

General reciprocity theorem 00

Negative moments of orthogonal polynomials

Jihyeug Jang¹ Donghyun Kim¹ Jang Soo Kim¹ Minho Song¹ U-Keun Song¹

¹Department of Mathematics, Sungkyunkwan University, Suwon, South Korea

LIPN, April 11, 2023

Combinatorial interpretation

General reciprocity theorem 00

Introduction

The combinatorial reciprocity theorem Dyck paths and Motzkin paths

Preliminaries

Orthogonal polynomials Homogeneous linear recurrence relation

Combinatorial interpretation

Peak-valley sequences Method 1. continued fraction Method 2. Inverse matrix

General reciprocity theorem Reciprocity between determinants

General reciprocity theorem 00

What is the combinatorial reciprocity theorem?

For a sequence $(f_n)_{n \in \mathbb{Z}}$, if both $|f_n|$ and $|f_{-n}|$ count some combinatorial objects of size $n \ge 1$, such a result is called a **combinatorial reciprocity theorem**.

Examples

1. binomial coefficients $\binom{n}{k}$

General reciprocity theorem 00

What is the combinatorial reciprocity theorem?

For a sequence $(f_n)_{n \in \mathbb{Z}}$, if both $|f_n|$ and $|f_{-n}|$ count some combinatorial objects of size $n \ge 1$, such a result is called a **combinatorial reciprocity theorem**.

Examples

- 1. binomial coefficients $\binom{n}{k}$
- 2. chromatic polynomials $\chi_G(n)$

General reciprocity theorem 00

What is the combinatorial reciprocity theorem?

For a sequence $(f_n)_{n \in \mathbb{Z}}$, if both $|f_n|$ and $|f_{-n}|$ count some combinatorial objects of size $n \ge 1$, such a result is called a **combinatorial reciprocity theorem**.

Examples

- 1. binomial coefficients $\binom{n}{k}$
- 2. chromatic polynomials $\chi_G(n)$
- 3. Ehrhart polynomials $\operatorname{Ehr}_P(n)$

Combinatorial interpretation

General reciprocity theorem OO

Dyck paths and Motzkin paths

Dyck paths

General reciprocity theorem OO

Dyck paths and Motzkin paths

Dyck paths

Motzkin paths

General reciprocity theorem 00

Dyck paths and Motzkin paths

Question

• Is there a combinatorial object counted by $|\operatorname{Dyck}_{-n}|$ or $|\operatorname{Mot}_{-n}|$?

General reciprocity theorem 00

Dyck paths and Motzkin paths

Question

- Is there a combinatorial object counted by $|\operatorname{Dyck}_{-n}|$ or $|\operatorname{Mot}_{-n}|$?
- How to define $| Dyck_{-n} |$ and $| Mot_{-n} |$?

General reciprocity theorem OO

Dyck paths and Motzkin paths

Question

- Is there a combinatorial object counted by $|\operatorname{Dyck}_{-n}|$ or $|\operatorname{Mot}_{-n}|$?
- How to define $| Dyck_{-n} |$ and $| Mot_{-n} |$?

We have to introduce bounded Dyck path and bounded Motzkin path.

General reciprocity theorem 00

Previous results

Theorem (Cigler and Krattenthaler, 2020)

$$|\operatorname{Dyck}_{-2n}^{\leq 2k-1}| = |\operatorname{Alt}_{2n-1}^{\leq k}|$$

:= |{(a₁, ..., a_{2n-1}): a₁ \le a₂ \ge a₃ \le ... \ge a_{2n-1}, 1 \le a_i \le k}|.

They also showed many other interesting results including a reciprocity between determinants of these numbers.

