# Negative moments of orthogonal polynomials 

Jihyeug Jang ${ }^{1}$ Donghyun Kim ${ }^{1}$ Jang Soo Kim ${ }^{1} \quad$ Minho Song ${ }^{1}$ U-Keun Song ${ }^{1}$

${ }^{1}$ Department of Mathematics, Sungkyunkwan University, Suwon, South Korea
LIPN, April 11, 2023

## Outline

## Introduction

The combinatorial reciprocity theorem Dyck paths and Motzkin paths

Preliminaries
Orthogonal polynomials Homogeneous linear recurrence relation

Combinatorial interpretation
Peak-valley sequences
Method 1. continued fraction
Method 2. Inverse matrix
General reciprocity theorem
Reciprocity between determinants

## What is the combinatorial reciprocity theorem?

For a sequence $\left(f_{n}\right)_{n \in \mathbb{Z}}$, if both $\left|f_{n}\right|$ and $\left|f_{-n}\right|$ count some combinatorial objects of size $n \geq 1$, such a result is called a combinatorial reciprocity theorem.

Examples

1. binomial coefficients $\binom{n}{k}$

## What is the combinatorial reciprocity theorem?

For a sequence $\left(f_{n}\right)_{n \in \mathbb{Z}}$, if both $\left|f_{n}\right|$ and $\left|f_{-n}\right|$ count some combinatorial objects of size $n \geq 1$, such a result is called a combinatorial reciprocity theorem.

Examples

1. binomial coefficients $\binom{n}{k}$
2. chromatic polynomials $\chi_{G}(n)$

## What is the combinatorial reciprocity theorem?

For a sequence $\left(f_{n}\right)_{n \in \mathbb{Z}}$, if both $\left|f_{n}\right|$ and $\left|f_{-n}\right|$ count some combinatorial objects of size $n \geq 1$, such a result is called a combinatorial reciprocity theorem.

Examples

1. binomial coefficients $\binom{n}{k}$
2. chromatic polynomials $\chi_{G}(n)$
3. Ehrhart polynomials $\operatorname{Ehr}_{P}(n)$

## Dyck paths and Motzkin paths

Dyck paths


## Dyck paths and Motzkin paths

Dyck paths


Motzkin paths


$$
\text { weight }=b_{1} \lambda_{3} b_{2} \lambda_{2} \lambda_{1}
$$

## Dyck paths and Motzkin paths

## Question

- Is there a combinatorial object counted by $\left|\mathrm{Dyck}_{-n}\right|$ or $\left|\operatorname{Mot}_{-n}\right|$ ?


## Dyck paths and Motzkin paths

## Question

- Is there a combinatorial object counted by $\left|\mathrm{Dyck}_{-n}\right|$ or $\left|\operatorname{Mot}_{-n}\right|$ ?
- How to define $\mid$ Dyck $_{-n} \mid$ and $\left|\operatorname{Mot}_{-n}\right|$ ?


## Dyck paths and Motzkin paths

## Question

- Is there a combinatorial object counted by $\left|\mathrm{Dyck}_{-n}\right|$ or $\left|\operatorname{Mot}_{-n}\right|$ ?
- How to define $\left|\mathrm{Dyck}_{-n}\right|$ and $\left|\operatorname{Mot}_{-n}\right|$ ?

We have to introduce bounded Dyck path and bounded Motzkin path.

## Previous results

## Theorem (Cigler and Krattenthaler, 2020)

$$
\begin{aligned}
\left|\operatorname{Dyck}_{-2 n}^{\leq 2 k-1}\right| & =\left|\mathrm{Alt}_{2 n-1}^{\leq k}\right| \\
& :=\left|\left\{\left(a_{1}, \cdots, a_{2 n-1}\right): a_{1} \leq a_{2} \geq a_{3} \leq \cdots \geq a_{2 n-1}, 1 \leq a_{i} \leq k\right\}\right|
\end{aligned}
$$

They also showed many other interesting results including a reciprocity between determinants of these numbers.

