A canonical tree decomposition for chirotopes

Florent Koechlin
LIPN, CNRS, Villetaneuse, France
Joint work with Mathilde Bouvel, Valentin Féray, Xavier Goaoc

CALIN Seminar, LIPN, 2024
January 2024, 16th

Orientation, chirotope of labelled points

Orientation of three labelled points
$\chi(p, q, r)=\left\{\begin{aligned}+1 & \text { if } \mathfrak{p}_{p}, \mathfrak{p}_{q}, \mathfrak{p}_{r} \text { oriented CCW, } \\ -1 & \text { if } \mathfrak{p}_{p}, \mathfrak{p}_{q}, \mathfrak{p}_{r} \text { oriented CW, } \\ 0 & \text { if } \mathfrak{p}_{p}, \mathfrak{p}_{q}, \mathfrak{p}_{r} \text { aligned. }\end{aligned}\right.$
$\chi(p, q, r)=\operatorname{sign}\left|\begin{array}{ccc}x_{p} & x_{q} & x_{r} \\ y_{p} & y_{q} & y_{r} \\ 1 & 1 & 1\end{array}\right|$
Remark: $\chi(p, q, r)=\chi(q, r, p)=\chi(r, p, q)$

Orientation, chirotope of labelled points

Chirotope of labelled points set

- Point set $\mathcal{P}=\left\{p_{\ell}\right\}_{\ell \in X}$ labelled by X
- Points in general position (no three aligned, no parallel lines)

$$
\circ \chi_{\mathcal{P}}:(X)_{3} \rightarrow\{-1,+1\}
$$

$$
\chi_{\mathcal{P}}(x, y, z)= \begin{cases}+1 & \text { if } \mathfrak{p}_{x}, \mathfrak{p}_{y}, \mathfrak{p}_{z} \text { oriented CCW, } \\ -1 & \text { if } \mathfrak{p}_{x}, \mathfrak{p}_{y}, \mathfrak{p}_{z} \text { oriented CW. }\end{cases}
$$

Orientation, chirotope of labelled points

Chirotope of labelled points set

- Point set $\mathcal{P}=\left\{\mathfrak{p}_{\ell}\right\}_{\ell \in X}$ labelled by X
- Points in general position (no three aligned, no parallel lines)
- $\chi_{\mathcal{P}}:(X)_{3} \rightarrow\{-1,+1\}$
$\chi_{\mathcal{P}}(x, y, z)= \begin{cases}+1 & \text { if } \mathfrak{p}_{x}, \mathfrak{p}_{y}, \mathfrak{p}_{z} \text { oriented CCW, } \\ -1 & \text { if } \mathfrak{p}_{x}, \mathfrak{p}_{y}, \mathfrak{p}_{z} \text { oriented CW. }\end{cases}$
- Chirotopes allow to abstract from coordinates

Chirotopes encode many useful properties

Example of properties

$$
\begin{aligned}
& \circ[p, q] \in \operatorname{Conv}(\mathcal{P}) \\
& \quad \Leftrightarrow \forall x \in X \backslash\{p, q\}, \chi(p, q, x)=c s t
\end{aligned}
$$

Chirotopes encode many useful properties

Chirotopes encode many useful properties

Example of properties

$$
\begin{aligned}
& \circ[p, q] \in \operatorname{Conv}(\mathcal{P}) \\
& \quad \Leftrightarrow \forall x \in X \backslash\{p, q\}, \chi(p, q, x)=c s t \\
& \circ x \in \Delta(p, q, r) \Leftrightarrow \\
& \quad \chi_{\mathcal{P}}(p, q, x)=\chi_{\mathcal{P}}(q, r, x)=\chi_{\mathcal{P}}(r, p, x) \\
& \circ(p, q) \text { separates }[a, b] \\
& \quad \Leftrightarrow \chi(p, q, a)=-\chi(p, q, b) \\
& \circ[p, q] \text { and }[a, b] \text { are intersecting } \Leftrightarrow \ldots
\end{aligned}
$$

Chirotopes

Chirotopes are a useful combinatorial and geometric object...