General reciprocity theorem 00

Orthogonal polynomials

Polynomials {P_n(x)}_{n≥0} are called orthogonal polynomials with respect to a linear functional L if deg P_n(x) = n and

$$\mathcal{L}(P_m(x)P_n(x)) = \delta_{m,n}c_n, \quad c_n \neq 0.$$

General reciprocity theorem OO

Orthogonal polynomials

Polynomials {P_n(x)}_{n≥0} are called orthogonal polynomials with respect to a linear functional L if deg P_n(x) = n and

$$\mathcal{L}(P_m(x)P_n(x)) = \delta_{m,n}c_n, \quad c_n \neq 0.$$

• Let $\{P_n(x)\}_{n\geq 0}$ be monic polynomials that satisfy a three-term recurrence relation: $P_{-1}(x) = 0$, $P_0(x) = 1$, and for $n \geq 0$,

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x),$$

for some sequences $\boldsymbol{b} = (b_n)_{n \ge 0}$ and $\boldsymbol{\lambda} = (\lambda_n)_{n \ge 1}$.

General reciprocity theorem OO

Orthogonal polynomials

Polynomials {P_n(x)}_{n≥0} are called orthogonal polynomials with respect to a linear functional L if deg P_n(x) = n and

$$\mathcal{L}(P_m(x)P_n(x)) = \delta_{m,n}c_n, \quad c_n \neq 0.$$

• Let $\{P_n(x)\}_{n\geq 0}$ be monic polynomials that satisfy a three-term recurrence relation: $P_{-1}(x) = 0$, $P_0(x) = 1$, and for $n \geq 0$,

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x),$$

for some sequences $\boldsymbol{b} = (b_n)_{n \ge 0}$ and $\boldsymbol{\lambda} = (\lambda_n)_{n \ge 1}$.

• It is well known that these are orthogonal polynomials with respect to a unique linear functional \mathcal{L} with $\mathcal{L}(1) = 1$.

General reciprocity theorem OO

Orthogonal polynomials

Polynomials {P_n(x)}_{n≥0} are called orthogonal polynomials with respect to a linear functional L if deg P_n(x) = n and

$$\mathcal{L}(P_m(x)P_n(x)) = \delta_{m,n}c_n, \quad c_n \neq 0.$$

• Let $\{P_n(x)\}_{n\geq 0}$ be monic polynomials that satisfy a three-term recurrence relation: $P_{-1}(x) = 0$, $P_0(x) = 1$, and for $n \geq 0$,

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x),$$

for some sequences $\boldsymbol{b} = (b_n)_{n \ge 0}$ and $\boldsymbol{\lambda} = (\lambda_n)_{n \ge 1}$.

- It is well known that these are orthogonal polynomials with respect to a unique linear functional \mathcal{L} with $\mathcal{L}(1) = 1$.
- The moment $\mu_n(\boldsymbol{b}, \boldsymbol{\lambda})$ of $P_n(x)$ is defined by $\mu_n(\boldsymbol{b}, \boldsymbol{\lambda}) = \mathcal{L}(x^n)$.

General reciprocity theorem OO

Combinatorics and Moments

Viennot found the following combinatorial interpretation for the moment:

$$\mathcal{L}(x^n) = \mu_n(\boldsymbol{b}, \boldsymbol{\lambda}) = \sum_{p \in \mathrm{Mot}_n} \mathrm{wt}(p).$$

Note that

$$\mu_n(\mathbf{0}, \boldsymbol{\lambda}) = \sum_{p \in \mathrm{Dyck}_n} \mathrm{wt}(p).$$

General reciprocity theorem OO

Bounded moments

The **bounded moments** $\mu_n^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ are defined by

$$\mu_n^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) = \sum_{p \in \operatorname{Mot}_n^{\leq k}} \operatorname{wt}(p).$$

The sequence $(\mu_n^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}))_{n\geq 0}$ satisfies a homogeneous linear recurrence relation so that its negative version $(\mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}))_{n\geq 1}$ is defined.

We call $\mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ the **negative (bounded) moments** of the orthogonal polynomials $P_n(x; \boldsymbol{b}, \boldsymbol{\lambda})$.