## Orthogonal polynomials

- Polynomials $\left\{P_{n}(x)\right\}_{n \geq 0}$ are called orthogonal polynomials with respect to a linear functional $\mathcal{L}$ if $\operatorname{deg} P_{n}(x)=n$ and

$$
\mathcal{L}\left(P_{m}(x) P_{n}(x)\right)=\delta_{m, n} c_{n}, \quad c_{n} \neq 0 .
$$

## Orthogonal polynomials

- Polynomials $\left\{P_{n}(x)\right\}_{n \geq 0}$ are called orthogonal polynomials with respect to a linear functional $\mathcal{L}$ if $\operatorname{deg} P_{n}(x)=n$ and

$$
\mathcal{L}\left(P_{m}(x) P_{n}(x)\right)=\delta_{m, n} c_{n}, \quad c_{n} \neq 0 .
$$

- Let $\left\{P_{n}(x)\right\}_{n \geq 0}$ be monic polynomials that satisfy a three-term recurrence relation: $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x),
$$

for some sequences $\boldsymbol{b}=\left(b_{n}\right)_{n \geq 0}$ and $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n \geq 1}$.

## Orthogonal polynomials

- Polynomials $\left\{P_{n}(x)\right\}_{n \geq 0}$ are called orthogonal polynomials with respect to a linear functional $\mathcal{L}$ if $\operatorname{deg} P_{n}(x)=n$ and

$$
\mathcal{L}\left(P_{m}(x) P_{n}(x)\right)=\delta_{m, n} c_{n}, \quad c_{n} \neq 0 .
$$

- Let $\left\{P_{n}(x)\right\}_{n \geq 0}$ be monic polynomials that satisfy a three-term recurrence relation: $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x),
$$

for some sequences $\boldsymbol{b}=\left(b_{n}\right)_{n \geq 0}$ and $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n \geq 1}$.

- It is well known that these are orthogonal polynomials with respect to a unique linear functional $\mathcal{L}$ with $\mathcal{L}(1)=1$.


## Orthogonal polynomials

- Polynomials $\left\{P_{n}(x)\right\}_{n \geq 0}$ are called orthogonal polynomials with respect to a linear functional $\mathcal{L}$ if $\operatorname{deg} P_{n}(x)=n$ and

$$
\mathcal{L}\left(P_{m}(x) P_{n}(x)\right)=\delta_{m, n} c_{n}, \quad c_{n} \neq 0 .
$$

- Let $\left\{P_{n}(x)\right\}_{n \geq 0}$ be monic polynomials that satisfy a three-term recurrence relation: $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x),
$$

for some sequences $\boldsymbol{b}=\left(b_{n}\right)_{n \geq 0}$ and $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n \geq 1}$.

- It is well known that these are orthogonal polynomials with respect to a unique linear functional $\mathcal{L}$ with $\mathcal{L}(1)=1$.
- The moment $\mu_{n}(\boldsymbol{b}, \boldsymbol{\lambda})$ of $P_{n}(x)$ is defined by $\mu_{n}(\boldsymbol{b}, \boldsymbol{\lambda})=\mathcal{L}\left(x^{n}\right)$.


## Combinatorics and Moments

Viennot found the following combinatorial interpretation for the moment:

$$
\mathcal{L}\left(x^{n}\right)=\mu_{n}(\boldsymbol{b}, \boldsymbol{\lambda})=\sum_{p \in \operatorname{Mot}_{n}} \mathrm{wt}(p) .
$$

Note that

$$
\mu_{n}(\mathbf{0}, \boldsymbol{\lambda})=\sum_{p \in \mathrm{Dyck}_{n}} \mathrm{wt}(p) .
$$

## Bounded moments

The bounded moments $\mu_{n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ are defined by

$$
\mu_{n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\sum_{p \in \mathrm{Mot}_{n}^{\leq k}} \mathrm{wt}(p) .
$$

The sequence $\left(\mu_{n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})\right)_{n \geq 0}$ satisfies a homogeneous linear recurrence relation so that its negative version $\left(\mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})\right)_{n \geq 1}$ is defined.

We call $\mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ the negative (bounded) moments of the orthogonal polynomials $P_{n}(x ; \boldsymbol{b}, \boldsymbol{\lambda})$.

