Asymptotic normality of pattern counts in conjugacy classes

With Valentin Féray (Institut Elie Cartan de Lorraine)

Slim Kammoun

UMPA, ENS lyon

LIPN, 05/03/2024

Definitions

Permutations
Conjugacy invariant permutations
Patterns
Results
Uniform case: (Hofer)
Partial results: (Féray), (Hamaker and Rhoades) and
(Kammoun)
General case: (Dubach) and (Féray and Kammoun)
Proofs
Comparison techniques
Weighted dependency graphs
Universality (Aléa days)
I.I.D.

Random matrices
Longest increasing (decreasing) subsequence Conjugacy invariant permutations

Permutation

Word:
21016987453
Descents
Peaks
Patterns
Longest increasing subsequence RSK

Cycles:
$(1,2,10,3)(4,6,8)(5,9)(7)$
Total number of cycles
Number of cycles of
length i
Conjugacy class

Matrix:

$$
\left[\begin{array}{llllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Question: we fix the value of a function, we study another. Example in LIPN: Bassino et al.

- Condition: Separable i.e. 0 occurrence of the patterns 2413 and 3142
- Function to study: Longest increasing subsequence / proportion of other patterns.

Cycle Structure and Spectrum

- \# total number of cycles
- $\#_{i}$ number of cycles of length i

If $0 \leq p<q$ and $\operatorname{GCD}(p, q)=1$, then

$$
\text { Multiplicity of eigenvalue } e^{\frac{p}{q} 2 \pi \mathrm{i}} \text { is } \sum_{r \geq 1} \#_{r q}(\sigma)
$$

In particular:

$$
\begin{gathered}
\#(\sigma)=\text { Multiplicity of eigenvalue } 1 \\
\operatorname{Tr}\left(\sigma^{k}\right)=\sum_{i \mid k} i \#_{i}(\sigma) \quad \text { and } \quad k \#_{k}(\sigma)=\sum_{i \mid k} \operatorname{Tr}\left(\sigma^{i}\right) \mu(i)
\end{gathered}
$$

Where $\mu(i)$ is the Möbius function defined as:

$$
\mu(i)= \begin{cases}0 & \text { if } i \text { is divisible by the square of a prime number, } \\ (-1)^{r} & \text { if } i \text { is the product of } r \text { distinct prime numbers }\end{cases}
$$

Conjugacy Classes

The conjugacy class of σ is $\left\{\pi \sigma \pi^{-1}, \pi \in \mathfrak{S}_{n}\right\}$.

Theorem

Let σ, ρ be two permutations.
There is equivalence between:

- σ and ρ are in the same conjugacy class
- σ and ρ have the same cycle structure, i.e., $\forall i \geq 1, \#_{i}(\sigma)=\#_{i}(\rho)$.
- σ and ρ have the same spectrum (considering multiplicities)
- $\forall i \geq 1, \operatorname{Tr}\left(\sigma^{i}\right)=\operatorname{Tr}\left(\rho^{i}\right)$.

Conjugacy invariant

- Definition: σ_{n} is conjugacy invariant if for all ρ,

$$
\rho \sigma_{n} \rho^{-1} \stackrel{d}{=} \sigma_{n}
$$

- σ_{n} is conjugacy invariant if and only if $\mathbb{P}\left(\sigma_{n}=\sigma\right)$ is a function of the cycle structure of σ.

Conjugacy invariant

- Definition: σ_{n} is conjugacy invariant if for all ρ,

$$
\rho \sigma_{n} \rho^{-1} \stackrel{d}{=} \sigma_{n}
$$

- σ_{n} is conjugacy invariant if and only if $\mathbb{P}\left(\sigma_{n}=\sigma\right)$ is a function of the cycle structure of σ.
- Example 1: Ewens

$$
\mathbb{P}\left(\sigma_{n}=\sigma\right)=\frac{\theta^{\# \sigma}}{C_{n, \theta}}
$$

- Example 2: Uniform permutation within a conjugacy class.
- Example 3: Uniform Involutions / Derangements.

Morally: Conditioned on the cycle structure, the permutation is chosen uniformly.

