Weakly-unambiguous Parikh automata and their link with holonomic series

Alin Bostan, Arnaud Carayol, Florent Koechlin, Cyril Nicaud
LIGM UMR 8049 CNRS

May 2020, 12th

Link between languages and combinatorics

$$
L(x)=\sum_{w \in L} x^{|w|}=\sum_{n \in \mathbb{N}} \ell_{n} x^{n} \quad \ell_{n}: \text { number of words of length } n
$$

Formal languages

$$
L \quad \longrightarrow \quad L(x)
$$

Link between languages and combinatorics

$L(x)=\sum_{w \in L} x^{|w|}=\sum_{n \in \mathbb{N}} \ell_{n} x^{n} \quad \ell_{n}:$ number of words of length n
Formal languages
Generating series

$$
\begin{aligned}
&\left\{\begin{array}{l}
q_{0}(x)
\end{array}=x q_{0}(x)+x q_{1}(x)\right. \\
& q_{1}(x)=1+x q_{1}(x)+x q_{0}(x)
\end{aligned} \begin{aligned}
& L(x)=\frac{x}{1-2 x}
\end{aligned}
$$

Link between languages and combinatorics

$$
L\left(x_{1}, \ldots, x_{r}\right)=\sum_{w \in L} x_{1}^{|w|_{a_{1}}} \ldots x_{r}^{|w|_{a_{r}}}
$$

$$
\Sigma=\left\{a_{1}, \ldots, a_{r}\right\}
$$

Formal languages
Generating series

Regular
\longrightarrow rational $L(x)=P(x) / Q(x)$

$$
\left\{\begin{aligned}
q_{0}\left(x_{a}, x_{b}\right) & =x_{a} q_{0}\left(x_{a}, x_{b}\right)+x_{b} q_{1}\left(x_{a}, x_{b}\right) \\
q_{1}\left(x_{a}, x_{b}\right) & =1+x_{b} q_{1}\left(x_{a}, x_{b}\right)+x_{a} q_{0}\left(x_{a}, x_{b}\right) \\
L\left(x_{a}, x_{b}\right) & =\frac{x_{b}}{1-\left(x_{a}+x_{b}\right)}
\end{aligned}\right.
$$

Link between languages and combinatorics

$L(x)=\sum_{w \in L} x^{|w|}=\sum_{n \in \mathbb{N}} \ell_{n} x^{n} \quad \ell_{n}$: number of words of length n

Formal languages
Generating series

Unambiguous context-free $\longrightarrow \quad$ algebraic $P(x, L(x))=0$

$$
\begin{gathered}
\left\{\begin{array} { l }
{ S \rightarrow a S B | \varepsilon } \\
{ B \rightarrow c B | b S }
\end{array} \quad \left\{\begin{array}{l}
S(x)=x S(x) B(x)+1 \\
B(x)=x B(x)+x S(x)
\end{array}\right.\right. \\
x^{2} S(x)^{2}-(1-x) S(x)+1-x=0
\end{gathered}
$$

Link between languages and combinatorics

$$
L\left(x_{1}, \ldots, x_{r}\right)=\sum_{w \in L} x_{1}^{|w|_{a_{1}}} \ldots x_{r}^{|w|_{a_{r}}}
$$

$$
\Sigma=\left\{a_{1}, \ldots, a_{r}\right\}
$$

Formal languages
Generating series

Unambiguous context-free $\longrightarrow \quad$ algebraic $P(x, L(x))=0$

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ S \rightarrow a S B | \varepsilon } \\
{ B \rightarrow c B | b S }
\end{array} \quad \left\{\begin{array}{l}
S(\vec{x})=x_{a} S(\vec{x}) B(\vec{x})+1 \\
B(\vec{x})=x_{c} B(\vec{x})+x_{b} S(\vec{x})
\end{array}\right.\right. \\
& x_{a} x_{b} S\left(x_{a}, x_{b}, x_{c}\right)^{2}-\left(1-x_{c}\right) S\left(x_{a}, x_{b}, x_{c}\right)+1-x_{c}=0
\end{aligned}
$$

Link between languages and combinatorics

$$
L\left(x_{1}, \ldots, x_{r}\right)=\sum_{w \in L} x_{1}^{|w|_{a_{1}}} \ldots x_{r}^{|w|_{a_{r}}} \quad \Sigma=\left\{a_{1}, \ldots, a_{r}\right\}
$$

Formal languages
Generating series
Regular

$$
\begin{array}{cc}
\longrightarrow & L(x) \\
\longrightarrow & \text { rational } L(x)=P(x) / Q(x)
\end{array}
$$ ambiguous context-free \qquad

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ S \rightarrow a S B | \varepsilon } \\
{ B \rightarrow c B | b S }
\end{array} \quad \left\{\begin{array}{l}
S(\vec{x})=x_{a} S(\vec{x}) B(\vec{x})+1 \\
B(\vec{x})=x_{c} B(\vec{x})+x_{b} S(\vec{x})
\end{array}\right.\right. \\
& x_{a} x_{b} S\left(x_{a}, x_{b}, x_{c}\right)^{2}-\left(1-x_{c}\right) S\left(x_{a}, x_{b}, x_{c}\right)+1-x_{c}=0
\end{aligned}
$$

Link between languages and combinatorics

$L(x)=\sum_{w \in L} x^{|w|}=\sum_{n \in \mathbb{N}} \ell_{n} x^{n} \quad \ell_{n}$: number of words of length n
Formal languages
Generating series

Unambiguous context-free $\longrightarrow \quad$ algebraic $P(x, L(x))=0$

$$
\begin{aligned}
& \frac{1-2 x+225 x^{2}}{(1-25 x)\left(625 x^{2}+14 x+1\right)}=1+9 x+49 x^{2}+\ldots . \quad \text { Bousquet-Mélou 08] } \\
& G(x)=1+2 x+11 x^{2}+\ldots \quad[\text { Bostan \& Kauers 10, Drmota \& Banderier 13] }
\end{aligned}
$$

Analytic criteria for inherent ambiguity

Theorem (Chomsky and Schützenberger 63)

The generating series of an unambiguous context-free language is algebraic.