## Generalized bounded moments

Viennot showed that the generalized moment $\mu_{n, r, s}(\boldsymbol{b}, \boldsymbol{\lambda}):=\mathcal{L}\left(x^{n} P_{r}(x) P_{s}(x)\right)$ has a similar combinatorial expression

$$
\mu_{n, r, s}(\boldsymbol{b}, \boldsymbol{\lambda})=\sum_{p \in \operatorname{Mot}_{n}, r, s} \operatorname{wt}(p) .
$$

## Definition

A generalized bounded moment $\mu_{\bar{n}, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is defined by

$$
\mu_{n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\sum_{p \in \operatorname{Mot}_{n, r, s}^{\leq k}} \mathrm{wt}(p)
$$

## Bounded Dyck/Motzkin paths

Dyck $_{n, r, s}^{\leq k}$

$\operatorname{Mot}_{n, r, s}^{\leq k}$

$$
------------------------\quad y=k
$$



## Homogeneous linear recurrence relation

## Theorem (EC1, Theorem 4.1.1 and Proposition 4.2.3)

A sequence $\left(f_{n}\right)_{n \geq 0}$ satisfies a homogeneous linear recurrence relation if and only if

$$
\sum_{n \geq 0} f_{n} x^{n}=\frac{P(x)}{Q(x)}
$$

for some polynomials $P(x)$ and $Q(x)$ with $\operatorname{deg} P(x)<\operatorname{deg} Q(x)$ and $Q(0) \neq 0$.

## Homogeneous linear recurrence relation

## Theorem (EC1, Theorem 4.1.1 and Proposition 4.2.3)

A sequence $\left(f_{n}\right)_{n \geq 0}$ satisfies a homogeneous linear recurrence relation if and only if

$$
\sum_{n \geq 0} f_{n} x^{n}=\frac{P(x)}{Q(x)}
$$

for some polynomials $P(x)$ and $Q(x)$ with $\operatorname{deg} P(x)<\operatorname{deg} Q(x)$ and $Q(0) \neq 0$. Moreover, in this case, we have

$$
\sum_{n \geq 1} f_{-n} x^{n}=-\frac{P(1 / x)}{Q(1 / x)}
$$

as rational functions.
The Proposition 4.2.3 is also known as 'Popoviciu's theorem'.

## Generating function for the moments

Let $P_{n}^{*}(x)=x^{n} P_{n}(1 / x)$, and let $\delta P(x ; \boldsymbol{b}, \boldsymbol{\lambda})$ be a polynomial obtained from $P(x ; \boldsymbol{b}, \boldsymbol{\lambda})$ by moving $b_{i}$ to $b_{i+1}$ and $\lambda_{i}$ to $\lambda_{i+1}$.
Theorem (Viennot, 83')
Let $r, s, k$ be integers with $0 \leq r, s \leq k$.

$$
\sum_{n \geq 0} \mu_{n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}= \begin{cases}\frac{\left.x^{s-r} P_{r}^{*}(x)\right)^{s+1} P_{k-s}^{*}(x)}{P_{k+1}^{s^{*}}(x)} & \text { if } r \leq s, \\ \frac{P_{s}^{*}(x) \delta^{r+1} P_{k-r}^{*}(x)}{P_{k+1}^{*}(x)} \prod_{i=s+1}^{r} \lambda_{i} . & \text { if } r>s .\end{cases}
$$

Generating function for the negative moments
Theorem (JKKSS, 2023)
Let $r, s, k$ be integers with $0 \leq r, s \leq k$. Suppose that $\mu_{-n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is well defined for $n \geq 1$. Then we have

$$
\sum_{n \geq 1} \mu_{-n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}= \begin{cases}-\frac{x P_{r}(x) \delta^{s+1} P_{k-s}(x)}{P_{k+1}(x)} & \text { if } r \leq s, \\ -\frac{x^{r-s+1} P_{s}(x) \delta^{r+1} P_{k-r}(x)}{P_{k+1}(x)} \prod_{i=s+1}^{r} \lambda_{i} . & \text { if } r>s .\end{cases}
$$

## Generating function for the negative moments

Theorem (JKKSS, 2023)
Let $r, s, k$ be integers with $0 \leq r, s \leq k$. Suppose that $\mu_{-n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is well defined for $n \geq 1$. Then we have

$$
\sum_{n \geq 1} \mu_{-n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}= \begin{cases}-\frac{x P_{r}(x) \delta^{s+1} P_{k-s}(x)}{P_{k+1}(x)} & \text { if } r \leq s \\ -\frac{x^{r-s+1} P_{s}(x) \delta^{r+1} P_{k-r}(x)}{P_{k+1}(x)} \prod_{i=s+1}^{r} \lambda_{i} . & \text { if } r>s\end{cases}
$$

Proposition (JKKSS, 2023)
Let $\boldsymbol{b}^{2}=\left(b_{n-1} b_{n}\right)_{n \geq 1}=\left(b_{0} b_{1}, b_{1} b_{2}, \ldots\right)$. The sequence $\left(\mu_{-n, r, s}^{\leq k}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)\right)_{n \geq 1}$ is well-defined if and only if $k \not \equiv 1(\bmod 3)$.