Descents

We denote by $D(\sigma)=\{i: \sigma(i+1)<\sigma(i)\}$.
We assume that $\left(\sigma_{n}\right)_{n \geq 1}$ is a sequence of random permutations such that for all n, σ_{n} is conjugacy invariant of size n.
Furthermore, we suppose that $\frac{\#_{1} \sigma_{n}}{n} \rightarrow \alpha$

Theorem (Kim and Lee 2020)

$\frac{\operatorname{card}\left(D\left(\sigma_{n}\right)\right)-\frac{\left(1-\alpha^{2}\right) n}{2}}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} \mathscr{N}\left(0, \frac{1-4 \alpha^{3}+3 \alpha^{4}}{12}\right)$.
Goal: prove similar results for other functions.

Classical Pattern

Let π be a permutation of size k. An occurrence of the (classical) pattern π in a permutation σ is a vector $\left(i_{1}, \cdots, i_{k}\right)$ with $i_{1}<\cdots<i_{k}$ such that $\sigma\left(i_{1}\right) \ldots \sigma\left(i_{k}\right)$ has the same relative order as the elements of π. Examples:

- For the permutation $\sigma=2173456$, the vector $\left(i_{1}, i_{2}, i_{3}\right)=(2,3,7)$ is an occurrence of the pattern $\pi=132$ (176 has the same relative order as $\pi=132$.)
- An occurrence of 21 is an inversion.
- An occurrence of $123 \cdots k$ is an increasing subsequence of length k.

Vincular Pattern

Definition

Let π be a permutation of size k and A be a subset of $[k-1]$. An occurrence of the vincular pattern (π, A) in a permutation σ is a vector $\left(i_{1}, \cdots, i_{k}\right)$ with $i_{1}<\cdots<i_{k}$ satisfying:

- $\left(i_{1}, \cdots, i_{k}\right)$ is an occurrence of the classical pattern π in σ.
- For every s in $A, i_{s+1}=i_{s}+1$.

Examples:

- (π, \varnothing) : is the classical pattern π
- An occurrence of $(21,\{1\})$: is a descent
- For the permutation $\sigma=2173456$, the vector $\left(i_{1}, i_{2}, i_{3}\right)=(2,3,7)$
- is an occurrence of the pattern $(\pi=132, A=\{1\})$
- not an occurrence of ($\pi=132, A=\{1,2\}$)

Notation: $\mathfrak{N}^{\pi, A}(\sigma)$: pattern counts (number of occurrences of the patterns).

Definitions

Permutations
Conjugacy invariant permutations
Patterns
Results
Uniform case: (Hofer)
Partial results: (Féray), (Hamaker and Rhoades) and (Kammoun)
General case: (Dubach) and (Féray and Kammoun)
Proofs
Comparison techniques
Weighted dependency graphs
Universality (Aléa days)
I.I.D.

Random matrices
Longest increasing (decreasing) subsequence
Conjugacy invariant permutations

Uniform case

Fix $\Pi=(\pi, A)$, and let k be the size of π.

Theorem (Hofer (2018))

We assume that σ_{n} uniform of size n

$$
\frac{\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)-\mathbb{E}\left(\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)\right)}{n^{k-\frac{1}{2}-\operatorname{card}(A)}} \underset{n \rightarrow \infty}{d} \mathscr{N}\left(0, \sigma_{\Pi}^{2}\right) .
$$

With

- $\sigma_{\Pi}^{2}>0$.

Generalises:

- $k=2$: Fulman (2004)
- Consecutive: Goldstein (2005)
- Monotone: Bonà (2010)
- Classical: Janson et al. (2015)
- Without positivity: Féray (2013)

Ewens

Recall: Ewens distribution.

$$
\mathbb{P}\left(\sigma_{n}=\sigma\right)=\frac{\theta^{\# \sigma}}{C_{n, \theta}}
$$

Fix $\Pi=(\pi, A)$, and $\theta \geq 0$. Let k be the size of π.

