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Link between languages and combinatorics

L(x) =
∑
w∈L

x |w | =
∑
n∈N

`nx
n `n : number of words of length n

Formal languages Generating series

L −→ L(x)

Regular −→ rational L(x) = P(x)/Q(x)

Unambiguous context-free −→ algebraic P(x , L(x)) = 0
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q0(x) = xq0(x) + xq1(x)
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1−2x
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Link between languages and combinatorics

L(x1, . . . , xr ) =
∑
w∈L

x
|w |a1
1 . . . x

|w |ar
r Σ = {a1, . . . , ar}

Formal languages Generating series

L −→ L(x)

Regular −→ rational L(x) = P(x)/Q(x)

Unambiguous context-free −→ algebraic P(x , L(x)) = 0

0 1

a b

a

b {
q0(xa, xb) = xaq0(xa, xb) + xbq1(xa, xb)

q1(xa, xb) = 1 + xbq1(xa, xb) + xaq0(xa, xb)

L(xa, xb) = xb
1−(xa+xb)
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{
S → aSB | ε
B → cB | bS

{
S(x) = xS(x)B(x) + 1
B(x) = xB(x) + xS(x)

x2S(x)2 − (1− x)S(x) + 1− x = 0
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∑
w∈L

x |w | =
∑
n∈N

`nx
n `n : number of words of length n

Formal languages Generating series

L −→ L(x)

Regular −→ rational L(x) = P(x)/Q(x)

Unambiguous context-free −→ algebraic P(x , L(x)) = 0

1− 2x + 225x2

(1− 25x)(625x2 + 14x + 1)
= 1+9x+49x2+. . . [Bousquet-Mélou 08]

G (x) = 1+2x+11x2+. . . [Bostan & Kauers 10, Drmota & Banderier 13]
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Analytic criteria for inherent ambiguity

Theorem (Chomsky and Schützenberger 63)

The generating series of an unambiguous context-free language is
algebraic.

Contraposition
If the generating series of a context-free language is not algebraic,
then it is inherently ambiguous.
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Detailed Example

Example (Flajolet 87)

D = {an1b an2b . . . ankb : k ∈ N∗, n1 = 1 and ∃j < k , nj+1 6= 2nj}
is inherently ambiguous.

aab /∈ D

abaabaaab ∈ D

abaabaaaab /∈ D

ab a2b a4b . . . a2k−1
b /∈ D
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Detailed Example

Example (Flajolet 87)

D = {an1b an2b . . . ankb : k ∈ N∗, n1 = 1 and ∃j < k , nj+1 6= 2nj}
is inherently ambiguous.

By contradiction, suppose D is unambiguous. Then D(x) is
algebraic

Aim: build from D(x) a series that is not algebraic and use
closure properties

B = ab(ab∗)∗ \ D = {ab a2b a4b . . . a2k−1
b : k ∈ N∗}

B(x) = x2

1− x
1−x
− D(x) = algebraic

So B(x) =
∑

k≥1 x
2k−1+k , which is lacunary

So B(x) is not algebraic. Contradiction
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Remarks on this method

Analytic criteria for solving some instances of an undecidable
problem

It can avoid technical proofs on automata based on pumping
techniques.

L = {anbmcp : n = m or m = p} is inherently ambiguous as a
CF language yet L(x) = 2

(1−x2)(1−x) −
1

1−x3 is rational

Specific about inherent ambiguity questions.
→ language of primitive words LP

aabb ∈ LP , abab /∈ LP
CFL: open not unambiguous CFL: [Peterson 96]
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Hierarchy of languages and series

Language Generating series

L −→ L(x)

Regular −→ rational Q(x)L(x) = P(x)

( (

Unambiguous context-free −→ algebraic P(x , L(x)) = 0

(

? −→ holonomic P(x , ∂x) · L(x) = 0
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Holonomic series in one variable (Stanley 80)

A series f (x) =
∑

n anx
n is holonomic (or D-finite) if it satisfies a

differential equation of the form:

Pk(x)f (k)(x) + . . .+ P0(x)f (x) = 0 with Pi (x) ∈ Q[x ]

Equivalently an satisfies a linear recurrence of the form

pr (n)an+r + . . .+ p0(n)an = 0 with pi (n) ∈ Q[n]

Closed by sum, product, composition with algebraic series,
Hadamard product...
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Example of holonomic series

rational series F = P/Q : (PQ)F ′ + (PQ ′ − P ′Q)F = 0
→ Linear recurrence with constant coefficients

algebraic series (the proof is however not straightforward)
F (x) =

√
1− x :=

∑ 4−n

1−2n

(2n
n

)
xn satisfies F 2 − 1− x = 0

2(1− x)F ′ − F = 0
2(n + 1)un+1 − (2n + 1)un = 0

F (x) = ex :=
∑

xn/n! is holonomic but is not algebraic
F ′ − F = 0
(n + 1)un+1 − un = 0
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Holonomic series in several variables (Lipshitz 89)

A series f (x1, . . . , xn) is holonomic (or D-finite) if it satisfies a
system of partial derivative equations of the form:

A1,r1(~x) ∂r1x1f (~x) + . . .+ A1,1(~x) ∂x1f (~x) + A1,0(~x) f (~x) = 0

...