## Question

What is a combinatorial meaning for $\mu_{-n, r, s}^{\leq k}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)$ ?

## peak-valley sequences

## Definition

An $(\ell, r, s)$-peak-valley sequence of length $n$ is a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of nonnegative integers such that for $i=0, \ldots, n+1$,

- if $a_{i} \equiv 0(\bmod \ell)$, then $a_{i}$ is a valley, that is, $a_{i-1}>a_{i}<a_{i+1}$,
- if $a_{i} \equiv-1(\bmod \ell)$, then $a_{i}$ is a peak, that is, $a_{i-1}<a_{i}>a_{i+1}$,
where we set $a_{0}=r$ and $a_{n+1}=s$.
Denote by $\mathrm{PV}_{n, r, s}^{\ell, k}$ the set of $(\ell, r, s)$-peak-valley sequences $\left(a_{1}, \ldots, a_{n}\right)$ of length $n$ with $0 \leq a_{i} \leq k$ for all $i=1, \ldots, n$.
$\mathrm{PV}_{n}^{\ell, k}=\mathrm{PV}_{n, 0,0}^{\ell, k}: \ell$-peak-valley sequence.
The weight of a sequence $\pi=\left(a_{1}, \ldots, a_{n}\right)$ is defined by

$$
\operatorname{wt}(\pi)=V_{a_{1}} \cdots V_{a_{n}} .
$$

## Examples

Let $r=2$ and $s=3$.
Example ( $\ell=2$ )

- $\pi=52307492745$

Example $(\ell=3)$

## Examples

Let $r=2$ and $s=3$.
Example ( $\ell=2$ )

- $\pi=52307492745$

Example $(\ell=3)$

## Examples

Let $r=2$ and $s=3$.
Example ( $\ell=2$ )

- $\pi=52307492745$
- $2<5>2<3>0<7>4<9>2<7>4<5>3$

Example $(\ell=3)$

## Examples

Let $r=2$ and $s=3$.
Example ( $\ell=2$ )

- $\pi=52307492745$
- $2<5>2<3>0<7>4<9>2<7>4<5>3$
- $\pi \in \mathrm{PV}_{11,2,3}^{2,9}$

Example $(\ell=3)$

## Examples

Let $r=2$ and $s=3$.
Example ( $\ell=2$ )

- $\pi=52307492745$
- $2<5>2<3>0<7>4<9>2<7>4<5>3$
- $\pi \in \mathrm{PV}_{11,2,3}^{2,9}$

Example ( $\ell=3$ )

- $\pi=54408678347$


## Examples

Let $r=2$ and $s=3$.
Example ( $\ell=2$ )

- $\pi=52307492745$
- $2<5>2<3>0<7>4<9>2<7>4<5>3$
- $\pi \in \mathrm{PV}_{11,2,3}^{2,9}$

Example $(\ell=3)$

- $\pi=54408678347$


## Examples

Let $r=2$ and $s=3$.
Example ( $\ell=2$ )

- $\pi=52307492745$
- $2<5>2<3>0<7>4<9>2<7>4<5>3$
- $\pi \in \mathrm{PV}_{11,2,3}^{2,9}$

Example $(\ell=3)$

- $\pi=54408 \mathbf{8 7 8 3 4 7}$
- $2,5,8$ : peaks, and $0,3,6$ : valleys


## Examples

Let $r=2$ and $s=3$.
Example ( $\ell=2$ )

- $\pi=52307492745$
- $2<5>2<3>0<7>4<9>2<7>4<5>3$
- $\pi \in \mathrm{PV}_{11,2,3}^{2,9}$

Example $(\ell=3)$

- $\pi=5440 \mathbf{8 6 7 8 3 4 7}$
- 2,5,8 : peaks, and $0,3,6$ : valleys
- $\pi \in \mathrm{PV}_{11,2,3}^{3,8}$