- Finite number t_{n} of chirotopes on n elements

- Useful for exact algorithms, not depending on coordinates
- Can be used for benchmarking algorithms

Chirotopes

Chirotopes are a useful combinatorial and geometric object...

- Finite number t_{n} of chirotopes on n elements

- Useful for exact algorithms, not depending on coordinates
- Can be used for benchmarking algorithms
...but also quite complex to understand!
- Decide whether $f:(X)_{3} \rightarrow\{-1,1\}$ is realizable is NP-hard [Shor 91]
- Number of chirotopes t_{n} exactly known only for $n \leq 11$ (up to relabelling) [Aichholzer et al 2002]
- Best known asymptotics $t_{n}=n^{4 n+\Theta(n / \log n)}$ [Goodman and Pollak 93]

Chirotopes

Chirotopes are a useful combinatorial and geometric object...

- Finite number t_{n} of chirotopes on n elements

- Useful for exact algorithms, not depending on coordinates
- Can be used for benchmarking algorithms
...but also quite complex to understand!
- Decide whether $f:(X)_{3} \rightarrow\{-1,1\}$ is realizable is NP-hard [Shor 91]
- Number of chirotopes t_{n} exactly known only for $n \leq 11$ (up to relabelling) [Aichholzer et al 2002]
- Best known asymptotics $t_{n}=n^{4 n+\Theta(n / \log n)}$ [Goodman and Pollak 93]

The space of chirotopes is hard to explore!

Mutually avoiding sets, modular decomposition

$$
\square E
$$

$$
\begin{aligned}
& a \text { o } \\
& \begin{array}{lll}
b & \\
\circ & A \square D
\end{array} \\
& { }^{\circ} c \\
& d_{0} \quad \square B
\end{aligned}
$$

Mutually avoiding sets, modular decomposition

Mutually avoiding sets, modular decomposition

Chirotope is read following proxies!

$$
\chi(a, d, B)=\chi\left(a, d, x^{*}\right)
$$

Mutually avoiding sets, modular decomposition

Mutually avoiding sets, modular decomposition

Chirotope is read following proxies!

$$
\chi(a, d, B)=\chi\left(a, d, x^{*}\right) \quad \chi(a, E, B)=\chi\left(y^{*}, E, z^{*}\right)
$$

Converse operation: Bowtie operation

- χ sign function on $X \cup\left\{x^{*}\right\}$, and ξ on $Y \cup\left\{y^{*}\right\}$
- the bowtie $\kappa \stackrel{\text { def }}{=} \chi_{x^{*}} \bowtie_{y^{*}} \xi$ is defined on $X \cup Y$ by:

$$
\left\{\begin{array}{rll}
\kappa\left(x_{1}, x_{2}, x_{3}\right) & =\chi\left(x_{1}, x_{2}, x_{3}\right) & \text { if } x_{1}, x_{2}, x_{3} \text { are all in } X ; \\
\kappa\left(x_{1}, x_{2}, y\right) & =\chi\left(x_{1}, x_{2}, x^{*}\right) & \text { if } x_{1}, x_{2} \text { are in } X \text { and } y \text { is in } Y ; \\
\kappa\left(x, y_{2}, y_{3}\right) & =\xi\left(y^{*}, y_{2}, y_{3}\right) & \\
\text { if } x \text { is in } X \text { and } y_{2}, y_{3} \text { are in } Y ; \\
\kappa\left(y_{1}, y_{2}, y_{3}\right) & =\xi\left(y_{1}, y_{2}, y_{3}\right) & \text { if } y_{1}, y_{2}, y_{3} \text { are all in } Y .
\end{array}\right.
$$

- $\chi_{x^{*}} \bowtie_{y^{*}} \xi$ is a realizable chirotope if and only if χ and ξ are realizable and x^{*} and y^{*} are extreme in χ and ξ.
[Bouvel,Féray, Goaoc,K.]