Combinatorial interpretation

General reciprocity theorem OO

Generalized bounded moments

Viennot showed that the generalized moment $\mu_{n,r,s}(\boldsymbol{b}, \boldsymbol{\lambda}) := \mathcal{L}(x^n P_r(x) P_s(x))$ has a similar combinatorial expression

$$\mu_{n,r,s}(\boldsymbol{b},\boldsymbol{\lambda}) = \sum_{p\in \mathrm{Mot}_{n,r,s}} \mathrm{wt}(p).$$

Definition A generalized bounded moment $\mu_{n,r,s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is defined by

$$\mu_{n,r,s}^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) = \sum_{p \in \operatorname{Mot}_{n,r,s}^{\leq k}} \operatorname{wt}(p).$$

Combinatorial interpretation

General reciprocity theorem 00

Bounded Dyck/Motzkin paths

Combinatorial interpretation

General reciprocity theorem OO

Homogeneous linear recurrence relation

Theorem (EC1, Theorem 4.1.1 and Proposition 4.2.3)

A sequence $(f_n)_{n\geq 0}$ satisfies a homogeneous linear recurrence relation if and only if

$$\sum_{n\geq 0} f_n x^n = \frac{P(x)}{Q(x)},$$

for some polynomials P(x) and Q(x) with deg $P(x) < \deg Q(x)$ and $Q(0) \neq 0$.

Combinatorial interpretation

General reciprocity theorem OO

Homogeneous linear recurrence relation

Theorem (EC1, Theorem 4.1.1 and Proposition 4.2.3)

A sequence $(f_n)_{n\geq 0}$ satisfies a homogeneous linear recurrence relation if and only if

$$\sum_{n\geq 0} f_n x^n = \frac{P(x)}{Q(x)},$$

for some polynomials P(x) and Q(x) with deg $P(x) < \deg Q(x)$ and $Q(0) \neq 0$. Moreover, in this case, we have

$$\sum_{n \ge 1} f_{-n} x^n = -\frac{P(1/x)}{Q(1/x)},$$

as rational functions.

The Proposition 4.2.3 is also known as 'Popoviciu's theorem'.

Combinatorial interpretation

General reciprocity theorem 00

Generating function for the moments

Let $P_n^*(x) = x^n P_n(1/x)$, and let $\delta P(x; \boldsymbol{b}, \boldsymbol{\lambda})$ be a polynomial obtained from $P(x; \boldsymbol{b}, \boldsymbol{\lambda})$ by moving b_i to b_{i+1} and λ_i to λ_{i+1} .

Theorem (Viennot, 83')

Let r, s, k be integers with $0 \le r, s \le k$.

$$\sum_{n\geq 0} \mu_{n,r,s}^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) x^n = \begin{cases} \frac{x^{s-r}P_r^*(x)\delta^{s+1}P_{k-s}^*(x)}{P_{k+1}^*(x)} & \text{if } r\leq s, \\ \frac{P_s^*(x)\delta^{r+1}P_{k-r}^*(x)}{P_{k+1}^*(x)} \prod_{i=s+1}^r \lambda_i. & \text{if } r>s. \end{cases}$$

Combinatorial interpretation

General reciprocity theorem 00

Generating function for the negative moments

Theorem (JKKSS, 2023)

Let r, s, k be integers with $0 \le r, s \le k$. Suppose that $\mu_{-n,r,s}^{\le k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is well defined for $n \ge 1$. Then we have

$$\sum_{n\geq 1} \mu_{-n,r,s}^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) x^n = \begin{cases} -\frac{xP_r(x)\delta^{s+1}P_{k-s}(x)}{P_{k+1}(x)} & \text{if } r \leq s, \\ -\frac{x^{r-s+1}P_s(x)\delta^{r+1}P_{k-r}(x)}{P_{k+1}(x)} \prod_{i=s+1}^r \lambda_i. & \text{if } r > s. \end{cases}$$

Combinatorial interpretation

General reciprocity theorem 00

Generating function for the negative moments

Theorem (JKKSS, 2023)