Theorem (Féray (2013))

We assume that σ_{n} follows the Ewens distribution with parameter θ. Then,

$$
\frac{\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)-\mathbb{E}\left(\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)\right)}{n^{k-\frac{1}{2}-\operatorname{card}(A)}} \underset{n \rightarrow \infty}{d} \mathscr{N}\left(0, \sigma_{\Pi}^{2}\right) .
$$

Few cycles

Let σ_{n} is conjugacy invariant of size n

Theorem (Kammoun 2020)

We assume that $\frac{\#\left(\sigma_{n}\right)}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} 0$.
Then, $\xrightarrow[n^{k-\frac{1}{2}-\operatorname{card}(A)}]{\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)} \underset{n \rightarrow \infty}{d} \mathscr{N}\left(0, \sigma_{\Pi}^{2}\right)$.

Theorem (Hamaker and Rhoades (2022))

We assume that: for all $i \#_{i}\left(\sigma_{n}\right) \xrightarrow[n \rightarrow \infty]{d} 0$.
Then, $\frac{\left.\mathfrak{n}^{\Pi}\left(\sigma_{n}\right)-\mathbb{E} \mathfrak{N}^{\mathrm{\Pi}}\left(\sigma_{n}\right)\right)}{n^{k-\frac{1}{2}-\operatorname{card}(A)}} \xrightarrow[n \rightarrow \infty]{d} \mathscr{N}\left(0, \sigma_{\Pi}^{2}\right)$
If we combine both techniques.

Theorem (Not written anywhere)

We assume that: for all $i \frac{\#_{i}\left(\sigma_{n}\right)}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} 0$.
Then, $\xrightarrow[n^{k-\frac{1}{2}-\operatorname{card}(A)}]{\left.\mathfrak{N}^{\Pi}\left(\sigma_{n}\right) \mathbb{E} \mathscr{N}^{\mathrm{\Pi}}\left(\sigma_{n}\right)\right)} \xrightarrow[n \rightarrow \infty]{d} \mathscr{N}\left(0, \sigma_{\Pi}^{2}\right)$

Our result

Fix $\Pi=(\pi, A)$,

Theorem (Féray and Kammoun (2023))

We assume that σ_{n} is conjugacy invariant of size n and that $\frac{\#_{1}\left(\sigma_{n}\right)}{n} \xrightarrow[n \rightarrow \infty]{d} \alpha$, $\frac{\#_{2}\left(\sigma_{n}\right)}{n} \xrightarrow[n \rightarrow \infty]{d} \beta$. Then

$$
\frac{\mathfrak{i}^{\Pi}\left(\sigma_{n}\right)-\mathbb{E}\left(\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)\right)}{n^{k-\frac{1}{2}-\operatorname{card}(A)}} \underset{n \rightarrow \infty}{d} \mathscr{N}\left(0, \sigma_{\Pi, \alpha \beta}^{2}\right) .
$$

Moreover, if $A=\varnothing$, then $\sigma_{\Pi, \alpha, \beta}^{2}=0$ if and only if $(\alpha, \beta)=(1,0)$.
Remarks:

- Hofer (2018) implies that $\sigma_{\Pi, 0,0}^{2}>0$ for any Π.
- It is easy to see that $\sigma_{\Pi, 1,0}^{2}=0$ for any Π. (Identity)
- $\sigma_{\Pi, \alpha \beta}^{2}$ is a polynomial in $(\alpha \& \beta$). (Hamaker and Rhoades (2022))
- Dubach (2024) proved the same result for classical patterns $(A=\varnothing)+$ speed of convergence.
Conjecture: for any $\Pi, \sigma_{\Pi, \alpha, \beta}^{2}=0$ if and only if $(\alpha, \beta)=(1,0)$.
Questions: for which patterns, $\sigma_{\Pi, \alpha, \beta}^{2}$ does not depend on β ? (consecutive)?

Definitions

Permutations
Conjugacy invariant permutations
Patterns
Results
Uniform case: (Hofer)
Partial results: (Féray), (Hamaker and Rhoades) and (Kammoun)
General case: (Dubach) and (Féray and Kammoun)
Proofs
Comparison techniques
Weighted dependency graphs
Universality (Aléa days)
I.I.D.

