Graph Properties of Graph Associahedra

Thibault Manneville (LIX, Polytechnique)

joint work with Vincent Pilaud (CNRS, LIX Polytechnique)

April 14th, 2015

Definition

An *associahedron* is a polytope whose graph is the flip graph of triangulations of a convex polygon.

Faces ↔ dissections of the polygon

Focus on graphs

Flip graph on the triangulations of the polygon:

Vertices: triangulations

Edges: flips

Focus on graphs

Flip graph on the triangulations of the polygon:

Vertices: triangulations

Edges: flips

n diagonals \Rightarrow the flip graph is n-regular.

Useful configuration (Loday's)

Graph point of view

 $\{ \text{diagonals of } G_{n+3} \} \longleftrightarrow \{ \text{strict subpaths of the path } [n+1] \}$

Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

nested subpaths

non-adjacent subpaths

Pay attention to the second case:

The right condition is indeed *non-adjacent*, disjoint is not enough!

$$G = (V, E)$$
 a (connected) graph.

Definition

$$G = (V, E)$$
 a (connected) graph.

Definition

• A *tube* of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;

G = (V, E) a (connected) graph.

Definition

- A *tube* of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t' are compatible if they are nested or non-adjacent;

G = (V, E) a (connected) graph.

Definition

- A *tube* of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t' are compatible if they are nested or non-adjacent;
- A tubing of G is a set of pairwise compatible tubes of G.

Graph associahedra

The simplicial complex of tubings is spherical

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph!

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph!

Theorem (Carr-Devadoss '06)

There exists a polytope called **graph associahedron** of G, denoted \mathbf{Asso}_{G} , whose graph is this flip graph.

Faces \leftrightarrow tubings of G.

Classical polytopes...

The associahedron

The cyclohedron

The permutahedron

...can be seen as graph associahedra

Diameter of flip graphs

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$.

Diameter of flip graphs

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$.

Theorem (Sleator-Trajan-Thurston '88, Pournin '12)

The diameter of the n-dimensional associahedron is 2n-4 for $n \ge 10$.

 $\delta(\mathcal{F}(G)) = \text{diameter of the flip graph } \mathcal{F}(G) \text{ on tubings on } G.$

 $\delta(\mathcal{F}(G)) = \text{diameter of the flip graph } \mathcal{F}(G) \text{ on tubings on } G.$

Theorem (M.-Pilaud '14)

 $\delta(\mathcal{F}(.))$ is a non-decreasing function: G partial subgraph of $G' \Longrightarrow \delta(\mathcal{F}(G)) < \delta(\mathcal{F}(G'))$.

 $\delta(\mathcal{F}(G))=$ diameter of the flip graph $\mathcal{F}(G)$ on tubings on G.

Theorem (M.-Pilaud '14)

 $\delta(\mathcal{F}(.))$ is a non-decreasing function: G partial subgraph of $G' \Longrightarrow \delta(\mathcal{F}(G)) \leq \delta(\mathcal{F}(G'))$.

Idea:

 \rightarrow Carr and Devadoss: iterated truncations of a simplex.

 $\delta(\mathcal{F}(G))=$ diameter of the flip graph $\mathcal{F}(G)$ on tubings on G.

Theorem (M.-Pilaud '14)

 $\delta(\mathcal{F}(.))$ is a non-decreasing function: G partial subgraph of $G' \Longrightarrow \delta(\mathcal{F}(G)) \leq \delta(\mathcal{F}(G'))$.

Idea:

- \rightarrow Carr and Devadoss: iterated truncations of a simplex.
- \rightarrow If $G \subseteq G'$, $\mathsf{Asso}_{G'}$ is obtained by truncations of Asso_G .

 $\delta(\mathcal{F}(G)) = \text{diameter of the flip graph } \mathcal{F}(G) \text{ on tubings on } G.$

Theorem (M.-Pilaud '14)

 $\delta(\mathcal{F}(.))$ is a non-decreasing function: G partial subgraph of $G' \Longrightarrow \delta(\mathcal{F}(G)) < \delta(\mathcal{F}(G'))$.

ldea:

- \rightarrow Carr and Devadoss: iterated truncations of a simplex.
- \rightarrow If $G \subseteq G'$, $\mathsf{Asso}_{G'}$ is obtained by truncations of Asso_G .
- \rightarrow Truncating \iff replacing vertices by complete graphs.

 \rightarrow Define a map Ω from tubings on G' to tubings on G.

ightarrow Define a map Ω from tubings on G' to tubings on G.

ightarrow Define a map Ω from tubings on G' to tubings on G.