An,rn(~x) ∂rnxn f (~x) + . . .+ An,1(~x) ∂xn f (~x) + An,0(~x) f (~x) = 0

with Ai ,j(~x) ∈ Q[~x ], and ~x = (x1, . . . , xn).

We only use closure properties rather than the definition
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Holonomic series in several variables

Theorem (Lipshitz 1988, 1989)

Holonomic series are closed under :
1 arithmetic operations +,×,−
2 specialization to 1, when it is well-defined: if f (x1, . . . , xn) is

holonomic, then f (x , 1, . . . , 1) is holonomic too
3 Hadamard’s product �

f (x1, . . . , xn) =
∑
i∈Nn

a(i1, . . . , in)x i11 . . . x
in
n

g(x1, . . . , xn) =
∑
i∈Nn

b(i1, . . . , in)x i11 . . . x
in
n

f � g(x1, . . . , xn) =
∑
i∈Nn

a(i1, . . . , in)b(i1, . . . , in)x i11 . . . x
in
n
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Crucial particular case: support series

Let S ⊆ Nn. The support series of S is

g(x1, . . . , xn) =
∑

(i1,...,in)∈S

x i11 . . . x
in
n

Let f (x1, . . . , xn) =
∑

(i1,...,in)∈Nn

a(i1, . . . , in)x i11 . . . x
in
n . Then:

(f � g)(x1, . . . , xn) =
∑

(i1,...,in)∈S

a(i1, . . . , in)x i11 . . . x
in
n
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Example of Hadamard’s product

Example

Ω3 = {w ∈ (a + b + c)∗ : |w |a 6= |w |b or |w |b 6= |w |c}.

abbca ∈ Ω3, abbcca /∈ Ω3.

Ω3 is context-free, inherently ambiguous as a CFL.

Ω3(xa, xb, xc) = 1
1−(xa+xb+xc )︸ ︷︷ ︸

(a+b+c)∗

� ( 1
(1−xa)(1−xb)(1−xc ) −

1
1−xaxbxc )︸ ︷︷ ︸

|w |a 6=|w |b or |w |b 6=|w |c

=
1

1− (xa + xb + xc)
− 1

1− (xa + xb + xc)
� 1

1− xaxbxc
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Example of Hadamard’s product

Example

Ω3 = {w ∈ (a + b + c)∗ : |w |a 6= |w |b or |w |b 6= |w |c}.

1
1−(xa+xb+xc )

� 1
1−xaxbxc = [y−1

a y−1
b y−1

c ]
1

yaybyc
1

1−( xa
ya
+

xb
yb

+ xc
yc
)

1
1−yaybyc

Mgfun [Chyzak] and gfun [Salvy and Zimmermann] give:

p3(~x)∂3
xaΩ3(~x) + p2(~x)∂2

xaΩ3(~x) + p1(~x)∂xaΩ3(~x) + p0(~x)Ω3(~x) = 0

with ‖pi‖∞ ≤ 7344 and deg(pi ) ≤ 9.

Remark (Flajolet 87)

Ω3(xa, xb, xc) is holonomic but not algebraic.
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Previous attempts at a link with formal languages

[Lipshitz 88] added linear constraints to the support of a
holonomic series using a Hadamard product with a support
series

[Massazza 93] formalized the idea with (semi)linear constraints
(Linear Constrained Languages)

[Castiglione and Massazza 2017] RCM (Regular languages with
semilinear Constraints and a (injective) Morphism)
ex: anbmanbm

→ not fully satisfactory from an automaton point of view.
Conjectured a link with deterministic Reversal Bounded Counter
Machines.
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Hierarchy of languages and series

Language Generating series

L −→ L(x)

Regular −→ rational Q(x)L(x) = P(x)

( (

Unambiguous context-free −→ algebraic P(z , L(x)) = 0

( (

Weakly-unambiguous
Pushdown PA

−→ holonomic P(x , ∂x) · L(x) = 0

For the presentation we work with PA and not Pushdown PA.
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Parikh automata [Klaedtke and Rueß 03]