Random matrices
Longest increasing (decreasing) subsequence
Conjugacy invariant permutations

Comparison techniques

- Initially for the longest increasing subsequence / RSK (Kammoun 2018).
- Works for other combinatorial structures (coloured permutations, k-arrangements, etc.)
We give the proof of

Theorem (Kammoun 2020)

We assume that $\frac{\#\left(\sigma_{n}\right)}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{d} 0$.
Then, $\xrightarrow[n^{k-\frac{1}{2}-\operatorname{card}(A)}]{\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)} \underset{n \rightarrow \infty}{d} \mathscr{N}\left(0, \sigma_{\Pi}^{2}\right)$.

Simple random walk a directed version of the Cayley graph of \mathfrak{S}_{n}.

- If we start from any conjugacy invariant measure, the stationary measure is Ewens with parameter 0 .
- In each step, $\mathfrak{N}^{\mathrm{\Pi}}$ varies at most by $\frac{2}{k!} n^{k-\operatorname{card}(A)-1}$.

$$
\begin{aligned}
\left|\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)-\mathfrak{N}^{\Pi}\left(\sigma_{n}^{u n i f}\right)\right| & \leq\left|\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)-\mathfrak{N}^{\Pi}\left(\sigma_{0, n}^{E w}\right)\right|+\left|\mathfrak{N}^{\Pi}\left(\sigma_{0, n}^{E w}\right)-\mathfrak{N}^{\Pi}\left(\sigma_{n}^{u n i f}\right)\right| \\
& \leq \frac{2}{k!} n^{k-\operatorname{card}(A)-1}(\# \sigma_{n}+\underbrace{\# \sigma_{n}^{u n i f}}_{\approx \log (n)})
\end{aligned}
$$

We want that $\left|\mathfrak{N}^{\mathrm{I}}\left(\sigma_{n}\right)-\mathfrak{N}^{\mathrm{\Pi}}\left(\sigma_{n}^{u n i f}\right)\right|=o\left(n^{k-\operatorname{card}(A)-\frac{1}{2}}\right)$.
It is sufficient that $\# \sigma_{n}=o(\sqrt{n})$.

Weighted dependency graphs

Initially developed by Féray (2018).
Works for other combinatorial structures.
We give a proof of

Theorem (Féray and Kammoun (2023))

We assume that σ_{n} is conjugacy invariant of size n and that $\frac{\#_{1}\left(\sigma_{n}\right)}{n} \frac{d}{n \rightarrow \infty} \alpha$, $\frac{\#_{2}\left(\sigma_{n}\right)}{n} \xrightarrow[n \rightarrow \infty]{d} \beta$. Then

$$
\frac{\left.\mathfrak{N}^{\Pi}\left(\sigma_{n}\right)-\mathbb{E} \mathfrak{N}^{\Pi}\left(\sigma_{n}\right)\right)}{n^{k-\frac{1}{2}-\operatorname{card}(A)}} \xrightarrow[n \rightarrow \infty]{d} \mathscr{N}\left(0, \sigma_{\Pi, \alpha \beta}^{2}\right) .
$$

Cumulants

Definition

$$
\kappa_{r}\left(X_{1}, \ldots, X_{r}\right)=\left[t_{1} t_{2} \cdots t_{r}\right] \log \left(\mathrm{E}\left(\mathrm{e}^{\sum_{j=1}^{n} t_{j} X_{j}}\right)\right)
$$

For simplicity, we write $\kappa_{r}(X):=\kappa_{r}(X, \cdots, X)$.

- $X \sim \mathscr{N}\left(m, \sigma^{2}\right)$ if and only if for all $r \geq 3, \kappa_{r}(X)=0$
- If X_{1} and X_{2} are independent, then $\kappa_{r}\left(X_{1}+X_{2}\right)=\kappa_{r}\left(X_{1}\right)+\kappa_{r}\left(X_{2}\right)$
- $\kappa_{r}(X+C)=\kappa_{r}(X)$ if $r \geq 2$
- $\kappa_{r}(\alpha X)=\alpha^{r} \kappa_{r}(X)$
- If $\left\{X_{1}, \ldots X_{i}\right\}$ and $\left\{Y_{i+1}, \ldots Y_{r}\right\}$ are independent (and non-empty), then $\kappa_{r}\left(X_{1}, \ldots, X_{i}, Y_{i+1}, \ldots, Y_{r}\right)=0$
Proof of the CLT For $r \geq 3$

$$
K_{r}\left(\frac{\sum_{i=1}^{n} X_{i}-n \mathbb{E}\left(X_{1}\right)}{\sqrt{n}}\right)=K_{r}\left(\frac{\sum_{i=1}^{n} X_{i}}{\sqrt{n}}\right)=\frac{1}{n^{\frac{r}{2}}} \sum_{i=1}^{n} \kappa_{r}\left(X_{i}\right)=\frac{n}{n^{\frac{r}{2}}} \kappa_{r}\left(X_{1}\right)=o(1)
$$