 $\rightarrow \Omega$ is surjective.

ightarrow Define a map Ω from tubings on G' to tubings on G.

- $\rightarrow \Omega$ is surjective.
- $ightarrow \Omega$ sends a flip either on a flip or on an empty step.

Corollary

For any graph G, $\delta(\mathcal{F}(G)) \leq \binom{|V(G)|}{2}$.

Corollary

For any graph
$$G$$
, $\delta(\mathcal{F}(G)) \leq \binom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

Corollary

For any graph
$$G$$
, $\delta(\mathcal{F}(G)) \leq \binom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

Theorem (M.-Pilaud 14)

For any graph
$$G$$
, $2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.

Corollary

For any graph
$$G$$
, $\delta(\mathcal{F}(G)) \leq \binom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

Theorem (M.-Pilaud 14)

For any graph
$$G$$
, $2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.

Ingredients of the proof:

Corollary

For any graph
$$G$$
, $\delta(\mathcal{F}(G)) \leq \binom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

Theorem (M.-Pilaud 14)

For any graph
$$G$$
, $2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.

Ingredients of the proof:

• $\delta(\mathcal{F}(.))$ is non-decreasing;

Corollary

For any graph
$$G$$
, $\delta(\mathcal{F}(G)) \leq \binom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

Theorem (M.-Pilaud 14)

For any graph
$$G$$
, $2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.

Ingredients of the proof:

- $\delta(\mathcal{F}(.))$ is non-decreasing;
- Non-leaving-face property;

Inequalities for the diameter

Corollary

For any graph
$$G$$
, $\delta(\mathcal{F}(G)) \leq \binom{|V(G)|}{2}$.

G is included in the complete graph on its vertices...

Theorem (M.-Pilaud 14)

For any graph
$$G$$
, $2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.

Ingredients of the proof:

- $\delta(\mathcal{F}(.))$ is non-decreasing;
- Non-leaving-face property;
- Pournin's result for the classical associahedron.

Definition (NLFP)

A face F of a polytope P has the non-leaving-face property (NLFP) if all geodesics in P between vertices of F stay in F.

Definition (NLFP)

A face F of a polytope P has the non-leaving-face property (NLFP) if all geodesics in P between vertices of F stay in F.

 \rightarrow How "round" is the polytope?

simplicial \Rightarrow NLFP F does not have NLFP

Limit case

Idea: S set of compatible tubes of $G \longleftrightarrow face F_S$ of $Asso_G$.

Idea: S set of compatible tubes of $G \longleftrightarrow face F_S$ of $Asso_G$.

Idea: S set of compatible tubes of $G \longleftrightarrow \text{face } F_S \text{ of } \mathbf{Asso}_G$.

 \rightarrow Do faces of graph associahedra have NLFP?

Proposition (M.-Pilaud 14)

S upper set of a tubing on $G \Rightarrow F_S$ has NLFP in Asso_G.

Proposition (M.-Pilaud 14)

S upper set of a tubing on $G \Rightarrow F_S$ has NLFP in Asso_G.

 \rightarrow Not all faces have **NLFP**.

 \rightarrow restriction to trees T with set of leaves $L = \{\ell_1, \dots, \ell_k\}$.

- ightarrow restriction to trees T with set of leaves $L=\{\ell_1,\ldots,\ell_k\}$.
- \rightarrow if $k \le 4 \implies \mathsf{NLFP} + \mathsf{Pournin's}$ result.

- \rightarrow restriction to trees T with set of leaves $L = \{\ell_1, \dots, \ell_k\}$.
- \rightarrow if $k \le 4 \implies \mathsf{NLFP} + \mathsf{Pournin's}$ result.

- ightarrow restriction to trees T with set of leaves $L=\{\ell_1,\ldots,\ell_k\}$.
- \rightarrow if $k \le 4 \implies \mathsf{NLFP} + \mathsf{Pournin's}$ result.

$$\delta(\mathcal{F}(T)) \geq \delta(\mathcal{F}(P_1)) + \delta(\mathcal{F}(P_2))$$

 \rightarrow restriction to trees T with set of leaves $L = \{\ell_1, \dots, \ell_k\}$.