Contraposition

If the generating series of a context-free language is not algebraic, then it is inherently ambiguous.

Detailed Example

Example (Flajolet 87)

$\mathcal{D}=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{k}} b: k \in \mathbb{N}^{*}, n_{1}=1\right.$ and $\left.\exists j<k, n_{j+1} \neq 2 n_{j}\right\}$
is inherently ambiguous.

- $a a b \notin \mathcal{D}$
- abaabaaab $\in \mathcal{D}$
- abaabaaaab $\notin \mathcal{D}$
- $a b a^{2} b a^{4} b \ldots a^{2^{k-1}} b \notin \mathcal{D}$

Detailed Example

Example (Flajolet 87)

$\mathcal{D}=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{k}} b: k \in \mathbb{N}^{*}, n_{1}=1\right.$ and $\left.\exists j<k, n_{j+1} \neq 2 n_{j}\right\}$ is inherently ambiguous.

- By contradiction, suppose \mathcal{D} is unambiguous. Then $D(x)$ is algebraic
- Aim: build from $D(x)$ a series that is not algebraic and use closure properties

Detailed Example

Example (Flajolet 87)

$\mathcal{D}=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{k}} b: k \in \mathbb{N}^{*}, n_{1}=1\right.$ and $\left.\exists j<k, n_{j+1} \neq 2 n_{j}\right\}$ is inherently ambiguous.

- By contradiction, suppose \mathcal{D} is unambiguous. Then $D(x)$ is algebraic
- Aim: build from $D(x)$ a series that is not algebraic and use closure properties
- $\mathcal{B}=a b\left(a b^{*}\right)^{*} \backslash \mathcal{D}=\left\{a b a^{2} b a^{4} b \ldots a^{2^{k-1}} b: k \in \mathbb{N}^{*}\right\}$
- $B(x)=\frac{x^{2}}{1-\frac{x}{1-x}}-D(x)=$ algebraic
- So $B(x)=\sum_{k \geq 1} x^{2^{k}-1+k}$, which is lacunary
- So $B(x)$ is not algebraic. Contradiction

Remarks on this method

- Analytic criteria for solving some instances of an undecidable problem
- It can avoid technical proofs on automata based on pumping techniques.
- $L=\left\{a^{n} b^{m} c^{p}: n=m\right.$ or $\left.m=p\right\}$ is inherently ambiguous as a CF language yet $L(x)=\frac{2}{\left(1-x^{2}\right)(1-x)}-\frac{1}{1-x^{3}}$ is rational
- Specific about inherent ambiguity questions.
\rightarrow language of primitive words \mathcal{L}_{P}

$$
a a b b \in \mathcal{L}_{P}, a b a b \notin \mathcal{L}_{P}
$$

CFL: open not unambiguous CFL: [Peterson 96]

Hierarchy of languages and series

Language

Regular

Unambiguous context-free
?

Generating series

$$
\begin{gathered}
L(x) \\
\text { rational } Q(x) L(x)=P(x)
\end{gathered}
$$

algebraic $P(x, L(x))=0$

\longrightarrow holonomic $P\left(x, \partial_{x}\right) \cdot L(x)=0$

A series $f(x)=\sum_{n} a_{n} x^{n}$ is holonomic (or D-finite) if it satisfies a differential equation of the form:

$$
P_{k}(x) f^{(k)}(x)+\ldots+P_{0}(x) f(x)=0 \quad \text { with } P_{i}(x) \in \mathbb{Q}[x]
$$

Equivalently a_{n} satisfies a linear recurrence of the form

$$
p_{r}(n) a_{n+r}+\ldots+p_{0}(n) a_{n}=0 \quad \text { with } p_{i}(n) \in \mathbb{Q}[n]
$$

Closed by sum, product, composition with algebraic series, Hadamard product...

Example of holonomic series

- rational series $F=P / Q:(P Q) F^{\prime}+\left(P Q^{\prime}-P^{\prime} Q\right) F=0$ \rightarrow Linear recurrence with constant coefficients
- algebraic series (the proof is however not straightforward)
$F(x)=\sqrt{1-x}:=\sum \frac{4^{-n}}{1-2 n}\binom{2 n}{n} x^{n}$ satisfies $F^{2}-1-x=0$
$2(1-x) F^{\prime}-F=0$
$2(n+1) u_{n+1}-(2 n+1) u_{n}=0$
- $F(x)=e^{x}:=\sum x^{n} / n$! is holonomic but is not algebraic $F^{\prime}-F=0$
$(n+1) u_{n+1}-u_{n}=0$

Holonomic series in several variables (Lipshitz 89)

A series $f\left(x_{1}, \ldots, x_{n}\right)$ is holonomic (or D-finite) if it satisfies a system of partial derivative equations of the form:

$$
\left\{\begin{array}{c}
A_{1, r_{1}}(\vec{x}) \partial_{x_{1}}^{r_{1}} f(\vec{x})+\ldots+A_{1,1}(\vec{x}) \partial_{x_{1}} f(\vec{x})+A_{1,0}(\vec{x}) f(\vec{x})=0 \\
\vdots \\
A_{n, r_{n}}(\vec{x}) \partial_{x_{n}}^{r_{n}} f(\vec{x})+\ldots+A_{n, 1}(\vec{x}) \partial_{x_{n}} f(\vec{x})+A_{n, 0}(\vec{x}) f(\vec{x})=0
\end{array}\right.
$$

with $A_{i, j}(\vec{x}) \in \mathbb{Q}[\vec{x}]$, and $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$.