Weak dependency

- If $\left\{X_{1}, \ldots, X_{r}\right\}$ are "weakly dependent", then $\kappa_{r}\left(X_{1}, \ldots, X_{r}\right) \approx 0$.
- Dependency graphs: a graph with weights on the edges. Vertices are indexed by random variables, and weights measure the "dependency".
- If the weights are sufficiently "small", we have a CLT for the sum of the variables.

Uniform Permutation

- Example: σ_{n} is uniform and $A_{i, j}=1\left[\sigma_{n}(i)=j\right]$.
- If $i \neq j$ and $k \neq m$, then

$$
\mathbb{E}\left(A_{i, k} A_{j, m}\right)=\frac{1}{n(n-1)} \approx \frac{1}{n^{2}}=\mathbb{E}\left(A_{i, k}\right) \mathbb{E}\left(A_{j, m}\right)
$$

- if $k \neq m$, then $\mathbb{E}\left(A_{i, k} A_{i, m}\right)=0$ and $\mathbb{E}\left(A_{i, k}\right) \mathbb{E}\left(A_{j, m}\right)=\frac{1}{n^{2}}$.

For any $U=\left(i_{\ell}, j_{\ell}\right)_{1 \leq \ell \leq r}$, let $G(U)$, be the complete graph with vertices U and the weight of $((i, j),(k, l))$ is $\begin{cases}1 & \text { if } i=k \text { or } j=l \\ \frac{1}{n} & \text { otherwise. }\end{cases}$

For example, if $U=((1,4),(1,2),(4,3),(1,2)), G(U)$

Uniform Permutation

Theorem (Féray 2018)

For all $r \geq 1$, there exists C_{r} such that: For all integers n, for all $U=\left(i_{\ell}, j_{\ell}\right)_{1 \leq \ell \leq r}$

$$
\kappa_{r}\left(A_{i_{1}, j_{1}}, \ldots, A_{i_{r}, j_{r}}\right) \leq C_{r} \mathrm{M}(\mathrm{U}) n^{-\operatorname{card}(U)}
$$

where

- $M(U)$ is the maximum weight of a spanning tree of $G(U)$.
- $\operatorname{card}(U)$ is the number of distinct elements in U.

For example, if $U=((1,4),(1,2),(4,3),(1,2)), G(U)=$

For all $\left.n, \kappa_{r}\left(A_{1,4}, A_{1,2}, A_{4,3}, A_{1,2}\right)\right) \leq C_{4} \frac{1}{n} n^{-3}=C_{4} n^{-4}$

New graphs

- $G^{1}(U)$, the complete graph with vertices U and the weight of $((i, j),(k, l))$ is 1 if $i=k$ or $j=l$ or $i=j$ or $k=l$, and $\frac{1}{n}$ otherwise.

For example, if $U=((1,4),(1,2),(4,3),(1,2)), G^{1}(U)=$

- $G^{2}(U):=([n], E=U)$

For example, if $U=((1,4),(1,2),(4,3),(1,2)), G^{2}(U)=1$

Uniform Permutation within a Conjugacy Class

σ_{n}^{λ} is uniform within the conjugacy class λ and $A_{i, j}=1\left[\sigma_{n}^{\lambda}(i)=j\right]$.