First properties of decomposition

- κ is indecomposable if there is no nontrivial decomposition $\kappa=\chi_{x^{*}} \bowtie_{y^{*}} \xi$
- Every chirotope admits a decomposition built from indecomposable chirotopes
- Every decomposition can be represented by a (indecomposable) chirotope tree

- It allows a nice description of a realizable chirotope while avoiding providing a full realization

First properties of decomposition

- κ is indecomposable if there is no nontrivial decomposition $\kappa=\chi_{x^{*}} \bowtie_{y^{*}} \xi$
- Every chirotope admits a decomposition built from indecomposable chirotopes
- Every decomposition can be represented by a (indecomposable) chirotope tree

- It allows a nice description of a realizable chirotope while avoiding providing a full realization
- Is the chirotope tree canonical (unique)?

Convex issue

Two trees with the same associated chirotope:

Convex issue

Two trees with the same associated chirotope:

But if we merge / recompose adjacent convex nodes, same tree:

Unicity of decomposition

A chirotope tree is canonical:

- If every node is either convex or indecomposable
- There is no edge between two convex nodes

Proposition: Every chirotope admits a unique canonical tree (up to relabelling the proxies) [BFGK.]

Proof sketch

Define two transformations on chirotope trees:

- $\stackrel{\diamond}{\longrightarrow}$ that merges two adjacent convex nodes
- $\xrightarrow{\bowtie}$ that decomposes a nonconvex node in two

Proposition: [BFGK.] The transformation $\Rightarrow:=\stackrel{\diamond}{\longrightarrow} \cup \xrightarrow{\bowtie}$ terminates and is locally confluent: if $T \Rightarrow T_{1}$ and $T \Rightarrow T_{2}$ then there exists T_{3} such that $T_{1} \Rightarrow^{*} T_{3}$ and $T_{2} \Rightarrow^{*} T_{3}$.

The main difficulty resides in the case where a node can be decomposed in two manners.

Good/Bad news

Good news:

- Chirotope trees provide a nice way to build chirotopes from smaller ones
- Unicity gives a simple way to prove that two chirotopes built recursively are different

Bad news: For n large enough we have [BFGK.]

$$
d_{n} / t_{n}=\mathcal{O}\left(n^{-3}\right)
$$

Triangulations

A triangulation of a point set \mathcal{P} is a maximal crossing-free set of edges between elements of \mathcal{P}.

The set of triangulations of \mathcal{P} only depends on its chirotope.
We write \mathcal{T}_{κ} the set of triangulations of a chirotope κ.

Triangulations

Many questions are still open:

- For every κ on n elements,

$$
\begin{aligned}
& \left|\mathcal{T}_{\kappa}\right|=\mathcal{O}\left(30^{n}\right) \text { [Sharir and Sheffer, 2011] } \\
& \left|\mathcal{T}_{\kappa}\right|=\Omega\left(2.63^{n}\right) \text { [Aichholzer et al, 2016] }
\end{aligned}
$$

- It is conjectured that the minimal is $\mathcal{O}\left(3.47^{n}\right)$ [Hurtado and Noy 97]
- Max known: Koch chains has $\approx 9.08^{n}$ triangulations [Rutschmann and Wettstein 2022]

Algorithmically: Compute the number of triangulations of a given point set:

- $\mathcal{O}\left(n^{2} 2^{n}\right)$ [Alvarez and Seidel 2013]
- $\mathcal{O}\left(n^{(11+o(1)) \sqrt{n}}\right)$ [Marx and Miltzow 2016]

Triangulations of bowties

Triangulations of bowties

Triangulations of bowties

Triangulations of bowties

$T_{X Y}$

Triangulations of bowties

Triangulations of bowties

$$
T^{\prime \prime}=\pi_{X \rightarrow y^{*}}(T)
$$

Triangulations of bowties

$T \in \mathcal{T}_{\kappa}$

$T^{\prime}=\pi_{Y \rightarrow x^{*}}(T)$

$T_{X Y}$

$T^{\prime \prime}=\pi_{X \rightarrow y^{*}}(T)$

Bijection between:

- Triangulations of $\kappa=\chi_{x^{*}} \bowtie_{y^{*}} \xi$
- Triplets of triangulations of χ, ξ, and maximal crossing-free families of edged between the neighbors of x^{*} and y^{*}

$$
\left|\mathcal{T}_{\kappa}\right|=\sum_{a, b \geq 2}\binom{a+b-2}{a-1}\left[x^{a}\right] P_{\chi, x^{*}}(x)\left[y^{b}\right] P_{\xi, y^{*}}(y)
$$