We only use closure properties rather than the definition

Theorem (Lipshitz 1988, 1989)

Holonomic series are closed under :
(1) arithmetic operations,$+ \times,-$
(2) specialization to 1 , when it is well-defined: if $f\left(x_{1}, \ldots, x_{n}\right)$ is holonomic, then $f(x, 1, \ldots, 1)$ is holonomic too
(3) Hadamard's product \odot

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n}\right) & =\sum_{i \in \mathbb{N}^{n}} a\left(i_{1}, \ldots, i_{n}\right) x_{1}^{i_{1}} \ldots x_{n}^{i_{n}} \\
g\left(x_{1}, \ldots, x_{n}\right) & =\sum_{i \in \mathbb{N}^{n}} b\left(i_{1}, \ldots, i_{n}\right) x_{1}^{i_{1}} \ldots x_{n}^{i_{n}} \\
f \odot g\left(x_{1}, \ldots, x_{n}\right) & =\sum_{i \in \mathbb{N}^{n}} a\left(i_{1}, \ldots, i_{n}\right) b\left(i_{1}, \ldots, i_{n}\right) x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}
\end{aligned}
$$

Crucial particular case: support series

Let $\mathcal{S} \subseteq \mathbb{N}^{n}$. The support series of \mathcal{S} is

$$
g\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{S}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}
$$

Let $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{n} \in \mathbb{N}^{n}} a\left(i_{1}, \ldots, i_{n}\right) x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}$. Then:

$$
(f \odot g)\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathcal{S}} a\left(i_{1}, \ldots, i_{n}\right) x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}
$$

Example of Hadamard's product

> Example
> $\Omega_{3}=\left\{w \in(a+b+c)^{*}:|w|_{a} \neq|w|_{b}\right.$ or $\left.|w|_{b} \neq|w|_{c}\right\}$.

- $a b b c a \in \Omega_{3}$, $a b b c c a \notin \Omega_{3}$.
- Ω_{3} is context-free, inherently ambiguous as a CFL.

$$
\begin{aligned}
\Omega_{3}\left(x_{a}, x_{b}, x_{c}\right) & =\underbrace{\frac{1}{1-\left(x_{a}+x_{b}+x_{c}\right)}}_{(a+b+c)^{*}} \odot \underbrace{\left(\frac{1}{\left(1-x_{a}\right)\left(1-x_{b}\right)\left(1-x_{c}\right.}-\frac{1}{1-x_{a} x_{b} x_{c}}\right)}_{|w|_{a} \neq|w|_{b} \text { or }|w|_{b} \neq|w|_{c}} \\
& =\frac{1}{1-\left(x_{a}+x_{b}+x_{c}\right)}-\frac{1}{1-\left(x_{a}+x_{b}+x_{c}\right)} \odot \frac{1}{1-x_{a} x_{b} x_{c}}
\end{aligned}
$$

Example of Hadamard's product

Example

$\Omega_{3}=\left\{w \in(a+b+c)^{*}:|w|_{a} \neq|w|_{b}\right.$ or $\left.|w|_{b} \neq|w|_{c}\right\}$.
$\frac{1}{1-\left(x_{a}+x_{b}+x_{c}\right)} \odot \frac{1}{1-x_{a} x_{b} x_{c}}=\left[y_{a}^{-1} y_{b}^{-1} y_{c}^{-1}\right] \frac{1}{y_{a} y_{b} y_{c}} \frac{1}{1-\left(\frac{x_{a}}{y_{a}}+\frac{x_{b}}{y_{b}}+\frac{x_{c}}{y_{c}}\right)} \frac{1}{1-y_{a} y_{b} y_{c}}$
Mgfun [Chyzak] and gfun [Salvy and Zimmermann] give:
$p_{3}(\vec{x}) \partial_{X_{a}}^{3} \Omega_{3}(\vec{x})+p_{2}(\vec{x}) \partial_{X_{a}}^{2} \Omega_{3}(\vec{x})+p_{1}(\vec{x}) \partial_{X_{a}} \Omega_{3}(\vec{x})+p_{0}(\vec{x}) \Omega_{3}(\vec{x})=0$ with $\left\|p_{i}\right\|_{\infty} \leq 7344$ and $\operatorname{deg}\left(p_{i}\right) \leq 9$.