Theorem (Féray and Kammoun 2023)

For all $r \geq 1$, there exists C_{r} such that: For all integers n, for all $U=\left(i_{\ell}, j_{\ell}\right)_{1 \leq \ell \leq r}$

$$
\kappa_{r}\left(A_{i_{1}, j_{1}}, \ldots, A_{i_{r}, j_{r}}\right) \leq C_{r} \mathrm{M}(\mathrm{U}) n^{C C(U)-\operatorname{card}(U)}
$$

where

- $M(U)$ is the maximum weight of a spanning tree of $G^{1}(U)$, the complete graph with vertices U and the weight of $((i, j),(k, l))$ is 1 if $i=k$ or $j=l$ or $i=j$ or $k=l$, and $\frac{1}{n}$ otherwise.
- $\operatorname{card}(U)$ is the number of distinct elements in U.
- $C C(U)$ the number of nontrivial connected components in the graph $G^{2}(U)=([n], E=U)$

Application: Patterns

If we denote by $X^{(\pi, A)}$ the number of occurrences of the pattern (π, A), we have

$$
X^{(\pi, A)}\left(\sigma_{n}^{\lambda}\right)=\sum_{\substack{i_{1} \leq \cdots \cdots i_{k} \\ i_{s+1}=i_{s}+1 \text { or sec } s \in A}} \sum_{\substack{j_{n}, \ldots j_{k}-j_{k}(1)<\cdots \cdots i_{n}-1(k)}} A_{i_{1}, j_{1}} \cdots A_{i_{k} j_{k}} .
$$

To conclude: The magic of weighted dependency graphs: We can "easily" move from controlling mixed cumulants of $\left\{A_{i, j}:(i, j) \in[n]^{2}\right\}$ to controlling mixed cumulants of $\left\{A_{i_{1}, i_{2}} \cdots A_{i_{r}, j_{r}}:\left(i_{1}, j_{1}, \ldots, i_{r}, j_{r}\right) \in[n]^{2 r}\right\}$. We obtain

$$
\kappa_{r}\left(X^{(\pi, A)}\left(\sigma_{n}^{\lambda}\right)\right) \leq C_{k, r} n^{r(k-\operatorname{card}(A)-1)+1}
$$

and thus

$$
\kappa_{r}\left(\frac{X^{(\pi, A)}\left(\sigma_{n}^{\lambda}\right)-\mathbb{E}\left(X^{(\pi, A)}\left(\sigma_{n}^{\lambda}\right)\right)}{n^{k-\operatorname{card}(A)-\frac{1}{2}}}\right) \leq C_{k, r} n^{1-\frac{r}{2}}
$$

Motivation: universality

Central Limit Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d with $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<+\infty$. Then,

$$
\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mathbb{E}\left(X_{1}\right)\right) \xrightarrow{d} \mathscr{N}\left(0, \sigma^{2}\right)
$$

The limit is universal (does not depend on the distribution of X_{i}).

Symmetry/independence + control $=$ universality

Fisher-Tippett-Gnedenko Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d and $M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
Suppose there exist constants $a_{n}>0$ and b_{n} such that, for every real x,

$$
\mathbb{P}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right) \rightarrow G(x)
$$

where $G(x)$ is a non-degenerate cumulative distribution function. Then, G is the cumulative distribution function of a Gumbel, Fréchet, or Weibull variable.
The limit fluctuations depend on the tail of the distribution of X_{1}.

Symmetry/Independence + Control $=$ Universality

Wigner Matrices

Let's define the symmetric matrix M as

$$
M=\frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
a_{1,1} & a_{1,2} & \ldots & \ldots & a_{1, n} \\
a_{1,2} & a_{2,2} & \ldots & \ldots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{1, n} & a_{2, n} & \ldots & \ldots & a_{n, n}
\end{array}\right]
$$

The entries $\left\{a_{i, j}\right\}_{1 \leq i \leq j \leq n}$ are i.i.d. such that $\mathbb{E}\left(a_{1,1}\right)=0$ and $\mathbb{E}\left(a_{1,1}^{2}\right)=1$.
Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the eigenvalues of M.

Histogram of Eigenvalues

Gaussian entries

1 avec proba 0.5 et -1 avec proba 0.5

Entries 1 or - 1

Wigner's theorem

"The histogram of eigenvalues is not far from a semi-circle"

Theorem

The empirical spectral measure of the eigenvalues of M

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_{i}},
$$

converges weakly to the semi-circular law of Wigner as n tends to infinity.