Triangulations of bowties

Two ingredients:

$\left|T_{X Y}\right|$ only depends on a and b :

$$
\left|T_{X Y}\right|=\left(\binom{b}{a-1}\right)=\binom{a+b-2}{a-1}
$$

Triangulations of bowties

Two ingredients: Triangulation polynomial

$$
P_{\chi, x^{*}}(x)=\sum_{T \in \mathcal{T}_{\chi}} x^{\operatorname{deg}_{T}\left(x^{*}\right)} \quad P_{\chi, x^{*}}(1)=\left|\mathcal{T}_{\chi}\right|
$$

Example: $P_{\chi, x^{*}}(x)=x^{3}(x+1)$ and $P_{\xi, y^{*}}(y)=y^{2}\left(1+y+y^{2}\right)$.

Triangulations of bowties

$T \in \mathcal{T}_{\kappa}$

$T^{\prime}=\pi_{Y \rightarrow x^{*}}(T)$

$T_{X Y}$

$T^{\prime \prime}=\pi_{X \rightarrow y^{*}}(T)$

Bijection between:

- Triangulations of $\kappa=\chi_{x^{*}} \bowtie_{y^{*}} \xi$
- Triplets of triangulations of χ, ξ, and maximal crossing-free families of edged between the neighbors of x^{*} and y^{*}

$$
\left|\mathcal{T}_{\kappa}\right|=\sum_{a, b \geq 2}\binom{a+b-2}{a-1}\left[x^{a}\right] P_{\chi, x^{*}}(x)\left[y^{b}\right] P_{\xi, y^{*}}(y)
$$

Triangulations of chirotope trees

36 nodes, each decorated with a chirotope of size 9, adding up to 254 elements.

Number of triangulations?

Triangulations of chirotope trees

- Same ideas with the same bijection.
- However the full triangulation polynomial of every node is needed:

$$
Q_{\xi,\left\{x_{i}^{*}\right\}}\left(x_{1}, \ldots, x_{k},\left\{y_{i, j}\right\}_{1 \leq i<j \leq k}\right)=\sum_{T \in \mathcal{T}_{\xi}} \prod_{i=1}^{k} x_{i}^{\operatorname{deg}_{T}\left(x_{i}^{*}\right)} \cdot \prod_{\substack{x_{i}^{*} x_{j}^{*} \in T \\ i<j}} y_{i, j} .
$$

- and the formula are more complex, as we compute multivariate polynomials instead of just a number.

Conclusion: [BFGK.] the number of triangulation of a chirotope tree can be computed in polynomial time from the full triangulation polynomials of its nodes.

Triangulations of chirotope trees

36 nodes, each decorated with a chirotope of size 9 , adding up to 254 elements.

Number of triangulations:

$$
\left|T_{\kappa}\right| \approx 5.92966751 .10^{180}
$$

computed exactly in a few seconds using sage.

Computing triangulation polynomials

- First idea: enumerate all triangulations with Sage and deduce the polynomial

Computing triangulation polynomials

- First idea: enumerate all triangulations with Sage and deduce the polynomial \rightarrow bug in Sage!
[FlorentKoechlinMacAir:~ florent\$ sage

```
SageMath version 9.6, Release Date: 2022-05-15
Using Python 3.10.3. Type "help()" for help.
```

sage: PointConfiguration.set_engine('internal');
....: points = [[64374, 1170], [28595,16], [1162, 658], [28874, 3308], [29974, 943
....: 6],
....: [30590, 22299], [49434, 11393], [56042, 11982], [42392, 33338], [33404, 64
....: 878]];
....: p = PointConfiguration(points);
....: p_fine = p.restrict_to_fine_triangulations();
....: list_triangulations = list(p_fine.triangulations()) \#does not seem to term
.....: inate quickly
/usr/local/bin/sage: line 20: 84061 Killed: $9 \quad$ /usr/bin/env - PATH="\$PATH" \$MIN_ENV "\$SYMLINK"/ven

Computing triangulation polynomials

- First idea: enumerate all triangulations with Sage and deduce the polynomial \rightarrow bug in Sage!