0 1 2 3

C = {(n, n, n) : n ∈ N∗}

a,
(1
0
0

) a,
(1
0
0

)
b,
(0
1
0

) b,
(0
1
0

)
c ,
(0
0
1

) c,
(0
0
1

)

w = aaabbbccc −→
(0
0
0

)

∈ C

w ∈ L(A)
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Parikh automata [Klaedtke and Rueß 03]

0 1 2 3

C = {(n, n, n) : n ∈ N∗}

a,
(1
0
0

) a,
(1
0
0

)
b,
(0
1
0

) b,
(0
1
0

)
c ,
(0
0
1

) c,
(0
0
1

)

` = {(anbmcp,
(n
m
p

)
) : n,m, p ∈ N∗}

L(A) = {anbncn : n ∈ N∗}
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Semilinear sets of Nd (Parikh 1966)

Intuitively: boolean combinaison of linear (affine) inequalities
defining subsets of Nd

x1 − x2 = 0 ∧ x2 − x3 = 0 → C = {(n, n, n) : n ∈ N}

More generally, subsets defined by the Presburger arithmetic
[Ginsburg and Spanier 66]
Φ(x1, x2) := ∃x , x1 − 3x = 0 ∧ 1 + 2x1 − x2 = 0
→ {(3n, 6n + 1) : n ∈ N}
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Semilinear sets of Nd (Parikh 66)

1 2 3 4 5

1

2

3

4

5

c
p2

p1

b b b b b b b

b b b b b b

b b b b b

b b b b

Semilinear = Finite union of linear sets ~c + P∗ where
P = {p1, . . . , pr} and P∗ = {λ1p1 + . . .+ λrpr : λi ∈ N}
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Semilinear sets of Nd (Parikh 66)

Theorem (Eilenberg and Schützenberger 69, Ito 69)

If C is semilinear, then C (x1, . . . , xd) =
∑

~v∈C xv11 . . . xvdd , its
support series, is rational.

If C =
m⋃
i=1

~ci + P∗i is an unambiguous description of C :

C (x1, . . . , xd) =
m∑
i=1

~xci∏
p∈Pi

(1− ~xp)

Remark
In the sequel we will deal with holonomic series of the form f � C ,
where C is the support series of a semilinear set.
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Weakly-unambiguous Parikh automaton

Weakly-unambiguous: at most one accepting run for every word.

0 1

C = {(n, n) : n ∈ N}

a,
(
0
0
){a, b},

(
1
0
)

{a, b},
(
0
1
)

L(A) = {w1aw2 : |w1| = |w2|,w1,w2 ∈ Σ∗} with Σ = {a, b}.

6= [Cadilhac, Finkel and McKenzie 13] Unambiguous constraint
automata
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Weakly-unambiguous Parikh automata

PA coincide with the class of Reversal Bounded Counter
Machines [Klaedtke and Rueß 03]

Deterministic versions do not coincide.

Weakly-unambiguous PA coincide with the class of
unambiguous RBCM...
...and the class of RCM languages!

Weakly-unambiguous PA are closed under intersection, and left
quotient with words.
Closure under union? Complement? Still open.

Languages recognized by weakly-unambiguous PA have
holonomic generating series
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Weighted generating series of a PA

Definition (Generating series of the runs of a PA)

q(x , y1, . . . , yd) =
∑

n,i1,...,id

qn,i1,...,id xny i11 . . . y
id
d

where qn,i1,...,id denotes the number of runs from q to a final state,
labelled by (w , v) with |w | = n and v = (i1, . . . , id).

The generating series of these runs are classically rational.



24/39

Example

0 1 2 3
a,
(1
3
1

) a,
(3
0
0

)
b,
(0
1
0

) b,
(0
1
0

)
c ,
(0
0
2

) c,
(2
0
1

)


q0(x , y1, y2, y3) = xy1y

3
2 y3q1(x , y1, y2, y3)

q1(x , y1, y2, y3) = xy3
1q1(x , y1, y2, y3) + xy2q2(x , y1, y2, y3)

q2(x , y1, y2, y3) = xy2q2(x , y1, y2, y3) + xy2
3q3(x , y1, y2, y3)

q3(x , y1, y2, y3) = xy2
1 y3q3(x , y1, y2, y3) + 1
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Weakly-unambiguous PA have holonomic series

Proposition
The generating series of a language recognized by a
weakly-unambiguous Parikh Automaton is holonomic.

qI (x , y1, . . . , yd) counts every run of the automaton from qI to
a final state. It is rational
C (y1, . . . , yd) =