But also ${ }^{*}$,

- The largest eigenvalue converges to 2
- The fluctuations of the largest eigenvalue are of Tracy-Widom type
- Large deviations of the largest eigenvalues are universal
- The joint limit fluctuations of the first k eigenvalues are universal
- The local limit laws are universal
- The fluctuations of the number of points in [a,b] are universal

And for random permutations?
*Some conditions apply on the moments / the tail of the distribution

Longest Decreasing Subsequence

- $\left(\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right)$ is a decreasing subsequence of σ if $i_{1}<i_{2}<\cdots<i_{k}$ and $\sigma\left(i_{1}\right)>\cdots>\sigma\left(i_{k}\right)$.

Longest Decreasing Subsequence

- $\left(\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right)$ is a decreasing subsequence of σ if $i_{1}<i_{2}<\cdots<i_{k}$ and $\sigma\left(i_{1}\right)>\cdots>\sigma\left(i_{k}\right)$.
- $\operatorname{LDS}(\sigma)$: The length of the longest decreasing subsequence of σ.

Longest Decreasing Subsequence

- $\left(\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{k}\right)\right)$ is a decreasing subsequence of σ if $i_{1}<i_{2}<\cdots<i_{k}$ and $\sigma\left(i_{1}\right)>\cdots>\sigma\left(i_{k}\right)$.
- $\operatorname{LDS}(\sigma)$: The length of the longest decreasing subsequence of σ.
- Example:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 1 & 8 & 7 & 5 & 2 & 4 & 3
\end{array}\right)
$$

$\operatorname{LDS}(\sigma)=5$.

Longest Decreasing Subsequence: Universality

We assume that σ_{n} is conjugation invariant and $\frac{\#_{1}\left(\sigma_{n}\right)}{n} \rightarrow \alpha$

Theorem (Dubach (2024+))

$$
\xrightarrow[{\sqrt{n}}]{\operatorname{LDS}\left(\sigma_{n}\right)} \xrightarrow[n \rightarrow \infty]{d} 2 \sqrt{1-\alpha}
$$

Theorem (Kammoun 2018)

If
$n^{\frac{-1}{6}} \min _{1 \leq i \leq n}\left(\left(\sum_{j=1}^{i} \#_{j}\left(\sigma_{n}\right)\right)+\frac{\sqrt{n}}{i} \sum_{j=i+1}^{n} \#_{j}\left(\sigma_{n}\right)\right) \xrightarrow[n \rightarrow \infty]{\mathbb{巴}}$
0, then, $\frac{\operatorname{LDS}\left(\sigma_{n}\right)-2 \sqrt{n}}{\sqrt[b]{n}} \xrightarrow[n \rightarrow \infty]{d}$ Tracy Widom

Theorem (Guionnet, Kammoun 2023)

If σ_{n} is conjugacy invariant and $\#\left(\sigma_{n}\right)=o(\sqrt{n})$. Then, $\frac{\operatorname{LDS}\left(\sigma_{n}\right)}{\sqrt{n}}$ satisfies a LD principle

- with speed \sqrt{n} and rate function $J_{L D S, \frac{1}{2}}$.
- with speed n and rate function $J_{L D S, 1}$

With,

$$
\begin{gathered}
J_{L D S, \frac{1}{2}}(x)=\left\{\begin{array}{ll}
2 x \cosh ^{-1} \frac{x}{2} & \text { if } x>2 \\
+\infty & \text { if } x \leq 2 .
\end{array} .\right. \\
J_{L D S, 1}(x)=\left\{\begin{array}{ll}
-1+\frac{x^{2}}{4}+2 \ln \left(\frac{x}{2}\right)-\left(2+\frac{x^{2}}{2}\right) \ln \left(\frac{2 x^{2}}{4+x^{2}}\right) & \text { if } 0<x \leq 2 \\
0 & \text { if } x>2 \\
+\infty & \text { if } x \leq 0
\end{array} .\right.
\end{gathered}
$$