python 3.10
43,30 Go
[FlorentKoechlinMacAir:~ florent\$ sage

```
SageMath version 9.6, Release Date: 2022-05-15
Using Python 3.10.3. Type "help()" for help.
```

sage: PointConfiguration.set_engine('internal');
....: points = [[64374, 1170], [28595,16], [1162, 658], [28874, 3308], [29974, 943
....: 6],
....: [30590, 22299], [49434, 11393], [56042, 11982], [42392, 33338], [33404, 64
....: 878]];
....: p = PointConfiguration(points);
....: p_fine = p.restrict_to_fine_triangulations();
....: list_triangulations $=$ list(p_fine.triangulations()) \#does not seem to term
.....: inate quickly
/usr/local/bin/sage: line 20: 84061 Killed: 9 /usr/bin/env - PATH="\$PATH" \$MIN_ENV "\$SYMLINK"/ven

- Better idea: adapt the $\mathcal{O}\left(n^{2} 2^{n}\right)$ algorithm of [Alvarez and Seidel 2013] to compute the polynomial

Chain Triangulations: an analyzable case

Chain Triangulations: an analyzable case

- $\chi_{n+1}=\chi_{n y_{n}} \bowtie_{x_{n+1}} \chi_{1}$
- We introduce $P_{n}(y) \stackrel{\text { def }}{=} P_{\chi_{n}, y_{n}^{*}}(y)$ and $Q_{\chi_{1}, x_{n}^{*}, y_{n}^{*}}(x, y)=x^{3} y^{3}$

Chain Triangulations: an analyzable case

- $\chi_{n+1}=\chi_{n y_{n}} \bowtie_{x_{n+1}} \chi_{1}$
- We introduce $P_{n}(y) \stackrel{\text { def }}{=} P_{\chi_{n}, y_{n}^{*}}(y)$ and $Q_{\chi_{1}, x_{n}^{*}, y_{n}^{*}}(x, y)=x^{3} y^{3}$
- $P_{n+1}(y)=\sum_{a, b \geq 2} R_{a, b}(y)\left[y^{a}\right] P_{n}(y)\left[x^{b}\right] Q_{1}(x, y)$

Chain Triangulations: an analyzable case

- $\chi_{n+1}=\chi_{n y_{n}} \bowtie_{x_{n+1}} \chi_{1}$
- We introduce $P_{n}(y) \stackrel{\text { def }}{=} P_{\chi_{n}, y_{n}^{*}}(y)$ and $Q_{\chi_{1}, x_{n}^{*}, y_{n}^{*}}(x, y)=x^{3} y^{3}$
- $P_{n+1}(y)=\sum_{a, b \geq 2} R_{a, b}(y)\left[y^{a}\right] P_{n}(y)\left[x^{b}\right] Q_{1}(x, y)$

Chain Triangulations: an analyzable case

- $P_{n+1}(y)-\frac{y^{4}}{(1-y)^{2}} P_{n}(y)=-\frac{y^{4}}{(1-y)^{2}} P_{n}(1)+\frac{y^{3}}{1-y} P_{n}^{\prime}(1)$
- Let us introduce $F(y, u) \stackrel{\text { def }}{=} \sum_{k \geq 1} P_{k}(y) u^{k}$

$$
\left(1-\frac{u y^{4}}{(1-y)^{2}}\right) F(y, u)=u y^{3}\left(1-\frac{y}{(1-y)^{2}} F(1, u)+\frac{1}{1-y} \partial_{y} F(1, u)\right)
$$

Chain Triangulations: an analyzable case

- $P_{n+1}(y)-\frac{y^{4}}{(1-y)^{2}} P_{n}(y)=-\frac{y^{4}}{(1-y)^{2}} P_{n}(1)+\frac{y^{3}}{1-y} P_{n}^{\prime}(1)$
- Let us introduce $F(y, u) \stackrel{\text { def }}{=} \sum_{k \geq 1} P_{k}(y) u^{k}$

$$
\left(1-\frac{u y^{4}}{(1-y)^{2}}\right) F(y, u)=u y^{3}\left(1-\frac{y}{(1-y)^{2}} F(1, u)+\frac{1}{1-y} \partial_{y} F(1, u)\right)
$$