## Continued fraction

By Flajolet's combinatorial theory of continued fractions, Viennot showed that

$$
\sum_{n \geq 0} \mu_{n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}=\frac{1}{1-b_{0} x-\frac{\lambda_{1} x^{2}}{1-b_{1} x-\ddots-\frac{\lambda_{k} x^{2}}{1-b_{k} x}}} .
$$

## Continued fraction for the negative moments

Let $\boldsymbol{b}^{2}=\left(b_{n-1} b_{n}\right)_{n \geq 1}=\left(b_{0} b_{1}, b_{1} b_{2}, \ldots\right)$ and $b_{i}=-V_{i}^{-1}$.

$$
\sum_{n \geq 1} \mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}=\frac{-1}{1-b_{0} x^{-1}-\frac{\lambda_{1} x^{-2}}{1-b_{1} x^{-1}-\frac{\lambda_{2} x^{-2}}{1-b_{2} x^{-1}-\ddots} \cdot \frac{\lambda_{k} x^{-2}}{1-b_{k} x^{-1}}}} .
$$

## Continued fraction for the negative moments

Let $\boldsymbol{b}^{2}=\left(b_{n-1} b_{n}\right)_{n \geq 1}=\left(b_{0} b_{1}, b_{1} b_{2}, \ldots\right)$ and $b_{i}=-V_{i}^{-1}$.

$$
\sum_{n \geq 1} \mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}=\frac{-x}{x-b_{0}-\frac{\lambda_{1}}{x-b_{1}-\frac{\lambda_{2}}{x-b_{2}-\ddots-\frac{\lambda_{k}}{x-b_{k}}}}} .
$$

## Continued fraction for the negative moments

Let $\boldsymbol{b}^{2}=\left(b_{n-1} b_{n}\right)_{n \geq 1}=\left(b_{0} b_{1}, b_{1} b_{2}, \ldots\right)$ and $b_{i}=-V_{i}^{-1}$.

$$
\sum_{n \geq 1} \mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}=\frac{b_{0}^{-1} x}{1-b_{0}^{-1} x-\frac{b_{0}^{-1} b_{1}^{-1} \lambda_{1}}{1-b_{1}^{-1} x-\frac{b_{1}^{-1} b_{2}^{-1} \lambda_{2}}{1-b_{2}^{-1} x-\ddots \ddots-\frac{b_{k-1}^{-1} b_{k}^{-1} \lambda_{k}}{1-b_{k}^{-1} x}}} .}
$$

## Continued fraction for the negative moments

Let $\boldsymbol{b}^{2}=\left(b_{n-1} b_{n}\right)_{n \geq 1}=\left(b_{0} b_{1}, b_{1} b_{2}, \ldots\right)$ and $b_{i}=-V_{i}^{-1}$.

$$
\sum_{n \geq 1} \mu_{-n}^{\leq k}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right) x^{n}=\frac{V_{0} x}{-V_{0} x-1-\frac{1}{-V_{1} x-1-\ddots-\frac{1}{-V_{k} x-1}}} .
$$

## Combinatorial interpretation

Theorem (JKKSS, 2023)
Let $b_{i}=-V_{i}^{-1}$ for all $i$. We have

$$
\mu_{-n}^{\leq 3 k-1}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)=V_{0} \sum_{\pi \in \mathrm{PV}_{n-1}^{3,3 k-1}} \mathrm{wt}(\pi)
$$

Theorem (JKKSS, 2023)
Let $b_{i}=-V_{i}^{-1}$ for all $i$. We have

$$
\mu_{-n}^{\leq 3 k}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)=V_{0} \sum_{\pi \in \widetilde{\mathrm{PV}}_{n-1}^{3,3 k}} \mathrm{wt}(\pi)
$$

## Combinatorial interpretation

Corollary (JKKSS, 2023)
We have

$$
\left|\operatorname{Mot}_{-n}^{\leq 3 k-1}\right|=\left|\mathrm{PV}_{n-1}^{3,3 k-1}\right| .
$$

Corollary (JKKSS, 2023)
We have

$$
\left|\operatorname{Mot}_{-n}^{\leq 3 k}\right|=\left|\widetilde{\mathrm{PV}}_{n-1}^{3,3 k}\right| .
$$

