, then

$$
\left(\frac{9}{\sum_{f} \operatorname{deg}(f)(\operatorname{deg}(f)-2)}\right)^{1 / 4} M_{n} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \delta
$$

Boltzmann random maps

General model: fix $\mathbf{q}=\left(q_{k}\right)_{k \geqslant 1} \in[0, \infty)^{\mathbf{N}}$ and sample a map m_{n} with size n with probability:

$$
\mathbf{P}_{n}^{\mathbf{q}}\left(m_{n}\right)=\frac{1}{Z_{n}} \prod_{\text {face } f} q_{\operatorname{deg}(f) / 2}
$$

where $\operatorname{deg}(f)$ is the number of incident edges, with multiplicity, which is always even for bipartite maps.

Theorem (:) '21+). If M_{n} sampled from $\mathrm{P}_{n}^{\mathrm{q}}$ satisfies with high probability $\max _{f} \operatorname{deg}(f)(\operatorname{deg}(f)-2) \ll \sum_{f} \operatorname{deg}(f)(\operatorname{deg}(f)-2)$, then

$$
\left(\frac{9}{\sum_{f} \operatorname{deg}(f)(\operatorname{deg}(f)-2)}\right)^{1 / 4} M_{n} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \delta
$$

Application. If q satisfies some criticality and finite variance assumption, then

$$
\left(\frac{c}{n}\right)^{1 / 4} M_{n} \xrightarrow[n \rightarrow \infty]{(d)} \delta,
$$

where c depends both on \mathbf{q} and the notion of size: either vertices, edges, or faces.

Biconditioned random maps

What about \mathbf{q}-Boltzmann maps with n edges and k_{n} vertices, and so $n-k_{n}+2$ faces by Euler's formula? We assume both $k_{n}, n-k_{n} \rightarrow \infty$.

Biconditioned random maps

What about \mathbf{q}-Boltzmann maps with n edges and k_{n} vertices, and so $n-k_{n}+2$ faces by Euler's formula? We assume both $k_{n}, n-k_{n} \rightarrow \infty$.

Theorem (Kortchemski \& ;) ${ }^{\prime} 21+$). If M_{n} is a bipartite map with n edges and k_{n} vertices sampled uniformly at random, then

$$
\left(s\left(\frac{k_{n}}{n}\right) \frac{9}{4 n}\right)^{1 / 4} M_{n} \xrightarrow[n \rightarrow \infty]{(d)} \delta,
$$

where $s(x)=(1-x)(3+x+\sqrt{(1-x)(9-x)}) /(12 x)$.

Biconditioned random maps

What about \mathbf{q}-Boltzmann maps with n edges and k_{n} vertices, and so $n-k_{n}+2$ faces by Euler's formula? We assume both $k_{n}, n-k_{n} \rightarrow \infty$.

Theorem (Kortchemski \& © ${ }^{\prime} 21+$). If M_{n} is a bipartite map with n edges and k_{n} vertices sampled uniformly at random, then

$$
\left(s\left(\frac{k_{n}}{n}\right) \frac{9}{4 n}\right)^{1 / 4} M_{n} \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}} \delta,
$$

where $s(x)=(1-x)(3+x+\sqrt{(1-x)(9-x)}) /(12 x)$.

The scaling factor is of order:

- $n^{c / 4}$ when $k_{n}=n^{c}$ with $c \in(0,1)$
- $n^{(2-c) / 4}$ when $n-k_{n}=n^{c}$ with $c \in(0,1)$

In both cases this was predicted by Fusy \& Guitter '14.

Biconditioned random maps

What about \mathbf{q}-Boltzmann maps with n edges and k_{n} vertices, and so $n-k_{n}+2$ faces by Euler's formula? We assume both $k_{n}, n-k_{n} \rightarrow \infty$.

Theorem (Kortchemski \& ;) ${ }^{\prime} 21+$). If M_{n} is a bipartite map with n edges and k_{n} vertices sampled uniformly at random, then

$$
\left(s\left(\frac{k_{n}}{n}\right) \frac{9}{4 n}\right)^{1 / 4} M_{n} \underset{n \rightarrow \infty}{(d)} \delta,
$$

where $s(x)=(1-x)(3+x+\sqrt{(1-x)(9-x)}) /(12 x)$.

The scaling factor is of order:

- $n^{c / 4}$ when $k_{n}=n^{c}$ with $c \in(0,1)$
- $n^{(2-c) / 4}$ when $n-k_{n}=n^{c}$ with $c \in(0,1)$

In both cases this was predicted by Fusy \& Guitter '14.
Actually nothing special about the uniform distribution, it is just a Boltzmann law with a sequence q with nice properties.

Back to trees

Combining bijections due to Bouttier, di Francesco \& Guitter '04 and to Janson \& Stefánsson '15 shows that bipartite maps with a distinguished non oriented edge and a vertex correspond to trees carrying some labels.