Let r, s, k be integers with $0 \le r, s \le k$. Suppose that $\mu_{-n,r,s}^{\le k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is well defined for $n \ge 1$. Then we have

$$\sum_{n\geq 1} \mu_{-n,r,s}^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) x^n = \begin{cases} -\frac{xP_r(x)\delta^{s+1}P_{k-s}(x)}{P_{k+1}(x)} & \text{if } r \leq s, \\ -\frac{x^{r-s+1}P_s(x)\delta^{r+1}P_{k-r}(x)}{P_{k+1}(x)} \prod_{i=s+1}^r \lambda_i. & \text{if } r > s. \end{cases}$$

Proposition (JKKSS, 2023)

Let $b^2 = (b_{n-1}b_n)_{n\geq 1} = (b_0b_1, b_1b_2, ...)$. The sequence $(\mu_{-n,r,s}^{\leq k}(b, b^2))_{n\geq 1}$ is well-defined if and only if $k \neq 1 \pmod{3}$.

Question

What is a combinatorial meaning for $\mu_{-n,r,s}^{\leq k}(\boldsymbol{b}, \boldsymbol{b}^2)$?

General reciprocity theorem 00

peak-valley sequences

Definition

An (ℓ, r, s) -peak-valley sequence of length n is a sequence (a_1, \ldots, a_n) of nonnegative integers such that for $i = 0, \ldots, n + 1$,

- if $a_i \equiv 0 \pmod{\ell}$, then a_i is a valley, that is, $a_{i-1} > a_i < a_{i+1}$,
- if $a_i \equiv -1 \pmod{\ell}$, then a_i is a peak, that is, $a_{i-1} < a_i > a_{i+1}$,

where we set $a_0 = r$ and $a_{n+1} = s$.

Denote by $PV_{n,r,s}^{\ell,k}$ the set of (ℓ, r, s) -peak-valley sequences (a_1, \ldots, a_n) of length n with $0 \le a_i \le k$ for all $i = 1, \ldots, n$.

 $PV_n^{\ell,k} = PV_{n,0,0}^{\ell,k}$: ℓ -peak-valley sequence.

The *weight* of a sequence $\pi = (a_1, \ldots, a_n)$ is defined by

$$\operatorname{wt}(\pi) = V_{a_1} \cdots V_{a_n}.$$

General reciprocity theorem 00

Examples

Let
$$r = 2$$
 and $s = 3$.

Example $(\ell = 2)$

• $\pi = 52307492745$

General reciprocity theorem 00

Examples

Let
$$r = 2$$
 and $s = 3$.

Example $(\ell = 2)$

• $\pi = 52307492745$

General reciprocity theorem 00

Examples

Let r = 2 and s = 3.

Example $(\ell = 2)$

- $\pi = 52307492745$
- 2 < 5 > 2 < 3 > 0 < 7 > 4 < 9 > 2 < 7 > 4 < 5 > 3

General reciprocity theorem 00

Examples

Let r = 2 and s = 3.

Example $(\ell = 2)$

- $\pi = 52307492745$
- 2 < 5 > 2 < 3 > 0 < 7 > 4 < 9 > 2 < 7 > 4 < 5 > 3
- $\pi \in PV_{11,2,3}^{2,9}$

General reciprocity theorem 00

Examples

Let r = 2 and s = 3.

Example $(\ell = 2)$

- $\pi = 52307492745$
- 2 < 5 > 2 < 3 > 0 < 7 > 4 < 9 > 2 < 7 > 4 < 5 > 3• $\pi \in PV_{11,2,3}^{2,9}$

Example ($\ell = 3$)

• $\pi = 54408678347$

General reciprocity theorem 00

Examples

Let r = 2 and s = 3.

Example $(\ell = 2)$

- $\pi = 52307492745$
- 2 < 5 > 2 < 3 > 0 < 7 > 4 < 9 > 2 < 7 > 4 < 5 > 3
- $\pi \in PV_{11,2,3}^{2,9}$

Example $(\ell = 3)$

• $\pi = 54408678347$

Examples

Let r = 2 and s = 3.

Example $(\ell = 2)$

- $\pi = 52307492745$
- 2 < 5 > 2 < 3 > 0 < 7 > 4 < 9 > 2 < 7 > 4 < 5 > 3• $\pi \in PV_{11,2,3}^{2,9}$

- $\pi = 54408678347$
- 2,5,8 : peaks, and 0,3,6 : valleys

Examples

Let r = 2 and s = 3.

