Statistics on permutation tableaux

Pawel Hitczenko
 Drexel University

parts based on joint work with Sylvie Corteel (Paris-Sud) and parts with Svante Janson (Uppsala)

LIPN, February 5, 2008

Permutation tableaux

Permutation tableau T : a Ferrers diagram of a partition λ filled with 0's and 1's such that:

1. Each column contains at least one 1 .
2. There is no 0 which has a 1 above it in the same column and a 1 to its left in the same row.

0	0	1	0	0	1
0	0	1	0	1	
0	1	1	1	1	
0	0	0			
1					

Previous work

- introduced by Postnikov (2001)
- subsequently studied by Williams (2004), Steingrímsson and Williams (2005) (bijections with permutations)
- connections to PASEP (a particle model in statistical physics) Corteel and Williams (2006) and (2007).
- additional combinatorial work Corteel and Nadeau (2007) (more bijections), Burstein (2006) (some properties of permutation tableaux)

Statistics on T

- Length $\ell(T)$: no. rows plus no. columns

0	0	1	0	0	1 1
0	0	1	0	1	
0	1	1	1	1	
0	0	0			
1				T)	$=12$

Number of permutation tableaux of length $n=n!. \mathcal{T}_{n}$ is the set of all permutation tableaux with $\ell(T)=n$.

Statistics on T

- Length $\ell(T)$: no. rows plus no. columns
- $U(T)$: number of unrestricted rows (a row is restricted if it has a 0 that has 1 above it)

Statistics on T

- Length $\ell(T)$: no. rows plus no. columns
- $U(T)$: number of unrestricted rows (a row is restricted if it has a 0 that has 1 above it)
- $F(T)$: number of 1 's in the first row

0	0		0	0	11			
0	0	1	0	1				
0	1	1	1	1				
0	0	0	$F(T)=3$					
1								

Statistics on T

- Length $\ell(T)$: no. rows plus no. columns
- $U(T)$: number of unrestricted rows (a row is restricted if it has a 0 that has 1 above it)
- $F(T)$: number of 1 's in the first row
- $R(T)$: number of rows

0	0		0	0		1
0	0	1	0	1	$R(T)=5$	
0	1	1	1	1		
0	0	0				
1						

Statistics on T

- Length $\ell(T)$: no. rows plus no. columns
- $U(T)$: number of unrestricted rows (a row is restricted if it has a 0 that has 1 above it)
- $F(T)$: number of 1 's in the first row
- $R(T)$: number of rows
- $S(T)$: number of superfluous 1's (1's below the top one in the column)

0	0	1	0	0	111
0	0	1	0	1	
0	1	1	1	1	
0	0	0			
1				T)	$=3$

From tableaux of length $n-1$ to tableaux of length n

Let $T \in \mathcal{T}_{n-1}$ and suppose that it has U_{n-1} unrestricted rows. From the SW corner of the tableau we can extend its length by one by either:

0	0	1	0	0	11
0	0	1	0	1	
0	1	1	1	1	
0	0	0			
1					

From tableaux of length $n-1$ to tableaux of length n

Let $T \in \mathcal{T}_{n-1}$ and suppose that it has U_{n-1} unrestricted rows. From the SW corner of the tableau we can extend its length by one by either:

- moving S; this adds a row (unrestricted)

0	0	1	0	0	11
0	0	1	0	1	
0	1	1	1	1	
0	0	0			
1					

From tableaux of length $n-1$ to tableaux of length n

Let $T \in \mathcal{T}_{n-1}$ and suppose that it has U_{n-1} unrestricted rows. From the SW corner of the tableau we can extend its length by one by either:

- moving S; this adds a row (unrestricted)
- moving W; this adds a column that has to be filled

0	0	1	0	0	11
0	0	1	0	1	
0	1	1	1	1	
0	0	0			
1					

From tableaux of length $n-1$ to tableaux of length n

Let $T \in \mathcal{T}_{n-1}$ and suppose that it has U_{n-1} unrestricted rows. From the SW corner of the tableau we can extend its length by one by either:

- moving S; this adds a row (unrestricted)
- moving W; this adds a column that has to be filled
- Put zero in resticted rows

	0	0	1	0	0	1
	0	0	1	0	1	
	0	1	1	1	1	
0	0	0	0			
	1					

From tableaux of length $n-1$ to tableaux of length n

Let $T \in \mathcal{T}_{n-1}$ and suppose that it has U_{n-1} unrestricted rows. From the SW corner of the tableau we can extend its length by one by either:

- moving S; this adds a row (unrestricted)
- moving W; this adds a column that has to be filled
- Put zero in resticted rows
- Put zero or one in unrestricted rows

0	0	0	1	0	0	$1{ }^{1} 1$
0	0	0	1	0	1	
1	0	1	1	1	1	
0	0	0	0			
0	1					

Distribution of the number of unrestricted rows

So, there are $2^{U_{n-1}}$ extensions of T (all equally likely).

Distribution of the number of unrestricted rows

So, there are $2^{U_{n-1}}$ extensions of T (all equally likely).

Let U_{n} be the number of unrestricted rows in the extension of T. Elementary calculations based on these earlier observations yield that for $1 \leq k \leq U_{n-1}+1$

$$
P\left(U_{n}=k\right)=\frac{1}{2^{U_{n-1}}}\binom{U_{n-1}}{k-1}=P\left(\operatorname{Bin}\left(U_{n-1}\right)=k-1\right)
$$

Distribution of the number of unrestricted rows

So, there are $2^{U_{n-1}}$ extensions of T (all equally likely).

Let U_{n} be the number of unrestricted rows in the extension of T. Elementary calculations based on these earlier observations yield that for $1 \leq k \leq U_{n-1}+1$

$$
P\left(U_{n}=k\right)=\frac{1}{2^{U_{n-1}}}\binom{U_{n-1}}{k-1}=P\left(\operatorname{Bin}\left(U_{n-1}\right)=k-1\right)
$$

This means that,

$$
\mathcal{L}\left(U_{n} \mid U_{n-1}\right)=1+\operatorname{Bin}\left(U_{n-1}\right)
$$

Change of measure

Let P_{n} be the uniform probability on \mathcal{T}_{n} and E_{n} integration w.r.t. P_{n}.

Change of measure

Let P_{n} be the uniform probability on \mathcal{T}_{n} and E_{n} integration w.r.t. P_{n}. For a function $f: R \rightarrow R$ we have

Change of measure

Let P_{n} be the uniform probability on \mathcal{T}_{n} and E_{n} integration w.r.t. P_{n}. For a function $f: R \rightarrow R$ we have

$$
\begin{aligned}
E_{n} f\left(U_{n}\right) & =E_{n} E\left(f\left(U_{n}\right) \mid U_{n-1}\right)=E_{n} E\left(f\left(1+\operatorname{Bin}\left(U_{n-1}\right)\right) \mid U_{n-1}\right) \\
& =E_{n} \tilde{f}\left(U_{n-1}\right) .
\end{aligned}
$$

Change of measure

Let P_{n} be the uniform probability on \mathcal{T}_{n} and E_{n} integration w.r.t. P_{n}. For a function $f: R \rightarrow R$ we have

$$
\begin{aligned}
E_{n} f\left(U_{n}\right) & =E_{n} E\left(f\left(U_{n}\right) \mid U_{n-1}\right)=E_{n} E\left(f\left(1+\operatorname{Bin}\left(U_{n-1}\right)\right) \mid U_{n-1}\right) \\
& =E_{n} \tilde{f}\left(U_{n-1}\right) .
\end{aligned}
$$

The last integral over \mathcal{T}_{n-1} is not w.r.t. the uniform measure but w.r.t. the measure induced by P_{n}.