In other words: if σ_{n} is conjugation invariant and \#(σ) "is low" then
$-\log \left(\mathbb{P}\left(\frac{\operatorname{LDS}\left(\sigma_{n}\right)}{\sqrt{n}} \approx x\right)\right) \approx\left\{\begin{array}{ll}\left(-1+\frac{x^{2}}{4}+2 \ln \left(\frac{x}{2}\right)-\left(2+\frac{x^{2}}{2}\right) \ln \left(\frac{2 x^{2}}{4+x^{2}}\right)\right) n & \text { if } x \in] 0,2[] \\ 2 x \cosh ^{-1}\left(\frac{x}{2}\right) \sqrt{n} & \text { if } x>2 \\ +\infty & \text { if } x \leq 0 \\ 0 & \text { if } x=2\end{array}\right.$.
The same phenomenon appears for λ_{1} (Wigner Matrices).

What we know

Type 1: Local events

- $\mathbb{P}(S \subset D(\sigma))$
- $\mathbb{P}(\sigma(10)>10)$

Type 2: LLN / first order / global convergence

- $\frac{\mathfrak{x}^{\mathrm{n}}}{n^{k-\operatorname{card}(A)}}$
- $\frac{\operatorname{LDS}}{\sqrt{n}}$

The limit depends only on $\frac{\#_{1}}{n}$

Type 3: fluctuations (Poisson / Normal)

- $\operatorname{Tr}\left(\left(\sigma_{n} \rho_{n} \pi_{n} \sigma_{n}^{-1} \rho_{n}^{-1} \pi_{n}\right)^{2024}\right)$
- $\frac{\mathfrak{\Re}^{\mathrm{H}}-\mathbb{E}\left(\mathfrak{N}^{\mathrm{H}}\right)}{n^{k-\operatorname{carar}(\hat{1})-\frac{1}{2}}}$

The limit depends on $\frac{\#_{1}}{n}$ and $\frac{\#_{2}}{n^{\alpha}}$ for some α

Type 4: others

- $\frac{\text { LDS }-2 \sqrt{n}}{n^{\frac{1}{6}}}$
- Large deviations.

Universality if \# is low. There is still much work to be done.

	Exact calculation	Representations	Method of moments (and its variants)		Comparison	Geometric
			Random matrices	Dependency graphs		
Universality Permutations	Fulman, Kim, Lee	Hamaker and Rhoades	Kammoun and Maïda	Féray and Kammoun	Guionnet and Kammoun	Dubach
Functions	Descents Valleys	Descents Inversions Partterns (classic, (bi)-vincular, LAS	Trace of words	Descents Inversions Partterns (classic, vincular) Long.Altern.Sub	Descents Inversions Partterns (classic, vincular) Long.Altern.Sub LDS Long.Com.Sub. RSK Bord RSK shape Gran dev	Inversion Partterns classic RSK Shape LDS(order 1)
Limits	Normal	Constant	Poisson Mixtures	Normal	Normal Tracy Widom Airy, VKLS	Normal
Arxiv	$\begin{array}{\|l} \hline 2018,2018 \\ 2019 \\ \hline \end{array}$	2022	2019, 2022	2023	$\begin{aligned} & \hline 2018,2020 \\ & 2023 \\ & \hline \end{aligned}$	2024+

	Exact calculation	Representations	Method of moments (and its variants)		Comparison	Geometric
			Random matrices	Dependency graphs		
Universality Permutations	Fulman, Kim, Lee	Hamaker and Rhoades	Kammoun and Maïda	Féray and Kammoun	Guionnet and Kammoun	Dubach
Functions	Descents Valleys	Descents Inversions Partterns (classic, (bi)-vincular, LAS	Trace of words	Descents Inversions Partterns (classic, vincular) Long.Altern.Sub	Descents Inversions Partterns (classic, vincular) Long.Altern.Sub LDS Long.Com.Sub. RSK Bord RSK shape Gran dev	Inversion Partterns classic RSK Shape LDS(order 1)
Limits	Normal	Constant	Poisson Mixtures	Normal	Normal Tracy Widom Airy, VKLS	Normal
Arxiv	$\begin{array}{\|l} \hline 2018,2018 \\ 2019 \\ \hline \end{array}$	2022	2019, 2022	2023	$\begin{aligned} & \hline 2018,2020 \\ & 2023 \\ & \hline \end{aligned}$	2024+

Merci de votre attention