Example of Hadamard's product

Example

$$
\Omega_{3}=\left\{w \in(a+b+c)^{*}:|w|_{a} \neq|w|_{b} \text { or }|w|_{b} \neq|w|_{c}\right\} .
$$

$$
\frac{1}{1-\left(x_{a}+x_{b}+x_{c}\right)} \odot \frac{1}{1-x_{a} x_{b} x_{c}}=\left[y_{a}^{-1} y_{b}^{-1} y_{c}^{-1}\right] \frac{1}{y_{a} y_{b} y_{c}} \frac{1}{1-\left(\frac{x_{a}}{y_{a}}+\frac{x_{b}}{y_{b}}+\frac{x_{c}}{y_{c}}\right)} \frac{1}{1-y_{a} y_{b} y_{c}}
$$

Mgfun [Chyzak] and gfun [Salvy and Zimmermann] give:
$p_{3}(\vec{x}) \partial_{X_{a}}^{3} \Omega_{3}(\vec{x})+p_{2}(\vec{x}) \partial_{x_{a}}^{2} \Omega_{3}(\vec{x})+p_{1}(\vec{x}) \partial_{X_{a}} \Omega_{3}(\vec{x})+p_{0}(\vec{x}) \Omega_{3}(\vec{x})=0$ with $\left\|p_{i}\right\|_{\infty} \leq 7344$ and $\operatorname{deg}\left(p_{i}\right) \leq 9$.

Remark (Flajolet 87)

$\Omega_{3}\left(x_{a}, x_{b}, x_{c}\right)$ is holonomic but not algebraic.

- [Lipshitz 88] added linear constraints to the support of a holonomic series using a Hadamard product with a support series
- [Massazza 93] formalized the idea with (semi)linear constraints (Linear Constrained Languages)
- [Castiglione and Massazza 2017] RCM (Regular languages with semilinear Constraints and a (injective) Morphism) ex: $a^{n} b^{m} a^{n} b^{m}$
\rightarrow not fully satisfactory from an automaton point of view.
Conjectured a link with deterministic Reversal Bounded Counter Machines.

Hierarchy of languages and series

Language L

Regular

Unambiguous context-free

Weakly-unambiguous Pushdown PA

Generating series
$L(x)$
rational $Q(x) L(x)=P(x)$
$\rightarrow \cap$
algebraic $P(z, L(x))=0$
\longrightarrow holonomic $P\left(x, \partial_{x}\right) \cdot L(x)=0$

Hierarchy of languages and series

Language L

Regular

Unambiguous context-free

Weakly-unambiguous Pushdown PA

algebraic $P(z, L(x))=0$
Generating series
$L(x)$
rational $Q(x) L(x)=P(x)$
*
\uparrow
\longrightarrow holonomic $P\left(x, \partial_{x}\right) \cdot L(x)=0$

For the presentation we work with PA and not Pushdown PA.

Parikh automata [Klaedtke and Rueß 03]

$$
\left.\begin{array}{c}
a,\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
C=\left\{(n, n, n): n \in \mathbb{N}^{*}\right\} \\
w=\text { aaabbbccc } \longrightarrow\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
w \in\left(\begin{array}{l}
3 \\
3 \\
3 \\
3
\end{array}\right) \in C \\
1 \\
0
\end{array}\right)
$$

$$
\begin{gathered}
a,\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
C=\left\{(n, n, n): n \in \mathbb{N}^{*}\right\} \\
\ell=\left\{\left(a^{n} b^{m} c^{p},\left(\begin{array}{l}
n \\
0 \\
m \\
p
\end{array}\right)\right): n, m,\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right. \\
L(\mathcal{A})=\left\{a^{n} b^{n} c^{n}: n \in \mathbb{N}^{*}\right\}
\end{gathered}
$$

Semilinear sets of \mathbb{N}^{d} (Parikh 1966)

- Intuitively: boolean combinaison of linear (affine) inequalities defining subsets of \mathbb{N}^{d}

$$
x_{1}-x_{2}=0 \wedge x_{2}-x_{3}=0 \rightarrow C=\{(n, n, n): n \in \mathbb{N}\}
$$

- More generally, subsets defined by the Presburger arithmetic [Ginsburg and Spanier 66]
$\Phi\left(x_{1}, x_{2}\right):=\exists x, x_{1}-3 x=0 \wedge 1+2 x_{1}-x_{2}=0$
$\rightarrow\{(3 n, 6 n+1): n \in \mathbb{N}\}$

Semilinear sets of \mathbb{N}^{d} (Parikh 66)

Semilinear $=$ Finite union of linear sets $\vec{c}+P^{*}$ where $P=\left\{p_{1}, \ldots, p_{r}\right\}$ and $P^{*}=\left\{\lambda_{1} p_{1}+\ldots+\lambda_{r} p_{r}: \lambda_{i} \in \mathbb{N}\right\}$

Semilinear sets of \mathbb{N}^{d} (Parikh 66)

Theorem (Eilenberg and Schützenberger 69, Ito 69)

If C is semilinear, then $C\left(x_{1}, \ldots, x_{d}\right)=\sum_{\vec{v} \in C} x_{1}^{v_{1}} \ldots x_{d}^{v_{d}}$, its support series, is rational.
m
If $C=\bigcup_{i=1} \vec{c}_{i}+P_{i}^{*}$ is an unambiguous description of C :

$$
C\left(x_{1}, \ldots, x_{d}\right)=\sum_{i=1}^{m} \frac{\vec{x}^{c_{i}}}{\prod_{p \in P_{i}}\left(1-\vec{x}^{p}\right)}
$$

Remark

In the sequel we will deal with holonomic series of the form $f \odot C$, where C is the support series of a semilinear set.

