Graph Properties of Graph Associahedra

Thibault Manneville (LIX, Polytechnique)
joint work with Vincent Pilaud (CNRS, LIX Polytechnique)

April $14^{\text {th }}, 2015$

Definition

An associahedron is a polytope whose graph is the flip graph of triangulations of a convex polygon.

Faces \leftrightarrow dissections of the polygon

Focus on graphs

Flip graph on the triangulations of the polygon:

Vertices: triangulations
Edges: flips

Focus on graphs

Flip graph on the triangulations of the polygon:

Vertices: triangulations
Edges: flips

n diagonals \Rightarrow the flip graph is n-regular.

Useful configuration (Loday's)

$$
G_{n+3}=\underbrace{n+2}_{2} n \underbrace{n}_{n+1} n
$$

Graph point of view

$\left\{\right.$ diagonals of $\left.G_{n+3}\right\} \longleftrightarrow\{$ strict subpaths of the path $[n+1]\}$

Non-crossing diagonals

Two ways to be non-crossing in Loday's configuration:

80
nested subpaths

non-adjacent subpaths

Pay attention to the second case:

The right condition is indeed non-adjacent, disjoint is not enough!

Now do it on graphs

$G=(V, E)$ a (connected) graph.
Definition

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t^{\prime} are compatible if they are nested or non-adjacent;

Now do it on graphs

$G=(V, E)$ a (connected) graph.

Definition

- A tube of G is a proper subset $t \subseteq V$ inducing a connected subgraph of G;
- t and t^{\prime} are compatible if they are nested or non-adjacent;
- A tubing of G is a set of pairwise compatible tubes of G.

A tube
(generalizes a diagonal)

A maximal tubing
(generalizes a triangulation)

Graph associahedra

The simplicial complex of tubings is spherical

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph!

Graph associahedra

The simplicial complex of tubings is spherical \Rightarrow flip graph!

Theorem (Carr-Devadoss '06)

There exists a polytope called graph associahedron of G, denoted Asso $_{G}$, whose graph is this flip graph.

Faces \leftrightarrow tubings of G.

Classical polytopes...

The associahedron

The cyclohedron

The permutahedron
...can be seen as graph associahedra

The associahedron

The cyclohedron

The permutahedron

Diameter of flip graphs

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$.

Diameter of flip graphs

Lemma

The diameter of the n-dimensional permutahedron is $\binom{n+1}{2}$. Theorem (Sleator-Trajan-Thurston '88, Pournin '12)
The diameter of the n-dimensional associahedron is $2 n-4$ for $n \geq 10$.

Diameter

$\delta(\mathcal{F}(G))=$ diameter of the flip graph $\mathcal{F}(G)$ on tubings on G.

Diameter

$\delta(\mathcal{F}(G))=$ diameter of the flip graph $\mathcal{F}(G)$ on tubings on G.

Theorem (M.-Pilaud '14)

$\delta(\mathcal{F}()$.$) is a non-decreasing function:$
G partial subgraph of $G^{\prime} \Longrightarrow \delta(\mathcal{F}(G)) \leq \delta\left(\mathcal{F}\left(G^{\prime}\right)\right)$.

Diameter

$\delta(\mathcal{F}(G))=$ diameter of the flip graph $\mathcal{F}(G)$ on tubings on G.

Theorem (M.-Pilaud '14)

$\delta(\mathcal{F}()$.$) is a non-decreasing function:$ G partial subgraph of $G^{\prime} \Longrightarrow \delta(\mathcal{F}(G)) \leq \delta\left(\mathcal{F}\left(G^{\prime}\right)\right)$.

Idea:

\rightarrow Carr and Devadoss: iterated truncations of a simplex.

Diameter

$\delta(\mathcal{F}(G))=$ diameter of the flip graph $\mathcal{F}(G)$ on tubings on G.

Theorem (M.-Pilaud '14)

$\delta(\mathcal{F}()$.$) is a non-decreasing function:$ G partial subgraph of $G^{\prime} \Longrightarrow \delta(\mathcal{F}(G)) \leq \delta\left(\mathcal{F}\left(G^{\prime}\right)\right)$.

Idea:

\rightarrow Carr and Devadoss: iterated truncations of a simplex.
\rightarrow If $G \subseteq G^{\prime}$, Asso $_{G^{\prime}}$ is obtained by truncations of Asso ${ }_{G}$.

Diameter

$\delta(\mathcal{F}(G))=$ diameter of the flip graph $\mathcal{F}(G)$ on tubings on G.

Theorem (M.-Pilaud '14)

$\delta(\mathcal{F}()$.$) is a non-decreasing function:$
G partial subgraph of $G^{\prime} \Longrightarrow \delta(\mathcal{F}(G)) \leq \delta\left(\mathcal{F}\left(G^{\prime}\right)\right)$.