∑
(i1,...,id )∈C

y i11 . . . y
id
d support series of the

semilinear set C , which is rational
A(x , y1, . . . , yd) := qI (x , y1, . . . , yd)� 1

1−xC (y1, . . . , yd)
counts the accepting runs of the automaton, sorted by length
and vector value. It is holonomic

A(x , 1, . . . , 1) counts the accepting runs of the automaton,
sorted by length. It is holonomic
By weak-unambiguity, L(x) = A(x , 1, . . . , 1).
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Weakly-unambiguous PA have holonomic series

Proposition
The generating series of a language recognized by a
weakly-unambiguous Parikh Automaton is holonomic.

qI (x , y1, . . . , yd) counts every run of the automaton from qI to
a final state. It is rational
C (y1, . . . , yd) =

∑
(i1,...,id )∈C

y i11 . . . y
id
d support series of the
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1−xC (y1, . . . , yd)
counts the accepting runs of the automaton, sorted by length
and vector value. It is holonomic
A(x , 1, . . . , 1) counts the accepting runs of the automaton,
sorted by length. It is holonomic
By weak-unambiguity, L(x) = A(x , 1, . . . , 1).
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Inherent weak-ambiguity

Proposition
The generating series of a language recognized by a
weakly-unambiguous Parikh Automaton is holonomic.

Contraposition
If the generating series of a language recognized by a PA is not
holonomic, then it is inherently weakly-ambiguous as a PA
language.
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Example

Example

D = {an1b an2b . . . ankb : k ∈ N∗, n1 = 1 and ∃j < k , nj+1 6= 2nj}
is inherently weakly-ambiguous as a PA language.

0 1

2 3 4 5 6

C = {(n,m) : m 6= 2n}
a,
(
0
0
)
b,
(
0
0
)

b,
(
1
0
)

{a, b},
(
0
0
)
b,
(
0
0
) a,

(
1
0
)

b,
(
0
0
) a,

(
0
1
)
b,
(
0
0
) b,

(
0
0
)

a,
(
0
0
)

a,
(
0
0
)

b,
(
0
0
)

Ambiguous automaton: ababab has two accepting runs.

From D(x) we built a lacunary series. Lacunary series are not
holonomic.



28/39

Criteria for non holonomy

Theorem (Stanley 1980)

Let f (x) =
∑

anx
n :

If f has an infinite number of singularities, f is not holonomic.
If an does not satisfy a linear recurrence with polynomial
coefficients, then f is not holonomic.

Example (B(x) =
∑

k≥1 x
2k−1+k)

2k+1 − 1 + k + 1− (2k − 1 + k)→∞ incompatible with any

pr (n)an+r + . . .+ p0(n)an = 0 with pi (n) ∈ Q[n]
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Limits of the method

Inherent weak-ambiguity is undecidable, by Greibach’s theorem,
using undecidability of universality of PA [Klaedtke and Rueß 03]

The series criterium may fail. There exist inherently
weakly-ambiguous PA languages having holonomic series.
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Inherently weakly-ambiguous language with algebraic series

Proposition

Leven = {an1bam1b . . . ankbamkb : k ∈ N∗,∃i ∈ [1, k], ni = mi} is
inherently weakly-ambiguous as a PA.

aaabaab aabaab abaab ∈ Leven
It is deterministic context-free ⇒ algebraic generating series
The proof uses Ramsey’s theorem, and is very specific to this
language. It shows inherent ambiguity for a wider family of
automata.
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An algorithmic consequence of holonomy

Holonomy of the generating series has algorithmic consequences

→ It has already been used for standard unambiguous finite
automata!

1 Present the case of the inclusion problem for unambiguous
finite automata

2 Show how the same general ideas apply to
weakly-unambiguous PA.
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Inclusion separation problem

0 1

a, b

b

Proposition (Stearns and Hunt 85)

Given two unambiguous finite automata A and B such that

L(B) ( L(A)

Then there is a small witness word w ∈ L(A)\L(B) such that

|w | < |QA|+ |QB|
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Sketch of the proof

LA(x) =
∑

n anx
n generating series of L(A)

LB(x) =
∑

n bnx
n generating series of L(B).

G (x) = LB(x)− LA(x) rational, degrees at most r ≤ |QA|+ |QB|
Then gn = bn − an satisfies:

∀n ≥ r , crgn = cr−1gn−1 + . . .+ c0gn−r

So if an = bn for every n < r , then an = bn for all n.
As L(A) ( L(B), there exists N < r such that aN < bN .