Change of measure

Let P_{n} be the uniform probability on \mathcal{T}_{n} and E_{n} integration w.r.t. P_{n}. For a function $f: R \rightarrow R$ we have

$$
\begin{aligned}
E_{n} f\left(U_{n}\right) & =E_{n} E\left(f\left(U_{n}\right) \mid U_{n-1}\right)=E_{n} E\left(f\left(1+\operatorname{Bin}\left(U_{n-1}\right)\right) \mid U_{n-1}\right) \\
& =E_{n} \tilde{f}\left(U_{n-1}\right) .
\end{aligned}
$$

The last integral over \mathcal{T}_{n-1} is not w.r.t. the uniform measure but w.r.t. the measure induced by P_{n}. The relation is: for $T \in \mathcal{T}_{n-1}$ with U_{n-1} unrestricted rows

$$
P_{n}(T)=\frac{2^{U_{n-1}}}{\left|\mathcal{T}_{n}\right|}=\frac{2^{U_{n-1}}}{\left|\mathcal{T}_{n}\right|}\left|\mathcal{T}_{n-1}\right| P_{n-1}(T)
$$

Change of measure

Let P_{n} be the uniform probability on \mathcal{T}_{n} and E_{n} integration w.r.t. P_{n}. For a function $f: R \rightarrow R$ we have

$$
\begin{aligned}
E_{n} f\left(U_{n}\right) & =E_{n} E\left(f\left(U_{n}\right) \mid U_{n-1}\right)=E_{n} E\left(f\left(1+\operatorname{Bin}\left(U_{n-1}\right)\right) \mid U_{n-1}\right) \\
& =E_{n} \tilde{f}\left(U_{n-1}\right) .
\end{aligned}
$$

The last integral over \mathcal{T}_{n-1} is not w.r.t. the uniform measure but w.r.t. the measure induced by P_{n}. The relation is: for $T \in \mathcal{T}_{n-1}$ with U_{n-1} unrestricted rows

$$
P_{n}(T)=\frac{2^{U_{n-1}}}{\left|\mathcal{T}_{n}\right|}=\frac{2^{U_{n-1}}}{\left|\mathcal{T}_{n}\right|}\left|\mathcal{T}_{n-1}\right| P_{n-1}(T)
$$

So,

$$
E_{n} f\left(U_{n}\right)=\frac{\left|\mathcal{T}_{n-1}\right|}{\left|\mathcal{T}_{n}\right|} E_{n-1} 2^{U_{n-1}} \tilde{f}\left(U_{n-1}\right)
$$

Change of measure

Let P_{n} be the uniform probability on \mathcal{T}_{n} and E_{n} integration w.r.t. P_{n}. For a function $f: R \rightarrow R$ we have

$$
\begin{aligned}
E_{n} f\left(U_{n}\right) & =E_{n} E\left(f\left(U_{n}\right) \mid U_{n-1}\right)=E_{n} E\left(f\left(1+\operatorname{Bin}\left(U_{n-1}\right)\right) \mid U_{n-1}\right) \\
& =E_{n} \tilde{f}\left(U_{n-1}\right) .
\end{aligned}
$$

The last integral over \mathcal{T}_{n-1} is not w.r.t. the uniform measure but w.r.t. the measure induced by P_{n}. The relation is: for $T \in \mathcal{T}_{n-1}$ with U_{n-1} unrestricted rows

$$
P_{n}(T)=\frac{2^{U_{n-1}}}{\left|\mathcal{T}_{n}\right|}=\frac{2^{U_{n-1}}}{\left|\mathcal{T}_{n}\right|}\left|\mathcal{T}_{n-1}\right| P_{n-1}(T)
$$

So,

$$
E_{n} f\left(U_{n}\right)=\frac{\left|\mathcal{T}_{n-1}\right|}{\left|\mathcal{T}_{n}\right|} E_{n-1} 2^{U_{n-1}} \tilde{f}\left(U_{n-1}\right)
$$

We know $\frac{\left|\mathcal{T}_{n-1}\right|}{\left|\mathcal{T}_{n}\right|}=\frac{1}{n}$ but we don't want to use it yet.

Illustration

Theorem:For every $n \geq 0\left|\mathcal{T}_{n+1}\right|=(n+1)$!.