Weakly-unambiguous Parikh automaton

Weakly-unambiguous: at most one accepting run for every word.

$$
\begin{aligned}
& \{a, b\},\binom{1}{0} \quad\{a, b\},\binom{0}{1} \\
& C=\{(n, n): n \in \mathbb{N}\}
\end{aligned}
$$

$L(\mathcal{A})=\left\{w_{1} a w_{2}:\left|w_{1}\right|=\left|w_{2}\right|, w_{1}, w_{2} \in \Sigma^{*}\right\}$ with $\Sigma=\{a, b\}$.
\neq [Cadilhac, Finkel and McKenzie 13] Unambiguous constraint automata

Weakly-unambiguous Parikh automata

- PA coincide with the class of Reversal Bounded Counter Machines [Klaedtke and Rueß 03]
- Deterministic versions do not coincide.
- Weakly-unambiguous PA coincide with the class of unambiguous RBCM...
...and the class of RCM languages!
- Weakly-unambiguous PA are closed under intersection, and left quotient with words.
- Closure under union? Complement? Still open.

Weakly-unambiguous Parikh automata

- PA coincide with the class of Reversal Bounded Counter Machines [Klaedtke and Rueß 03]
- Deterministic versions do not coincide.
- Weakly-unambiguous PA coincide with the class of unambiguous RBCM...
...and the class of RCM languages!
- Weakly-unambiguous PA are closed under intersection, and left quotient with words.
- Closure under union? Complement? Still open.
- Languages recognized by weakly-unambiguous PA have holonomic generating series

Weighted generating series of a PA

Definition (Generating series of the runs of a PA)

$$
q\left(x, y_{1}, \ldots, y_{d}\right)=\sum_{n, i_{1}, \ldots, i_{d}} q_{n, i_{1}, \ldots, i_{d}} x^{n} y_{1}^{i_{1}} \ldots y_{d}^{i_{d}}
$$

where $q_{n, i_{1}, \ldots, i_{d}}$ denotes the number of runs from q to a final state, labelled by (w, v) with $|w|=n$ and $v=\left(i_{1}, \ldots, i_{d}\right)$.

The generating series of these runs are classically rational.

Example

$$
\begin{gathered}
a,\binom{3}{0} \\
\left\{\begin{array}{l}
q_{0}\left(x, y_{1}, y_{2}, y_{3}\right)=x y_{1} y_{2}^{3} y_{3} q_{1}\left(x, y_{1}, y_{2}, y_{3}\right) \\
q_{1}\left(x, y_{1}, y_{2}, y_{3}\right)=x y_{1}^{3} q_{1}\left(x, y_{1}, y_{2}, y_{3}\right)+x y_{2} q_{2}\left(x, y_{1}, y_{2}, y_{3}\right) \\
q_{2}\left(x, y_{1}, y_{2}, y_{3}\right)=x y_{2} q_{2}\left(x, y_{1}, y_{2}, y_{3}\right)+x y_{3}^{2} q_{3}\left(x, y_{1}, y_{2}, y_{3}\right) \\
q_{3}\left(x, y_{1}, y_{2}, y_{3}\right)=x y_{1}^{2} y_{3} q_{3}\left(x, y_{1}, y_{2}, y_{3}\right)+1
\end{array}\right.
\end{gathered}
$$

Weakly-unambiguous PA have holonomic series

Proposition

The generating series of a language recognized by a weakly-unambiguous Parikh Automaton is holonomic.

- $q_{I}\left(x, y_{1}, \ldots, y_{d}\right)$ counts every run of the automaton from q_{I} to a final state. It is rational
- $C\left(y_{1}, \ldots, y_{d}\right)=\quad \sum y_{1}^{i_{1}} \ldots y_{d}^{i_{d}}$ support series of the $\left(i_{1}, \ldots, i_{d}\right) \in C$
semilinear set C, which is rational
- $A\left(x, y_{1}, \ldots, y_{d}\right):=q_{l}\left(x, y_{1}, \ldots, y_{d}\right) \odot \frac{1}{1-x} C\left(y_{1}, \ldots, y_{d}\right)$ counts the accepting runs of the automaton, sorted by length and vector value. It is holonomic

Weakly-unambiguous PA have holonomic series

Proposition

The generating series of a language recognized by a weakly-unambiguous Parikh Automaton is holonomic.

- $q_{I}\left(x, y_{1}, \ldots, y_{d}\right)$ counts every run of the automaton from q_{I} to a final state. It is rational
- $C\left(y_{1}, \ldots, y_{d}\right)=\sum y_{1}^{i_{1}} \ldots y_{d}^{i_{d}}$ support series of the $\left(i_{1}, \ldots, i_{d}\right) \in C$
semilinear set C, which is rational
- $A\left(x, y_{1}, \ldots, y_{d}\right):=q_{l}\left(x, y_{1}, \ldots, y_{d}\right) \odot \frac{1}{1-x} C\left(y_{1}, \ldots, y_{d}\right)$ counts the accepting runs of the automaton, sorted by length and vector value. It is holonomic
- $A(x, 1, \ldots, 1)$ counts the accepting runs of the automaton, sorted by length. It is holonomic
- By weak-unambiguity, $L(x)=A(x, 1, \ldots, 1)$.

Inherent weak-ambiguity

Proposition

The generating series of a language recognized by a weakly-unambiguous Parikh Automaton is holonomic.

Contraposition

If the generating series of a language recognized by a PA is not holonomic, then it is inherently weakly-ambiguous as a PA language.

Example

Example

$\mathcal{D}=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{k}} b: k \in \mathbb{N}^{*}, n_{1}=1\right.$ and $\left.\exists j<k, n_{j+1} \neq 2 n_{j}\right\}$ is inherently weakly-ambiguous as a PA language.

Ambiguous automaton: ababab has two accepting runs.
From $D(x)$ we built a lacunary series. Lacunary series are not holonomic.