Example $(\ell = 2)$

- $\pi = 52307492745$
- 2 < 5 > 2 < 3 > 0 < 7 > 4 < 9 > 2 < 7 > 4 < 5 > 3• $\pi \in PV_{11,2,3}^{2,9}$

- $\pi = 54408678347$
- 2,5,8 : peaks, and 0,3,6 : valleys
- $\pi \in PV_{11,2,3}^{3,8}$

General reciprocity theorem 00

Continued fraction

By Flajolet's combinatorial theory of continued fractions, Viennot showed that

$$\sum_{n\geq 0} \mu_n^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) x^n = \frac{1}{1 - b_0 x - \frac{\lambda_1 x^2}{1 - b_1 x - \cdot \cdot - \frac{\lambda_k x^2}{1 - b_k x}}}.$$

Combinatorial interpretation

General reciprocity theorem 00

Let
$$\boldsymbol{b}^2 = (b_{n-1}b_n)_{n\geq 1} = (b_0b_1, b_1b_2, \dots)$$
 and $b_i = -V_i^{-1}$

General reciprocity theorem 00

Let
$$\boldsymbol{b}^2 = (b_{n-1}b_n)_{n\geq 1} = (b_0b_1, b_1b_2, \dots)$$
 and $b_i = -V_i^{-1}$.

Combinatorial interpretation

General reciprocity theorem 00

Let
$$\boldsymbol{b}^2 = (b_{n-1}b_n)_{n\geq 1} = (b_0b_1, b_1b_2, \dots)$$
 and $b_i = -V_i^{-1}$.

General reciprocity theorem \bigcirc

Let
$$\boldsymbol{b}^2 = (b_{n-1}b_n)_{n\geq 1} = (b_0b_1, b_1b_2, \dots)$$
 and $b_i = -V_i^{-1}$.

$$\sum_{n\geq 1} \mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{b}^2) x^n = \frac{V_0 x}{-V_0 x - 1 - \frac{1}{-V_1 x - 1 - \dots - \frac{1}{-V_k x - 1}}}$$

General reciprocity theorem 00

Combinatorial interpretation

Theorem (JKKSS, 2023) Let $b_i = -V_i^{-1}$ for all *i*. We have

$$\mu_{-n}^{\leq 3k-1}(\boldsymbol{b},\boldsymbol{b}^2) = V_0 \sum_{\pi \in \mathrm{PV}_{n-1}^{3,3k-1}} \mathrm{wt}(\pi).$$

Theorem (JKKSS, 2023) Let $b_i = -V_i^{-1}$ for all *i*. We have

$$\mu_{-n}^{\leq 3k}(\boldsymbol{b}, \boldsymbol{b}^2) = V_0 \sum_{\pi \in \widetilde{\mathrm{PV}}_{n-1}^{3,3k}} \operatorname{wt}(\pi).$$

General reciprocity theorem 00

Combinatorial interpretation

Corollary (JKKSS, 2023) We have

$$\operatorname{Mot}_{-n}^{\leq 3k-1} = \left| \operatorname{PV}_{n-1}^{3,3k-1} \right|.$$

Corollary (JKKSS, 2023)

We have

$$\operatorname{Mot}_{-n}^{\leq 3k} = \left| \widetilde{\operatorname{PV}}_{n-1}^{3,3k} \right|.$$

General reciprocity theorem 00

٠

matrix representation

We define the tridiagonal matrix $A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ by

$$A^{\leq k}(m{b},m{\lambda}) = egin{pmatrix} b_0 & 1 & & & \ \lambda_1 & b_1 & 1 & & \ & \ddots & & \ & & \lambda_{k-1} & b_{k-1} & 1 \ & & & \lambda_k & b_k \end{pmatrix}$$

By the definition of $\mu_{n,r,s}^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda})$,

$$\mu_{n,r,s}^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) = \epsilon_r^T \left(A^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) \right)^n \epsilon_s.$$