Idea:

\rightarrow Carr and Devadoss: iterated truncations of a simplex.
\rightarrow If $G \subseteq G^{\prime}$, Asso $_{G^{\prime}}$ is obtained by truncations of Asso $_{G}$.
\rightarrow Truncating \Longleftrightarrow replacing vertices by complete graphs.

$G \subseteq G^{\prime}$ two graphs,
$G \subseteq G^{\prime}$ two graphs,
\rightarrow Define a map Ω from tubings on G^{\prime} to tubings on G.
$G \subseteq G^{\prime}$ two graphs,
\rightarrow Define a map Ω from tubings on G^{\prime} to tubings on G.

$G \subseteq G^{\prime}$ two graphs,
\rightarrow Define a map Ω from tubings on G^{\prime} to tubings on G.

2

$\rightarrow \Omega$ is surjective.
$G \subseteq G^{\prime}$ two graphs,
\rightarrow Define a map Ω from tubings on G^{\prime} to tubings on G.

$\rightarrow \Omega$ is surjective.
$\rightarrow \Omega$ sends a flip either on a flip or on an empty step.

Inequalities for the diameter

Corollary
 For any graph $G, \quad \delta(\mathcal{F}(G)) \leq\binom{|V(G)|}{2}$.

Inequalities for the diameter

Corollary
 For any graph $G, \quad \delta(\mathcal{F}(G)) \leq\binom{|V(G)|}{2}$.

G is included in the complete graph on its vertices... ■

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(\mathcal{F}(G)) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices...
Theorem (M.-Pilaud 14)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(\mathcal{F}(G)) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices...
Theorem (M.-Pilaud 14)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.
Ingredients of the proof:

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(\mathcal{F}(G)) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices...
Theorem (M.-Pilaud 14)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.
Ingredients of the proof:

- $\delta(\mathcal{F}()$.$) is non-decreasing;$

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(\mathcal{F}(G)) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices...
Theorem (M.-Pilaud 14)
For any graph $G, \quad 2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.
Ingredients of the proof:

- $\delta(\mathcal{F}()$.$) is non-decreasing;$
- Non-leaving-face property;

Inequalities for the diameter

Corollary

For any graph $G, \quad \delta(\mathcal{F}(G)) \leq\binom{|V(G)|}{2}$.
G is included in the complete graph on its vertices...

Theorem (M.-Pilaud 14)

For any graph $G, \quad 2|V(G)|-18 \leq \delta(\mathcal{F}(G))$.
Ingredients of the proof:

- $\delta(\mathcal{F}()$.$) is non-decreasing;$
- Non-leaving-face property;
- Pournin's result for the classical associahedron.

Non-leaving-face property (NLFP)

Definition (NLFP)

A face F of a polytope P has the non-leaving-face property (NLFP) if all geodesics in P between vertices of F stay in F.

Non-leaving-face property (NLFP)

Definition (NLFP)

A face F of a polytope P has the non-leaving-face property (NLFP) if all geodesics in P between vertices of F stay in F.
\rightarrow How "round" is the polytope?

simplicial \Rightarrow NLFP $\quad F$ does not have NLFP

Limit case

Non-leaving-face property (NLFP)

Idea: S set of compatible tubes of $G \longleftrightarrow$ face F_{S} of Asso $_{G}$.

Non-leaving-face property (NLFP)

Idea: S set of compatible tubes of $G \longleftrightarrow$ face F_{S} of Asso $_{G}$.

Non-leaving-face property (NLFP)

Idea: S set of compatible tubes of $G \longleftrightarrow$ face F_{S} of Asso $_{G}$.

\rightarrow Do faces of graph associahedra have NLFP?

Non-leaving-face property (NLFP)

Proposition (M.-Pilaud 14)
S upper set of a tubing on $G \Rightarrow F_{S}$ has NLFP in Asso $_{G}$.

Non-leaving-face property (NLFP)

Proposition (M.-Pilaud 14)

S upper set of a tubing on $G \Rightarrow F_{S}$ has NLFP in Asso $_{G}$.
\rightarrow Not all faces have NLFP.

\rightarrow restriction to trees T with set of leaves $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$.
\rightarrow restriction to trees T with set of leaves $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$. \rightarrow if $k \leq 4 \Longrightarrow$ NLFP + Pournin's result.
\rightarrow restriction to trees T with set of leaves $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$. \rightarrow if $k \leq 4 \Longrightarrow$ NLFP + Pournin's result.