Criteria for non holonomy

Theorem (Stanley 1980)

Let $f(x)=\sum a_{n} x^{n}$:

- If f has an infinite number of singularities, f is not holonomic.
- If a_{n} does not satisfy a linear recurrence with polynomial coefficients, then f is not holonomic.

Example $\left(B(x)=\sum_{k \geq 1} x^{2^{k}-1+k}\right)$
$2^{k+1}-1+k+1-\left(2^{k}-1+k\right) \rightarrow \infty$ incompatible with any

$$
p_{r}(n) a_{n+r}+\ldots+p_{0}(n) a_{n}=0 \quad \text { with } p_{i}(n) \in \mathbb{Q}[n]
$$

Limits of the method

Inherent weak-ambiguity is undecidable, by Greibach's theorem, using undecidability of universality of PA [Klaedtke and Rueß 03]

The series criterium may fail. There exist inherently weakly-ambiguous PA languages having holonomic series.

Inherently weakly-ambiguous language with algebraic series

Proposition

$\mathcal{L}_{\text {even }}=\left\{a^{n_{1}} b a^{m_{1}} b \ldots a^{n_{k}} b a^{m_{k}} b: k \in \mathbb{N}^{*}, \exists i \in[1, k], n_{i}=m_{i}\right\}$ is inherently weakly-ambiguous as a PA.

- aaabaab aabaab $a b a a b \in \mathcal{L}_{\text {even }}$
- It is deterministic context-free \Rightarrow algebraic generating series
- The proof uses Ramsey's theorem, and is very specific to this language. It shows inherent ambiguity for a wider family of automata.

An algorithmic consequence of holonomy

Holonomy of the generating series has algorithmic consequences
\rightarrow It has already been used for standard unambiguous finite automata!
(1) Present the case of the inclusion problem for unambiguous finite automata
(2) Show how the same general ideas apply to weakly-unambiguous PA.

Inclusion separation problem

Proposition (Stearns and Hunt 85)

Given two unambiguous finite automata \mathcal{A} and \mathcal{B} such that

$$
L(\mathcal{B}) \subsetneq L(\mathcal{A})
$$

Then there is a small witness word $w \in L(\mathcal{A}) \backslash L(\mathcal{B})$ such that

$$
|w|<\left|Q_{\mathcal{A}}\right|+\left|Q_{\mathcal{B}}\right|
$$

Sketch of the proof

- $L_{\mathcal{A}}(x)=\sum_{n} a_{n} x^{n}$ generating series of $L(\mathcal{A})$
- $L_{\mathcal{B}}(x)=\sum_{n} b_{n} x^{n}$ generating series of $L(\mathcal{B})$.
- $G(x)=L_{\mathcal{B}}(x)-L_{\mathcal{A}}(x)$ rational, degrees at most $r \leq\left|Q_{\mathcal{A}}\right|+\left|Q_{\mathcal{B}}\right|$
- Then $g_{n}=b_{n}-a_{n}$ satisfies:

$$
\forall n \geq r, c_{r} g_{n}=c_{r-1} g_{n-1}+\ldots+c_{0} g_{n-r}
$$

Sketch of the proof

- $L_{\mathcal{A}}(x)=\sum_{n} a_{n} x^{n}$ generating series of $L(\mathcal{A})$
- $L_{\mathcal{B}}(x)=\sum_{n} b_{n} x^{n}$ generating series of $L(\mathcal{B})$.
- $G(x)=L_{\mathcal{B}}(x)-L_{\mathcal{A}}(x)$ rational, degrees at most $r \leq\left|Q_{\mathcal{A}}\right|+\left|Q_{\mathcal{B}}\right|$
- Then $g_{n}=b_{n}-a_{n}$ satisfies:

$$
\forall n \geq r, c_{r} g_{n}=c_{r-1} g_{n-1}+\ldots+c_{0} g_{n-r}
$$

- So if $a_{n}=b_{n}$ for every $n<r$, then $a_{n}=b_{n}$ for all n.
- As $L(\mathcal{A}) \subsetneq L(\mathcal{B})$, there exists $N<r$ such that $a_{N}<b_{N}$.
\rightarrow There is a small witness word of length $<\left|Q_{\mathcal{A}}\right|+\left|Q_{\mathcal{B}}\right|$ in $L(\mathcal{B}) \backslash L(\mathcal{A})$.

Inclusion problem

Input: two weakly-unambiguous Parikh automata \mathcal{A}, \mathcal{B}
Question: $L(\mathcal{A}) \subseteq L(\mathcal{B})$?

- decidable for deterministic PA
- decidable for RCM [Castiglione and Massazza 17] (hence for weakly-unambiguous PA) without complexity bound
- undecidable for non-deterministic PA
\rightarrow Our contribution is to give explicit bounds in the weakly-unambiguous case

Inclusion separation for weakly-unambiguous automata?

Essentially same ideas as regular case, however:

- $L_{\mathcal{A}}(x)=A(x, 1, \ldots, 1)$ where:

$$
A\left(x, y_{1}, \ldots, y_{d}\right):=q_{l}\left(x, y_{1}, \ldots, y_{d}\right) \odot C\left(x, y_{1}, \ldots, y_{d}\right)
$$

\rightarrow Same problem with $L_{\mathcal{B}}(x)$

- Then $g_{n}=v_{n}-u_{n}$ satisfies a linear recurrence of the form

$$
\forall n \geq r, c_{r}(n) g_{n}=c_{r-1}(n) g_{n-1}+\ldots+c_{0}(n) g_{n-r}
$$

$G(x)=x^{1000} \rightarrow(1000-n) g_{n}=0$
\rightarrow we need to go beyond r and the roots of c_{r} that are in \mathbb{N}

Inclusion separation for weakly-unambiguous automata?