Back to trees

Combining bijections due to Bouttier, di Francesco \& Guitter ' 04 and to Janson \& Stefánsson ' 15 shows that bipartite maps with a distinguished non oriented edge and a vertex correspond to trees carrying some labels.
Key properties of the bijection $M \leftrightarrow T$:

1. faces of $M \leftrightarrow$ internal vertices of T and the number of children is half the degree of the face;
2. non distinguished vertices of $M \leftrightarrow$ leaves of T and the labels describe distances in M to the distinguished vertex;
3. edges of $M \leftrightarrow$ edges of T.

Back to trees

Combining bijections due to Bouttier, di Francesco \& Guitter '04 and to Janson \& Stefánsson '15 shows that bipartite maps with a distinguished non oriented edge and a vertex correspond to trees carrying some labels.
Key properties of the bijection $M \leftrightarrow T$:

1. faces of $M \leftrightarrow$ internal vertices of T and the number of children is half the degree of the face;
2. non distinguished vertices of $M \leftrightarrow$ leaves of T and the labels describe distances in M to the distinguished vertex;
3. edges of $M \leftrightarrow$ edges of T.

Consequence: a \mathbf{q}^{M}-Boltzmann map with n edges and k_{n} vertices corresponds to a simply generated tree with $n+1$ vertices and $k_{n}-1$ leaves, sampled from the weights

$$
q_{0}^{T}=1 \quad \text { and } \quad q_{k}^{T}=\binom{2 k-1}{k-1} q_{k}^{M} \quad(k \geqslant 1)
$$

Back to trees

Conclusion: In order to deduce that, for some deterministic sequence $a_{n} \rightarrow \infty$,

$$
\left(\frac{9}{4 a_{n}}\right)^{1 / 4} M_{n} \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}} \delta,
$$

when M_{n} is a \mathbf{q}^{M}-Boltzmann bipartite map conditioned to have n edges and k_{n} vertices, it suffices to prove that, in a \mathbf{q}^{T} simply generated tree with $n+1$ vertices and $k_{n}-1$ leaves, where

$$
q_{0}^{T}=1 \quad \text { and } \quad q_{k}^{T}=\binom{2 k-1}{k-1} q_{k}^{M} \quad(k \geqslant 1)
$$

it holds that

$$
\frac{\sum_{u} k_{u}\left(k_{u}-1\right)}{a_{n}} \underset{n \rightarrow \infty}{\stackrel{\mathrm{P}}{\longrightarrow}} 1 \text { and } \frac{\max _{u} k_{u}\left(k_{u}-1\right)}{a_{n}} \underset{n \rightarrow \infty}{\stackrel{\mathrm{P}}{\longrightarrow}} 0 .
$$

Final remarks \& open questions

When $\lim _{n} x_{n} / n=\rho G^{\prime}(\rho) / G(\rho)<\infty$, one needs to look closer and the behaviour depends on the speed of convergence. If \mathbf{q} is a probability wih finite mean and in the domain of attraction of a stable law with index $\alpha \in(1,2)$, the we can get a Brownian bridge, or a bridge of a stable process with a drift, or a one-big-jump principle.

Final remarks \& open questions

When $\lim _{n} x_{n} / n=\rho G^{\prime}(\rho) / G(\rho)<\infty$, one needs to look closer and the behaviour depends on the speed of convergence. If q is a probability wih finite mean and in the domain of attraction of a stable law with index $\alpha \in(1,2)$, the we can get a Brownian bridge, or a bridge of a stable process with a drift, or a one-big-jump principle.

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^{n} in a very particular way; what about q^{n}-Boltzmann maps with size n in general? What motivation? Continuum objects (non stable Lévy maps) studied in a forthcoming paper (Hölder continuity estimates, fractal dimensions).

Final remarks \& open questions

When $\lim _{n} x_{n} / n=\rho G^{\prime}(\rho) / G(\rho)<\infty$, one needs to look closer and the behaviour depends on the speed of convergence. If q is a probability wih finite mean and in the domain of attraction of a stable law with index $\alpha \in(1,2)$, the we can get a Brownian bridge, or a bridge of a stable process with a drift, or a one-big-jump principle.

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^{n} in a very particular way; what about q^{n}-Boltzmann maps with size n in general? What motivation? Continuum objects (non stable Lévy maps) studied in a forthcoming paper (Hölder continuity estimates, fractal dimensions).

Question: What about trees? By a more general work (another forthcoming paper) we have the convergence of the marginals of the tree, but tightness is missing in general.

Final remarks \& open questions

When $\lim _{n} x_{n} / n=\rho G^{\prime}(\rho) / G(\rho)<\infty$, one needs to look closer and the behaviour depends on the speed of convergence. If q is a probability wih finite mean and in the domain of attraction of a stable law with index $\alpha \in(1,2)$, the we can get a Brownian bridge, or a bridge of a stable process with a drift, or a one-big-jump principle.

Question: The proofs are based on the idea of replacing \mathbf{q} by \mathbf{p}^{n} in a very particular way; what about q^{n}-Boltzmann maps with size n in general? What motivation? Continuum objects (non stable Lévy maps) studied in a forthcoming paper (Hölder continuity estimates, fractal dimensions).

Question: What about trees? By a more general work (another forthcoming paper) we have the convergence of the marginals of the tree, but tightness is missing in general.

Thank you!