\rightarrow restriction to trees T with set of leaves $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$. \rightarrow if $k \leq 4 \Longrightarrow$ NLFP + Pournin's result.

$$
\delta(\mathcal{F}(T)) \geq \delta\left(\mathcal{F}\left(P_{1}\right)\right)+\delta\left(\mathcal{F}\left(P_{2}\right)\right)
$$

\rightarrow restriction to trees T with set of leaves $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$. \rightarrow if $k \leq 4 \Longrightarrow$ NLFP + Pournin's result.

$$
\begin{aligned}
\delta(\mathcal{F}(T)) & \geq \delta\left(\mathcal{F}\left(P_{1}\right)\right)+\delta\left(\mathcal{F}\left(P_{2}\right)\right) \\
& \geq\left(2 p_{1}-4\right)+\left(2 p_{2}-4\right)
\end{aligned}
$$

\rightarrow restriction to trees T with set of leaves $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$. \rightarrow if $k \leq 4 \Longrightarrow$ NLFP + Pournin's result.

$$
\begin{array}{rlr}
\delta(\mathcal{F}(T)) & \geq \delta\left(\mathcal{F}\left(P_{1}\right)\right)+\delta\left(\mathcal{F}\left(P_{2}\right)\right) \\
& \geq\left(2 p_{1}-4\right)+\left(2 p_{2}-4\right) \\
& = & 2\left(p_{1}+p_{2}+2\right)-12 \\
& = & 2 n-12
\end{array}
$$

\rightarrow restriction to trees T with set of leaves $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$. \rightarrow if $k \leq 4 \Longrightarrow$ NLFP + Pournin's result.

$$
\begin{array}{rlr}
\delta(\mathcal{F}(T)) & \geq \delta\left(\mathcal{F}\left(P_{1}\right)\right)+\delta\left(\mathcal{F}\left(P_{2}\right)\right) \\
& \geq\left(2 p_{1}-4\right)+\left(2 p_{2}-4\right) \\
& = & 2\left(p_{1}+p_{2}+2\right)-12 \\
& = & 2 n-12
\end{array}
$$

\rightarrow restriction to trees T with set of leaves $L=\left\{\ell_{1}, \ldots, \ell_{k}\right\}$. \rightarrow if $k \leq 4 \Longrightarrow$ NLFP + Pournin's result.

$$
\delta(\mathcal{F}(T)) \geq \delta\left(\mathcal{F}\left(P_{1}\right)\right)+\delta\left(\mathcal{F}\left(P_{2}\right)\right)
$$

$$
\geq\left(2 p_{1}-4\right)+\left(2 p_{2}-4\right)
$$

$$
=2\left(p_{1}+p_{2}+2\right)-12
$$

$$
=\quad 2 n-12
$$

$\rightarrow k \geq 5 \quad \Longrightarrow \quad \delta(\mathcal{F}(T)) \geq 2 . k+\delta(\mathcal{F}(T \backslash L))$.

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)
The n-dimensional permutahedron is hamiltonian for $n \geq 2$.

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \geq 2$.

Hamiltonicity of flip graphs

Theorem (Trotter '62, Johnson '63, Steinhaus '64)

The n-dimensional permutahedron is hamiltonian for $n \geq 2$.

Theorem (Lucas 87, Hurtado-Noy '99)
The n-dimensional associahedron is hamiltonian for $n \geq 2$.

Hamiltonicity

Theorem (M.-Pilaud '14)

Any graph associahedron $\mathcal{F}(G)$ is hamiltonian.

Hamiltonicity

Theorem (M.-Pilaud '14)

Any graph associahedron $\mathcal{F}(G)$ is hamiltonian.
Idea:
\rightarrow Carr and Devadoss: iterated truncations of a simplex.

Hamiltonicity

Theorem (M.-Pilaud '14)

Any graph associahedron $\mathcal{F}(G)$ is hamiltonian.
Idea:
\rightarrow Carr and Devadoss: iterated truncations of a simplex.
\rightarrow Truncation hyperplanes correspond to tubes.

Hamiltonicity

Theorem (M.-Pilaud '14)

Any graph associahedron $\mathcal{F}(G)$ is hamiltonian.
Idea:
\rightarrow Carr and Devadoss: iterated truncations of a simplex.
\rightarrow Truncation hyperplanes correspond to tubes.

Discussion

Diameter

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).
Correlation between number of edges and diameter of the flip graph?

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).
Correlation between number of edges and diameter of the flip graph?

- Hardness of $\delta(\mathcal{F}(G))$?

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).
Correlation between number of edges and diameter of the flip graph?

- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).
Correlation between number of edges and diameter of the flip graph?

- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

- Algorithmic inefficience of the proof.

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).
Correlation between number of edges and diameter of the flip graph?

- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).
Correlation between number of edges and diameter of the flip graph?

- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Other problems

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).
Correlation between number of edges and diameter of the flip graph?

- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Other problems

- How many tubings ?

Discussion

Diameter

- What happens between $2 n$ and $\binom{n}{2}$?

The cyclohedron has a diameter equivalent to $\frac{5}{2} n$ (Pournin).
Correlation between number of edges and diameter of the flip graph?

- Hardness of $\delta(\mathcal{F}(G))$?

Hamiltonicity

- Algorithmic inefficience of the proof.
- How many Hamiltonian cycles?

Other problems

- How many tubings ?
-

THANK YOU FOR LISTENING SO FERVENTLY!