## matrix representation

We define the tridiagonal matrix $A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ by

$$
A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\left(\begin{array}{ccccc}
b_{0} & 1 & & & \\
\lambda_{1} & b_{1} & 1 & & \\
& & \ddots & & \\
& & \lambda_{k-1} & b_{k-1} & 1 \\
& & & \lambda_{k} & b_{k}
\end{array}\right)
$$

By the definition of $\mu_{n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$,

$$
\mu_{n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\epsilon_{r}^{T}\left(A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})\right)^{n} \epsilon_{s} .
$$

## Combinatorial interpretation

Proposition (Hopkins and Zaimi, 2023)
For $r, s, k, n \in \mathbb{Z}_{\geq 0}$ with $r, s \leq k$ and $n \geq 1$, if $A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is invertible, then

$$
\mu_{-n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\epsilon_{r}^{T}\left(A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})\right)^{-n} \epsilon_{s}
$$

Theorem (JSSKK, 2023)
Let $b_{i}=-V_{i}^{-1}$ for all $i$. We have

$$
\mu_{-n, r, s}^{\leq 3 k-1}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)=(-1)^{\lfloor r / 3\rfloor+\lfloor s / 3\rfloor} \frac{V_{0} \cdots V_{s}}{V_{0} \cdots V_{r-1}} \sum_{\pi \in \mathrm{PV}_{n-1, r, s}^{3,3 k-1}} \mathrm{wt}(\pi)
$$

## Combinatorial interpretation

Corollary (JKKSS, 2023)
We have

$$
\left|\operatorname{Mot}_{-n, r, s}^{\leq 3 k-1}\right|=\left|\mathrm{PV}_{n-1, r, s}^{3,3 k-1}\right| .
$$

Corollary (JKKSS, 2023)
We have

$$
\left|\operatorname{Mot}_{-n, r, s}^{\leq 3 k}\right|=\left|\widetilde{\mathrm{PV}}_{n-1, r, s}^{3,3 k}\right|
$$

## Reciprocity between determinants

Let $R^{(n)}$ be the operator defined on polynomials in $b_{i}$ 's and $\lambda_{i}$ 's that replaces each $b_{i}$ by $b_{n-i}$ and each $\lambda_{i}$ by $\lambda_{n+1-i}$. We have the general reciprocity theorem as follows.
Theorem (JSSKK, 2023)
For positive integers $k$ and $m$, we have

$$
\operatorname{det}\left(\mu_{n+i+j+2 m-2}^{\leq k+m-1}(\boldsymbol{b}, \boldsymbol{\lambda})\right)_{i, j=0}^{k-1}=C \cdot R^{(k+m-1)}\left(\operatorname{det}\left(\mu_{-n-i-j}^{\leq k+m-1}(\boldsymbol{b}, \boldsymbol{\lambda})\right)_{i, j=0}^{m-1}\right)
$$

where $C=\left(\prod_{i=1}^{k+m-1} \lambda_{i}^{k-i}\right) \operatorname{det}\left(A^{\leq k+m-1}(\boldsymbol{b}, \boldsymbol{\lambda})\right)^{n+2 m-2}$.

This implies the result of Cigler and Krattenthaler, which is the general reciprocity theorem for Dyck paths version (that is, for $\boldsymbol{b}=\mathbf{0}$ ).

## Consequences

We prove Conjectures 50 and 53 of Cigler and Krattenthaler (2020).

## Theorem (JKKSS, 2023)

For all nonnegative integers $n, k, m$, we have

$$
\left.\begin{array}{rl}
\operatorname{det}\left(\sum_{s=0}^{2 k+2 m-1} \mu_{n+i+j+2 m-1,0, s}^{\leq 2 k+2 m-1}(\mathbf{0}, \mathbf{1})\right.
\end{array}\right)_{i, j=0}^{k-1} .
$$

## Theorem (JKKSS, 2023)

For all positive integers $n, k, m$ with $k+m \not \equiv 2(\bmod 3)$, we have

$$
\operatorname{det}\left(\mu_{n+i+j+2 m-2}^{\leq k+m-1}(\mathbf{1}, \mathbf{1})\right)_{i, j=0}^{k-1}=(-1)^{n\lfloor(k+m) / 3\rfloor} \operatorname{det}\left(\mu_{-n-i-j}^{\leq k+m-1}(\mathbf{1}, \mathbf{1})\right)_{i, j=0}^{m-1}
$$

Merci!