General reciprocity theorem 00

Combinatorial interpretation

Proposition (Hopkins and Zaimi, 2023)

For $r, s, k, n \in \mathbb{Z}_{\geq 0}$ with $r, s \leq k$ and $n \geq 1$, if $A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is invertible, then

$$\mu_{-n,r,s}^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) = \epsilon_r^T \left(A^{\leq k}(\boldsymbol{b},\boldsymbol{\lambda}) \right)^{-n} \epsilon_s.$$

Theorem (JSSKK, 2023) Let $b_i = -V_i^{-1}$ for all *i*. We have

$$\mu_{-n,r,s}^{\leq 3k-1}(\boldsymbol{b}, \boldsymbol{b}^2) = (-1)^{\lfloor r/3 \rfloor + \lfloor s/3 \rfloor} \frac{V_0 \cdots V_s}{V_0 \cdots V_{r-1}} \sum_{\pi \in \mathrm{PV}_{n-1,r,s}^{3,k-1}} \mathrm{wt}(\pi).$$

General reciprocity theorem 00

Combinatorial interpretation

Corollary (JKKSS, 2023) We have

$$\left|\operatorname{Mot}_{-n,r,s}^{\leq 3k-1}\right| = \left|\operatorname{PV}_{n-1,r,s}^{3,3k-1}\right|.$$

Corollary (JKKSS, 2023)

We have

$$\left|\operatorname{Mot}_{-n,r,s}^{\leq 3k}\right| = \left|\widetilde{\operatorname{PV}}_{n-1,r,s}^{3,3k}\right|.$$

Combinatorial interpretation

General reciprocity theorem

Reciprocity between determinants

Let $R^{(n)}$ be the operator defined on polynomials in b_i 's and λ_i 's that replaces each b_i by b_{n-i} and each λ_i by λ_{n+1-i} . We have the general reciprocity theorem as follows. Theorem (JSSKK, 2023)

For positive integers k and m, we have

$$\det \left(\mu_{n+i+j+2m-2}^{\leq k+m-1}(\boldsymbol{b},\boldsymbol{\lambda}) \right)_{i,j=0}^{k-1} = C \cdot R^{(k+m-1)} \left(\det \left(\mu_{-n-i-j}^{\leq k+m-1}(\boldsymbol{b},\boldsymbol{\lambda}) \right)_{i,j=0}^{m-1} \right),$$

where $C = \left(\prod_{i=1}^{k+m-1} \lambda_i^{k-i} \right) \det \left(A^{\leq k+m-1}(\boldsymbol{b},\boldsymbol{\lambda}) \right)^{n+2m-2}.$

This implies the result of Cigler and Krattenthaler, which is the general reciprocity theorem for Dyck paths version (that is, for b = 0).

Consequences

We prove Conjectures 50 and 53 of Cigler and Krattenthaler (2020).

Theorem (JKKSS, 2023)

For all nonnegative integers n, k, m, we have

$$\det\left(\sum_{s=0}^{2k+2m-1} \mu_{n+i+j+2m-1,0,s}^{\leq 2k+2m-1}(\mathbf{0},\mathbf{1})\right)_{i,j=0}^{k-1} = (-1)^{\left(\binom{k}{2} + \binom{m}{2}\right)(n+1)} \det\left(\left|\operatorname{Alt}_{n+i+j}^{k+m}\right|\right)_{i,j=0}^{m-1}$$

Theorem (JKKSS, 2023)

For all positive integers n, k, m with $k + m \not\equiv 2 \pmod{3}$, we have

$$\det \left(\mu_{n+i+j+2m-2}^{\leq k+m-1}(\mathbf{1},\mathbf{1}) \right)_{i,j=0}^{k-1} \ = \ (-1)^{n \lfloor (k+m)/3 \rfloor} \det \left(\mu_{-n-i-j}^{\leq k+m-1}(\mathbf{1},\mathbf{1}) \right)_{i,j=0}^{m-1}$$

Merci !