Illustration

Theorem:For every $n \geq 0\left|\mathcal{T}_{n+1}\right|=(n+1)$!.
Proof: Count the elements of \mathcal{T}_{n+1} as follows

$$
\left|\mathcal{T}_{n+1}\right|=\sum_{T \in \mathcal{T}_{n}} 2^{U_{n}(T)}
$$

Illustration

Theorem:For every $n \geq 0\left|\mathcal{T}_{n+1}\right|=(n+1)!$.
Proof: Count the elements of \mathcal{T}_{n+1} as follows

$$
\left|\mathcal{T}_{n+1}\right|=\sum_{T \in \mathcal{T}_{n}} 2^{U_{n}(T)}
$$

Then

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \frac{1}{\left|\mathcal{T}_{n}\right|} \sum_{T \in \mathcal{T}_{n}} 2^{U_{n}(T)}=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=\left|\mathcal{T}_{n}\right| \cdot E_{n} E\left(2^{U_{n}} \mid U_{n-1}\right)
$$

Illustration

Theorem:For every $n \geq 0\left|\mathcal{T}_{n+1}\right|=(n+1)$!.
Proof: Count the elements of \mathcal{T}_{n+1} as follows

$$
\left|\mathcal{T}_{n+1}\right|=\sum_{T \in \mathcal{T}_{n}} 2^{U_{n}(T)}
$$

Then

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \frac{1}{\left|\mathcal{T}_{n}\right|} \sum_{T \in \mathcal{T}_{n}} 2^{U_{n}(T)}=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=\left|\mathcal{T}_{n}\right| \cdot E_{n} E\left(2^{U_{n}} \mid U_{n-1}\right)
$$

And

$$
E\left(2^{U_{n}} \mid U_{n-1}\right)=E\left(2^{1+\operatorname{Bin}\left(U_{n-1}\right)} \mid U_{n-1}\right)=2\left(\frac{3}{2}\right)^{U_{n-1}}
$$

Illustration

Theorem: For every $n \geq 0\left|\mathcal{T}_{n+1}\right|=(n+1)$!.
Proof: Count the elements of \mathcal{T}_{n+1} as follows

$$
\left|\mathcal{T}_{n+1}\right|=\sum_{T \in \mathcal{T}_{n}} 2^{U_{n}(T)}
$$

Then

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \frac{1}{\left|\mathcal{T}_{n}\right|} \sum_{T \in \mathcal{T}_{n}} 2^{U_{n}(T)}=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=\left|\mathcal{T}_{n}\right| \cdot E_{n} E\left(2^{U_{n}} \mid U_{n-1}\right)
$$

And

$$
E\left(2^{U_{n}} \mid U_{n-1}\right)=E\left(2^{1+\operatorname{Bin}\left(U_{n-1}\right)} \mid U_{n-1}\right)=2\left(\frac{3}{2}\right)^{U_{n-1}}
$$

Hence, by the change of measure

$$
\begin{aligned}
E_{n} 2^{U_{n}} & =2 E_{n}\left(\frac{3}{2}\right)^{U_{n-1}}=2 \frac{\left|\mathcal{T}_{n-1}\right|}{\left|\mathcal{T}_{n}\right|} E_{n-1} 2^{U_{n-1}}\left(\frac{3}{2}\right)^{U_{n-1}} \\
& =2 \frac{\left|\mathcal{T}_{n-1}\right|}{\left|\mathcal{T}_{n}\right|} E_{n-1} 3^{U_{n-1}}
\end{aligned}
$$

Illustration

So,

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=2\left|\mathcal{T}_{n-1}\right| \cdot E_{n-1} 3^{U_{n-1}} .
$$

Illustration

So,

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=2\left|\mathcal{T}_{n-1}\right| \cdot E_{n-1} 3^{U_{n-1}}
$$

This can be iterated and gives

$$
\left|\mathcal{T}_{n+1}\right|=2 \cdot 3 \cdot \ldots \cdot n \cdot\left|\mathcal{T}_{1}\right| \cdot E_{1}(n+1)^{U_{1}}=(n+1)!
$$

Illustration

So,

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=2\left|\mathcal{T}_{n-1}\right| \cdot E_{n-1} 3^{U_{n-1}}
$$