- We want bounds on the polynomials and order of the recurrence of $G(x)$, depending on the size of the automata \mathcal{A} and \mathcal{B}
- At each step (Hadamard product, $y=1$, sum...), bound the size of the representation of the resulting holonomic series (holonomic series are represented by their system of differential equations)
- by a careful analysis of every operation:

Proposition

If $L(\mathcal{A}) \nsubseteq L(\mathcal{B})$, there exists a word $w \in L(\mathcal{B}) \backslash L(\mathcal{A})$ such that

$$
|w| \leq 2^{2^{O\left(d^{2} \log (d M)\right)}}
$$

where $d=d_{\mathcal{A}}+d_{\mathcal{B}}, M=|\mathcal{A}||\mathcal{B}|\|\mathcal{A}\|_{\infty}\|\mathcal{B}\|_{\infty}$.

Consequence: inclusion problem

Input: two weakly-unambiguous Parikh automata \mathcal{A}, \mathcal{B}
Question: $L(\mathcal{A}) \subseteq L(\mathcal{B})$?

Proposition

We can decide in time $\leq 2^{2^{O\left(d^{2} \log (d M)\right)}}$ whether $L(\mathcal{A}) \subseteq L(\mathcal{B})$, where $d=d_{\mathcal{A}}+d_{\mathcal{B}}, M=|\mathcal{A}||\mathcal{B}|\|\mathcal{A}\|_{\infty}\|\mathcal{B}\|_{\infty}$.
\rightarrow dynamic programming approach to avoid an other exponential when enumerating every word of length less than the witness!

Conclusion

Language

Regular

Unambiguous context-free \qquad
\longrightarrow holonomic $P\left(x, \partial_{x}\right) \cdot L(x)=0$ Pushdown PA

Generating series

$$
\begin{gathered}
L(x) \\
\text { rational } Q(x) L(x)=P(x)
\end{gathered}
$$

algebraic $P(x, L(x))=0$
*
Weakly-unambiguous

Language

$$
\begin{gathered}
L \\
\text { Regular }
\end{gathered}
$$

Unambiguous context-free \qquad \uparrow

Weakly-unambiguous Pushdown PA

Generating series

$$
\begin{gathered}
L(x) \\
\text { rational } Q(x) L(x)=P(x)
\end{gathered}
$$

$$
\text { algebraic } P(x, L(x))=0
$$

\longrightarrow holonomic $P\left(x, \partial_{x}\right) \cdot L(x)=0$

Remaining problems: closure under union, universality with a stack, implementation of algorithms...

Perspectives

Extension: larger classes with holonomic series?
Proposition (Bell and Chen 17)
Any holonomic series with coefficients in $\{0,1\}$ is the support series of a semilinear set.

We are close to the limits of this approach \rightarrow need for new ideas to find other links between holonomic series and formal languages.

Perspectives

Extension: larger classes with holonomic series?

Proposition (Bell and Chen 17)

Any holonomic series with coefficients in $\{0,1\}$ is the support series of a semilinear set.

We are close to the limits of this approach \rightarrow need for new ideas to find other links between holonomic series and formal languages.

Thank you!

References I

目 Jason P．Bell and Shaoshi Chen，Power series with coefficients from a finite set，J．Comb．Theory，Ser．A 151 （2017）， 241 － 253.

围 Alin Bostan and Manuel Kauers，The complete generating function for Gessel walks is algebraic，Proc．Amer．Math．Soc． 138 （2010），no．9，3063－3078，With an Appendix by Mark van Hoeij．

R Mireille Bousquet－Mélou，Rational and algebraic series in combinatorial enumeration，International Congress of Mathematicians（ICM 2006），vol．3，Eur．Math．Soc．，Zürich， 2006，pp．789－826．

围 Michaël Cadilhac，Alain Finkel，and Pierre McKenzie，Affine Parikh automata，RAIRO－Theor．Inf．and Applic． 46 （2012）， no．4，511－545．

囯 ＿，Unambiguous constrained automata，Int．J．Found． Comput．Sci． 24 （2013），no．7，1099－1116．
E－Giusi Castiglione and Paolo Massazza，On a class of languages with holonomic generating functions，Theor．Comput．Sci． 658 （2017），74－84．
围 Louis Comtet，Calcul pratique des coefficients de Taylor d＇une fonction algébrique，Enseignement Math．（2） 10 （1964）， 267－270．
圊 Noam Chomsky and Marcel－Paul Schützenberger，The algebraic theory of context－free languages，Studies in Logic and the Foundations of Mathematics，vol．35，Elsevier， 1963.
围 Samuel Eilenberg and Marcel－Paul Schützenberger，Rational sets in commutative monoids，J．Algebra 13 （1969），no．2， 173 － 191.

Philippe Flajolet，Stefan Gerhold，and Bruno Salvy，On the non－holonomic character of logarithms，powers，and the nth prime function，Electr．J．Comb． 11 （2005），no． 2.
國 Philippe Flajolet，Analytic models and ambiguity of context－free languages，Theor．Comput．Sci． 49 （1987），no．2， 283 － 309.