 \rightarrow if $k \le 4 \implies \mathsf{NLFP} + \mathsf{Pournin's}$ result.

$$\begin{array}{lcl} \delta(\mathcal{F}(T)) & \geq & \delta(\mathcal{F}(P_1)) + \delta(\mathcal{F}(P_2)) \\ \geq & (2p_1 - 4) + (2p_2 - 4) \end{array}$$

 \rightarrow restriction to trees T with set of leaves $L = \{\ell_1, \dots, \ell_k\}$. \rightarrow if $k < 4 \implies \mathsf{NLFP} + \mathsf{Pournin's}$ result.

$$\delta(\mathcal{F}(T)) \geq \delta(\mathcal{F}(P_1)) + \delta(\mathcal{F}(P_2))$$

 $\geq (2p_1 - 4) + (2p_2 - 4)$
 $= 2(p_1 + p_2 + 2) - 12$
 $= 2n - 12$

- \rightarrow restriction to trees T with set of leaves $L = \{\ell_1, \dots, \ell_k\}$. \rightarrow if $k < 4 \implies \mathsf{NLFP} + \mathsf{Pournin's}$ result.
- v w P_2

$$\delta(\mathcal{F}(T)) \geq \delta(\mathcal{F}(P_1)) + \delta(\mathcal{F}(P_2))$$

 $\geq (2p_1 - 4) + (2p_2 - 4)$
 $= 2(p_1 + p_2 + 2) - 12$
 $= 2n - 12$

- \rightarrow restriction to trees T with set of leaves $L = \{\ell_1, \dots, \ell_k\}$. \rightarrow if $k < 4 \implies NLFP + Pournin's result.$
- $\delta(\mathcal{F}(T)) \geq \delta(\mathcal{F}(P_1)) + \delta(\mathcal{F}(P_2))$ $\geq (2p_1 4) + (2p_2 4)$ $= 2(p_1 + p_2 + 2) 12$

2n - 12

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \ge 2$.

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \geq 2$.

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \geq 2$.

Theorem (Lucas 87, Hurtado-Noy '99)

The n-dimensional associahedron is hamiltonian for n > 2.

Theorem (M.-Pilaud '14)

Any graph associahedron $\mathcal{F}(G)$ is hamiltonian.

Theorem (M.-Pilaud '14)

Any graph associahedron $\mathcal{F}(G)$ is hamiltonian.

ldea:

→ Carr and Devadoss: iterated truncations of a simplex.

Theorem (M.-Pilaud '14)

Any graph associahedron $\mathcal{F}(G)$ is hamiltonian.

ldea:

- \rightarrow Carr and Devadoss: iterated truncations of a simplex.
- \rightarrow Truncation hyperplanes correspond to tubes.

Theorem (M.-Pilaud '14)

Any graph associahedron $\mathcal{F}(G)$ is hamiltonian.

Idea:

- → Carr and Devadoss: iterated truncations of a simplex.
- → Truncation hyperplanes correspond to tubes.

Diameter

Diameter

• What happens between 2n and $\binom{n}{2}$?

Diameter

• What happens between 2n and $\binom{n}{2}$? The cyclohedron has a diameter equivalent to $\frac{5}{2}n$ (Pournin).

Diameter

What happens between 2n and (n/2)?
 The cyclohedron has a diameter equivalent to 5/2 n (Pournin).
 Correlation between number of edges and diameter of the flip graph?

Diameter

- What happens between 2n and (n/2)?
 The cyclohedron has a diameter equivalent to ⁵/₂n (Pournin).
 Correlation between number of edges and diameter of the flip graph?
- Hardness of $\delta(\mathcal{F}(G))$?

Diameter

- What happens between 2n and $\binom{n}{2}$? The cyclohedron has a diameter equivalent to $\frac{5}{2}n$ (Pournin). Correlation between number of edges and diameter of the flip graph?
- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

Diameter

- What happens between 2n and (n/2)?
 The cyclohedron has a diameter equivalent to ⁵/₂n (Pournin).
 Correlation between number of edges and diameter of the flip graph?
- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

• Algorithmic inefficience of the proof.

Diameter

What happens between 2n and (n/2)?
 The cyclohedron has a diameter equivalent to 5/2 n (Pournin).
 Correlation between number of edges and diameter of the flip graph?
 Hardness of δ(F(G))?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Diameter

- What happens between 2n and $\binom{n}{2}$? The cyclohedron has a diameter equivalent to $\frac{5}{2}n$ (Pournin). Correlation between number of edges and diameter of the flip graph?
- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Other problems

Diameter

What happens between 2n and (n/2)?
 The cyclohedron has a diameter equivalent to 5/2 n (Pournin).
 Correlation between number of edges and diameter of the flip graph?

 Hardness of δ(F(G))?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Other problems

• How many tubings ?

Diameter

• What happens between 2n and $\binom{n}{2}$? The cyclohedron has a diameter equivalent to $\frac{5}{2}n$ (Pournin). Correlation between number of edges and diameter of the flip graph?

• Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Other problems

- How many tubings ?
- 9

THANK YOU FOR LISTENING SO FERVENTLY!