This can be iterated and gives

$$
\left|\mathcal{T}_{n+1}\right|=2 \cdot 3 \cdot \ldots \cdot n \cdot\left|\mathcal{T}_{1}\right| \cdot E_{1}(n+1)^{U_{1}}=(n+1)!
$$

- Methodology:

Illustration

So,

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=2\left|\mathcal{T}_{n-1}\right| \cdot E_{n-1} 3^{U_{n-1}}
$$

This can be iterated and gives

$$
\left|\mathcal{T}_{n+1}\right|=2 \cdot 3 \cdot \ldots \cdot n \cdot\left|\mathcal{T}_{1}\right| \cdot E_{1}(n+1)^{U_{1}}=(n+1)!
$$

- Methodology:
- condition: $\mathcal{L}\left(U_{n} \mid U_{n-1}\right)=1+\operatorname{Bin}\left(U_{n-1}\right)$

Illustration

So,

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=2\left|\mathcal{T}_{n-1}\right| \cdot E_{n-1} 3^{U_{n-1}}
$$

This can be iterated and gives

$$
\left|\mathcal{T}_{n+1}\right|=2 \cdot 3 \cdot \ldots \cdot n \cdot\left|\mathcal{T}_{1}\right| \cdot E_{1}(n+1)^{U_{1}}=(n+1)!
$$

- Methodology:
- condition: $\mathcal{L}\left(U_{n} \mid U_{n-1}\right)=1+\operatorname{Bin}\left(U_{n-1}\right)$
- compute: expectation of a function of $\operatorname{Bin}\left(U_{n-1}\right)$

Illustration

So,

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=2\left|\mathcal{T}_{n-1}\right| \cdot E_{n-1} 3^{U_{n-1}}
$$

This can be iterated and gives

$$
\left|\mathcal{T}_{n+1}\right|=2 \cdot 3 \cdot \ldots \cdot n \cdot\left|\mathcal{T}_{1}\right| \cdot E_{1}(n+1)^{U_{1}}=(n+1)!
$$

- Methodology:
- condition: $\mathcal{L}\left(U_{n} \mid U_{n-1}\right)=1+\operatorname{Bin}\left(U_{n-1}\right)$
- compute: expectation of a function of $\operatorname{Bin}\left(U_{n-1}\right)$
- change the measure and reduce from n to $n-1$.

Illustration

So,

$$
\left|\mathcal{T}_{n+1}\right|=\left|\mathcal{T}_{n}\right| \cdot E_{n} 2^{U_{n}}=2\left|\mathcal{T}_{n-1}\right| \cdot E_{n-1} 3^{U_{n-1}}
$$

This can be iterated and gives

$$
\left|\mathcal{T}_{n+1}\right|=2 \cdot 3 \cdot \ldots \cdot n \cdot\left|\mathcal{T}_{1}\right| \cdot E_{1}(n+1)^{U_{1}}=(n+1)!
$$

- Methodology:
- condition: $\mathcal{L}\left(U_{n} \mid U_{n-1}\right)=1+\operatorname{Bin}\left(U_{n-1}\right)$
- compute: expectation of a function of $\operatorname{Bin}\left(U_{n-1}\right)$
- change the measure and reduce from n to $n-1$.
- iterate.

Some results

We can get, in a unified and elementary way

Some results

We can get, in a unified and elementary way
Theorem: For a random tableau of length n :

- The number of unrestricted rows is distributed like $\sum_{k=1}^{n} J_{k}$, where J_{k} are independent indicators and $P\left(J_{k}=1\right)=1 / k$.

Some results

We can get, in a unified and elementary way
Theorem: For a random tableau of length n :

- The number of unrestricted rows is distributed like $\sum_{k=1}^{n} J_{k}$, where J_{k} are independent indicators and $P\left(J_{k}=1\right)=1 / k$.
- The number of ones in the first row is distributed like $\sum_{k=2}^{n} J_{k}$.