Philippe Flajolet and Robert Sedgewick，Analytic combinatorics，first ed．，Cambridge University Press， 2009.
（ Sheila Greibach，A note on undecidable properties of formal languages，Mathematical Systems Theory 2 （1968），no．1，1－6．

囯 Seymour Ginsburg and Edwin Spanier，Semigroups，presburger formulas，and languages，Pac．J．Math． 16 （1966），no．2， 285－296．
䍰 Seymour Ginsburg and Joseph Ullian，Ambiguity in context free languages，J．ACM 13 （1966），no．1，62－89．

Re Oscar H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1978), no. 1, 116-133.
Ryuichi Ito, Every semilinear set is a finite union of disjoint linear sets, J. Comput. Syst. Sci. 3 (1969), no. 2, 221-231.
(i) Manuel Kauers, Bounds for D-finite closure properties, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, (ISSAC 2014), ACM, New York, 2014, pp. 288-295.
Relix Klaedtke and Harald Rueß, Parikh automata and Monadic Second-Order logics with linear cardinality constraints, Tech. Report 177, Freiburg University, 2002.

References V

园 ＿＿＿Monadic second－order logics with cardinalities， Automata，Languages and Programming，30th International Colloquium，ICALP 2003，Lecture Notes in Computer Science， vol．2719，Springer，2003，pp．681－696．
Leonard Lipshitz，The diagonal of a D－finite power series is D－finite，J．Algebra 113 （1988），no．2， 373 － 378.

囯 D－＿D－finite power series，J．Algebra 122 （1989），no．2， 353－373．
國 Paolo Massazza，Holonomic functions and their relation to linearly constrained languages，ITA 27 （1993），no．2，149－161．
亶
＿．On the conjecture $\mathcal{L}_{\text {dfcm }} \subsetneq \mathrm{RCM}$ ，Implementation and Application of Automata－22nd International Conference， CIAA 2017，Lecture Notes in Computer Science，vol．10329， Springer，2017，pp．175－187．

R On the generating functions of languages accepted by deterministic one-reversal counter machines, Proceedings of the 19th Italian Conference on Theoretical Computer Science, (ICTCS 2018), CEUR Workshop Proceedings, vol. 2243, CEUR-WS.org, 2018, pp. 191-202.
R. F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. (2) 30 (1929), no. 4, 264-286.
围 Richard Edwin Stearns and Harry B. Hunt III, On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata, SIAM J. Comput. 14 (1985), no. 3, 598-611.
Re Richard P. Stanley, Differentiably finite power series, Eur. J. Comb. 1 (1980), no. 2, 175 -188.

Conclusion

Language L

Regular

Unambiguous context-free

Weakly-unambiguous Pushdown PA

Generating series

$L(x)$
\longrightarrow
\longrightarrow
algebraic $P(x, L(x))=0$
\uparrow
\longrightarrow holonomic $P\left(x, \partial_{x}\right) \cdot L(x)=0$

Example

$\mathcal{D}=\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{k}} b: k \in \mathbb{N}^{*}, n_{1}=1\right.$ and $\left.\exists j<k, n_{j+1} \neq 2 n_{j}\right\}$ is inherently ambiguous as a PA language.

Consequence

Weakly-unambiguous PA are not closed under left quotient with regular languages.
$\mathcal{D}_{2}=\left\{c^{j} a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{k}} b: k \in \mathbb{N}^{*}, j<k, n_{1}=1 \wedge n_{j+1} \neq 2 n_{j}\right\}$

$$
\left(c^{*}\right)^{-1} \mathcal{D}_{2} \cap(a+b)^{*}=\mathcal{D}
$$

Incomparable

$\left\{a^{n} b^{m} c^{p}: n=m\right.$ or $\left.m=p\right\}$ is

- inherently ambiguous as a CF language
- deterministic as a PA language
$\mathcal{L}_{\text {even }}=\left\{a^{n_{1}} b \ldots a^{n_{2 k}} b: k \in \mathbb{N}^{*}, \exists i \in[1, k], n_{2 i-1}=n_{2 i}\right\}$ is
- deterministic as a CF language
- inherently ambiguous as a PA language

Undecidability of inherent weak-ambiguity

General method [Greibach 68], by reducing the universality problem

$$
L_{1}=\Sigma_{1}^{*} ?
$$

$L=L_{1} \# \Sigma^{*} \cup \Sigma_{1}^{*} \# \mathcal{D}$. Then:

$$
L_{1}=\Sigma_{1}^{*} \Leftrightarrow L \text { is weakly-unambiguous }
$$

\Rightarrow If $L_{1}=\Sigma_{1}^{*}, L=\Sigma_{1}^{*} \# \Sigma^{*}$ is regular.
\Leftarrow By contraposition, let $y \notin L_{1}$. As $(y \#)^{-1} L=\mathcal{D}$ is not weakly-unambiguous, neither is L.

Inclusion separation for weakly-unambiguous automata?

- \mathcal{A} given under the form $\left(\Sigma, Q, q_{l}, F, C, \Delta\right)$.
- C given under a unambiguous form $\cup_{i=1}^{p} c_{i}+P_{i}^{*}$

Inclusion separation for weakly-unambiguous automata?

- \mathcal{A} given under the form $\left(\Sigma, Q, q_{l}, F, C, \Delta\right)$.
- C given under a unambiguous form $\cup_{i=1}^{p} c_{i}+P_{i}^{*}$
- $\|\mathcal{A}\|_{\infty}$ maximum coordinate of the vectors in the description of Δ and C
- $|\mathcal{A}|=|Q|+|\Delta|+p+\sum\left|P_{i}\right|$