- Kernel method: find $y(u)$ analytic canceling the kernel.
- We obtain $F(1, u)=\sum_{n \geq 1}\left|\mathcal{T}_{\chi_{n}}\right| u^{n}$ (A066357!) and

$$
\left|\mathcal{T}_{\chi_{n}}\right| \sim_{n \rightarrow \infty} \frac{3-2 \sqrt{2}}{\sqrt{2 \pi}} \frac{16^{n}}{n^{3 / 2}}
$$

Conclusion

- We have seen a canonical chirotope decomposition
- Natural sens of "factorizing" chirotope
- The decomposition can be used to compute the number of triangulations of complex chirotopes

Many open questions:

- What is the complexity of computing the canonical decomposition?
- Can more complex configurations be analyzed analytically?
- Can we unify it with other classical constructions?

Further work: faster computation

$$
\left|\mathcal{T}_{\kappa}\right|=\sum_{a, b \geq 2}\binom{a+b-2}{a-1}\left[x^{a}\right] P_{\chi, x^{*}}(x)\left[y^{b}\right] P_{\xi, y^{*}}(y)
$$

Further work: faster computation

$$
\left|\mathcal{T}_{\kappa}\right|=\left\langle\frac{P_{\chi, x^{*}}(x+1)}{x+1}, \frac{P_{\xi, y^{*}}(x+1)}{x+1}\right\rangle_{x} .
$$

Further work: faster computation

$$
\left|\mathcal{T}_{\kappa}\right|=\left\langle\frac{P_{\chi, x^{*}}(x+1)}{x+1}, \frac{P_{\xi, y^{*}}(x+1)}{x+1}\right\rangle_{x}
$$

Further work: faster computation

$$
\left|\mathcal{T}_{\kappa}\right|=\left\langle\frac{P_{\chi, x^{*}}(x+1)}{x+1}, \frac{P_{\xi, y^{*}}(x+1)}{x+1}\right\rangle_{x}
$$

Further work: faster computation

$$
\left|\mathcal{T}_{\kappa}\right|=\left\langle\frac{P_{\chi, x^{*}}(x+1)}{x+1}, \frac{P_{\xi, y^{*}}(x+1)}{x+1}\right\rangle_{x}
$$

Further work: faster computation

$$
\left|\mathcal{T}_{\kappa}\right|=\left\langle\frac{P_{\chi, x^{*}}(x+1)}{x+1}, \frac{P_{\xi, y^{*}}(x+1)}{x+1}\right\rangle_{x}
$$

Further work: Binary chain

- Start with $\chi_{1}=$
- Recursively build t_{n} :

- Then if $Q_{n}(x)=(x+1) P_{n}(x+1)$:

$$
Q_{n}(x)=\sum_{i=0}^{s} a_{i} x^{i} \Rightarrow Q_{n+1}(x)=(x+1)^{4} \sum_{k=2}^{s}\left(\sum_{i=k}^{s} a_{i} x^{i-k}\right)^{2}
$$

- Not analyzable for now, but greatly improves the possible number of iterations

Further work: Koch Chains [Rutschmann and Wettstein 2022]

- Chain: x-increasing sequence of points x_{1}, \ldots, x_{n} such that [$x_{i} x_{i+1}$] is forced in every triangulation
- every known configuration with many triangulations is a chain
- Every chain can be decomposed with only two operators \wedge and \vee, and the basic chain of two points [Rutschmann and Wettstein 2022]

Further work: Koch Chains [Rutschmann and Wettstein 2022]

- Koch chain: best known configuration with maximal number of triangulations $\approx 9.08^{n}$
- Construction similar to ours (with "phantom" proxies)
- Similar techniques for counting triangulations
- We managed to generalize their construction beyond chains, but it seems that only chains reach the best number of triangulations

Further work: Koch Chains [Rutschmann and Wettstein 2022]

- Koch chain: best known configuration with maximal number of triangulations $\approx 9.08^{n}$
- Construction similar to ours (with "phantom" proxies)
- Similar techniques for counting triangulations
- We managed to generalize their construction beyond chains, but it seems that only chains reach the best number of triangulations

Conlusion: still many things to look at!
Thank you!