Some results

We can get, in a unified and elementary way
Theorem: For a random tableau of length n :

- The number of unrestricted rows is distributed like $\sum_{k=1}^{n} J_{k}$, where J_{k} are independent indicators and $P\left(J_{k}=1\right)=1 / k$.
- The number of ones in the first row is distributed like $\sum_{k=2}^{n} J_{k}$.
- The distribution of the number of rows is given by Eulerian numbers $\left\langle{ }^{n}.\right\rangle$, permutations of $[n]$ with ". " rises.

Some results

We can get, in a unified and elementary way
Theorem: For a random tableau of length n :

- The number of unrestricted rows is distributed like $\sum_{k=1}^{n} J_{k}$, where J_{k} are independent indicators and $P\left(J_{k}=1\right)=1 / k$.
- The number of ones in the first row is distributed like $\sum_{k=2}^{n} J_{k}$.
- The distribution of the number of rows is given by Eulerian numbers $\left\langle{ }^{n}.\right\rangle$, permutations of $[n]$ with ". " rises.
- For superfluous one's: $E S_{n}=(n-1)(n-2) / 12$,

$$
\operatorname{var}\left(S_{n}\right)=(n-2)\left(2 n^{2}+11 n-1\right) / 360, \text { and }
$$

$$
\frac{S_{n}-n^{2} / 12}{n^{3} / 180} \Longrightarrow N(0,1)
$$

Some results

We can get, in a unified and elementary way
Theorem: For a random tableau of length n :

- The number of unrestricted rows is distributed like $\sum_{k=1}^{n} J_{k}$, where J_{k} are independent indicators and $P\left(J_{k}=1\right)=1 / k$.
- The number of ones in the first row is distributed like $\sum_{k=2}^{n} J_{k}$.
- The distribution of the number of rows is given by Eulerian numbers $\left\langle\begin{array}{l}n \\ .\end{array}\right\rangle$, permutations of $[n]$ with ". " rises.
- For superfluous one's: $E S_{n}=(n-1)(n-2) / 12$, $\operatorname{var}\left(S_{n}\right)=(n-2)\left(2 n^{2}+11 n-1\right) / 360$, and

$$
\frac{S_{n}-n^{2} / 12}{n^{3} / 180} \Longrightarrow N(0,1)
$$

There is covergence to $N(0,1)$ in the first three cases, too.

Remarks:

- The first three results can also be deduced from bijections between permutation tableaux and permutations, an involution on permutation tableaux, and known properties of permutations.

Remarks:

- The first three results can also be deduced from bijections between permutation tableaux and permutations, an involution on permutation tableaux, and known properties of permutations.
- But, the combinatorics behind those results is not simple and all three required different methods.

Remarks:

- The first three results can also be deduced from bijections between permutation tableaux and permutations, an involution on permutation tableaux, and known properties of permutations.
- But, the combinatorics behind those results is not simple and all three required different methods.
- The results about superfluous ones rely on a (bijectively proved) fact that the number of superfluous ones is equdistributed with the number of occurrences of the generalized pattern 31-2 $\left(i<j\right.$ such that $\left.\sigma_{i-1}>\sigma_{j}>\sigma_{i}\right)$.

Remarks:

- The first three results can also be deduced from bijections between permutation tableaux and permutations, an involution on permutation tableaux, and known properties of permutations.
- But, the combinatorics behind those results is not simple and all three required different methods.
- The results about superfluous ones rely on a (bijectively proved) fact that the number of superfluous ones is equdistributed with the number of occurrences of the generalized pattern 31-2 $\left(i<j\right.$ such that $\left.\sigma_{i-1}>\sigma_{j}>\sigma_{i}\right)$.
- But, there is no proof independent of the bijections between permutation tableaux and permutations. One writes

$$
S=\sum_{2 \leq i<j \leq n} I_{\sigma_{i-1}>\sigma_{j}>\sigma_{i}}
$$

and proves the Central Limit Theorem for dependent random variables (Janson).