→There is a small witness word of length < |QA|+ |QB| in
L(B)\L(A).
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Inclusion problem

Input: two weakly-unambiguous Parikh automata A,B
Question: L(A) ⊆ L(B)?

decidable for deterministic PA
decidable for RCM [Castiglione and Massazza 17] (hence for
weakly-unambiguous PA) without complexity bound
undecidable for non-deterministic PA

→Our contribution is to give explicit bounds in the
weakly-unambiguous case
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Inclusion separation for weakly-unambiguous automata?

Essentially same ideas as regular case, however:

LA(x) = A(x , 1, . . . , 1) where:

A(x , y1, . . . , yd) := qI (x , y1, . . . , yd)� C (x , y1, . . . , yd)

→ Same problem with LB(x)

Then gn = vn − un satisfies a linear recurrence of the form

∀n ≥ r , cr (n)gn = cr−1(n)gn−1 + . . .+ c0(n)gn−r

G (x) = x1000 → (1000− n)gn = 0
→ we need to go beyond r and the roots of cr that are in N
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Inclusion separation for weakly-unambiguous automata?

We want bounds on the polynomials and order of the
recurrence of G (x), depending on the size of the automata A
and B
At each step (Hadamard product, y = 1, sum...), bound the
size of the representation of the resulting holonomic series
(holonomic series are represented by their system of differential
equations)
by a careful analysis of every operation:

Proposition

If L(A) 6⊆ L(B), there exists a word w ∈ L(B)\L(A) such that

|w | ≤ 22O(d2 log(dM))

where d = dA + dB, M = |A| |B| ‖A‖∞ ‖B‖∞.
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Consequence: inclusion problem

Input: two weakly-unambiguous Parikh automata A,B
Question: L(A) ⊆ L(B)?

Proposition

We can decide in time ≤ 22O(d2 log(dM))
whether L(A) ⊆ L(B), where

d = dA + dB, M = |A| |B| ‖A‖∞ ‖B‖∞.

→ dynamic programming approach to avoid an other exponential
when enumerating every word of length less than the witness!
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Conclusion

Language Generating series

L −→ L(x)

Regular −→ rational Q(x)L(x) = P(x)

( (

Unambiguous context-free −→ algebraic P(x , L(x)) = 0

( (

Weakly-unambiguous
Pushdown PA

−→ holonomic P(x , ∂x) · L(x) = 0

Remaining problems: closure under union, universality with a stack,
implementation of algorithms...
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Perspectives

Extension: larger classes with holonomic series?

Proposition (Bell and Chen 17)

Any holonomic series with coefficients in {0, 1} is the support series
of a semilinear set.

We are close to the limits of this approach
→ need for new ideas to find other links between holonomic series
and formal languages.

Thank you!
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Conclusion

Language Generating series

L −→ L(x)

Regular −→ rational Q(x)L(x) = P(x)
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47/39

Remark

Example

D = {an1b an2b . . . ankb : k ∈ N∗, n1 = 1 and ∃j < k , nj+1 6= 2nj}
is inherently ambiguous as a PA language.

Consequence
Weakly-unambiguous PA are not closed under left quotient with
regular languages.

D2 = {c jan1b an2b . . . ankb : k ∈ N∗, j < k , n1 = 1 ∧ nj+1 6= 2nj}

(c∗)−1D2 ∩ (a + b)∗ = D



48/39

Incomparable

{anbmcp : n = m or m = p} is
inherently ambiguous as a CF language
deterministic as a PA language

Leven = {an1b . . . an2kb : k ∈ N∗,∃i ∈ [1, k], n2i−1 = n2i} is
deterministic as a CF language
inherently ambiguous as a PA language
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Undecidability of inherent weak-ambiguity

General method [Greibach 68], by reducing the universality problem

L1 = Σ∗1?

L = L1#Σ∗ ∪ Σ∗1#D . Then:

L1 = Σ∗1 ⇔ L is weakly-unambiguous

⇒ If L1 = Σ∗1, L = Σ∗1#Σ∗ is regular.
⇐ By contraposition, let y 6∈ L1. As (y#)−1L = D is not

weakly-unambiguous, neither is L.
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Inclusion separation for weakly-unambiguous automata?

A given under the form (Σ,Q, qI ,F ,C ,∆).
C given under a unambiguous form ∪pi=1ci + P∗i

‖A‖∞ maximum coordinate of the vectors in the description
of ∆ and C

|A| = |Q|+ |∆|+ p +
∑
|Pi |



50/39

Inclusion separation for weakly-unambiguous automata?

A given under the form (Σ,Q, qI ,F ,C ,∆).
C given under a unambiguous form ∪pi=1ci + P∗i

‖A‖∞ maximum coordinate of the vectors in the description
of ∆ and C

|A| = |Q|+ |∆|+ p +
∑
|Pi |


	Appendix