Sample easy proof (unrestricted rows)

For the characteristic function of U_{n} we have:

$$
\begin{aligned}
E_{n} e^{i t U_{n}} & =E_{n} E\left(e^{i t U_{n}} \mid U_{n-1}\right)=E_{n} E\left(e^{i t\left(1+\operatorname{Bin}\left(U_{n-1}\right)\right)} \mid U_{n-1}\right) \\
& =e^{i t} E_{n}\left(\frac{e^{i t}+1}{2}\right)^{U_{n-1}}=\frac{e^{i t}}{n} E_{n-1} 2^{U_{n-1}}\left(\frac{e^{i t}+1}{2}\right)^{U_{n-1}} \\
& =\frac{e^{i t}}{n} E_{n-1}\left(e^{i t}+1\right)^{U_{n-1}},
\end{aligned}
$$

where we have used (in that order) conditioning, distributional properties of U_{n}, an obvious fact that for a complex number z, $E z{ }^{\operatorname{Bin}(m)}=\left(\frac{z+1}{2}\right)^{m}$, and the change of measure.

Sample easy proof (unrestricted rows)

For the characteristic function of U_{n} we have:

$$
\begin{aligned}
E_{n} e^{i t U_{n}} & =E_{n} E\left(e^{i t U_{n}} \mid U_{n-1}\right)=E_{n} E\left(e^{i t\left(1+\operatorname{Bin}\left(U_{n-1}\right)\right)} \mid U_{n-1}\right) \\
& =e^{i t} E_{n}\left(\frac{e^{i t}+1}{2}\right)^{U_{n-1}}=\frac{e^{i t}}{n} E_{n-1} 2^{U_{n-1}}\left(\frac{e^{i t}+1}{2}\right)^{U_{n-1}} \\
& =\frac{e^{i t}}{n} E_{n-1}\left(e^{i t}+1\right)^{U_{n-1}},
\end{aligned}
$$

where we have used (in that order) conditioning, distributional properties of U_{n}, an obvious fact that for a complex number z, $E z \operatorname{Bin}(m)=\left(\frac{z+1}{2}\right)^{m}$, and the change of measure.
Applying the same procedure to the last expectation, this time with $z=1+e^{i t}$ we see that

$$
E_{n} e^{i t U_{n}}=\frac{e^{i t}\left(e^{i t}+1\right)}{n(n-1)} E_{n-2}\left(e^{i t}+2\right)^{U_{n-2}} .
$$

Further iterations yield

$$
\begin{aligned}
E_{n} e^{i t U_{n}} & =\left(\prod_{k=0}^{n-2} \frac{e^{i t}+k}{n-k}\right) E_{1}\left(e^{i t}+n-1\right)^{U_{1}}=\prod_{k=0}^{n-1} \frac{e^{i t}+k}{k+1} \\
& =\prod_{k=1}^{n}\left(\frac{e^{i t}}{k}+1-\frac{1}{k}\right)
\end{aligned}
$$

Further iterations yield

$$
\begin{aligned}
E_{n} e^{i t U_{n}} & =\left(\prod_{k=0}^{n-2} \frac{e^{i t}+k}{n-k}\right) E_{1}\left(e^{i t}+n-1\right)^{U_{1}}=\prod_{k=0}^{n-1} \frac{e^{i t}+k}{k+1} \\
& =\prod_{k=1}^{n}\left(\frac{e^{i t}}{k}+1-\frac{1}{k}\right) .
\end{aligned}
$$

The factor in the last term is the characteristic function of a random variable that is 1 with probability $1 / k$ and 0 with probability $1-1 / k$.

Further iterations yield

$$
\begin{aligned}
E_{n} e^{i t U_{n}} & =\left(\prod_{k=0}^{n-2} \frac{e^{i t}+k}{n-k}\right) E_{1}\left(e^{i t}+n-1\right)^{U_{1}}=\prod_{k=0}^{n-1} \frac{e^{i t}+k}{k+1} \\
& =\prod_{k=1}^{n}\left(\frac{e^{i t}}{k}+1-\frac{1}{k}\right) .
\end{aligned}
$$

The factor in the last term is the characteristic function of a random variable that is 1 with probability $1 / k$ and 0 with probability $1-1 / k$.
Since the product corresponds to summing independent random variables, we get that the characteristic function of U_{n} is equal to that of $\sum_{k=1}^{n} J_{k}$.

