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Permutation tableaux

Permutation tableau T : a Ferrers diagram of a partition λ filled
with 0’s and 1’s such that :

1. Each column contains at least one 1.

2. There is no 0 which has a 1 above it in the same column and

a 1 to its left in the same row.

1
0 0 0
0 1 1 1 1
0 0 1 0 1
0 0 1 0 0 1 1



Previous work

◮ introduced by Postnikov (2001)

◮ subsequently studied by Williams (2004), Steingŕımsson and
Williams (2005) (bijections with permutations)

◮ connections to PASEP (a particle model in statistical physics)
Corteel and Williams (2006) and (2007).

◮ additional combinatorial work Corteel and Nadeau (2007)
(more bijections), Burstein (2006) (some properties of
permutation tableaux)



Statistics on T

◮ Length ℓ(T ): no. rows plus no. columns

1
0 0 0
0 1 1 1 1
0 0 1 0 1
0 0 1 0 0 1 1

ℓ(T ) = 12

Number of permutation tableaux of length n = n!. Tn is the set of
all permutation tableaux with ℓ(T ) = n.
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Statistics on T

◮ Length ℓ(T ): no. rows plus no. columns

◮ U(T ): number of unrestricted rows (a row is restricted if it
has a 0 that has 1 above it)

◮ F (T ): number of 1’s in the first row
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Statistics on T

◮ Length ℓ(T ): no. rows plus no. columns

◮ U(T ): number of unrestricted rows (a row is restricted if it
has a 0 that has 1 above it)

◮ F (T ): number of 1’s in the first row

◮ R(T ): number of rows

1
0 0 0
0 1 1 1 1
0 0 1 0 1
0 0 1 0 0 1 1

R(T ) = 5



Statistics on T

◮ Length ℓ(T ): no. rows plus no. columns

◮ U(T ): number of unrestricted rows (a row is restricted if it
has a 0 that has 1 above it)

◮ F (T ): number of 1’s in the first row

◮ R(T ): number of rows

◮ S(T ): number of superfluous 1’s (1’s below the top one in
the column)

1
0 0 0
0 1 1 1 1
0 0 1 0 1
0 0 1 0 0 1 1

S(T ) = 3



From tableaux of length n − 1 to tableaux of length n

Let T ∈ Tn−1 and suppose that it has Un−1 unrestricted rows.
From the SW corner of the tableau we can extend its length by
one by either:

1
0
0 1 1 1 1
0 0 1 0 1
0 0 0 01 1 1

00
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From tableaux of length n − 1 to tableaux of length n

Let T ∈ Tn−1 and suppose that it has Un−1 unrestricted rows.
From the SW corner of the tableau we can extend its length by
one by either:

◮ moving S; this adds a row (unrestricted)

◮ moving W; this adds a column that has to be filled

1
0
0 1 1 1 1
0 0 1 0 1
0 0 0 01 1 1

00



From tableaux of length n − 1 to tableaux of length n

Let T ∈ Tn−1 and suppose that it has Un−1 unrestricted rows.
From the SW corner of the tableau we can extend its length by
one by either:

◮ moving S; this adds a row (unrestricted)

◮ moving W; this adds a column that has to be filled
◮ Put zero in resticted rows

1
0
0 1 1 1 1
0 0 1 0 1
0 0 0 01 1 1

000



From tableaux of length n − 1 to tableaux of length n

Let T ∈ Tn−1 and suppose that it has Un−1 unrestricted rows.
From the SW corner of the tableau we can extend its length by
one by either:

◮ moving S; this adds a row (unrestricted)

◮ moving W; this adds a column that has to be filled
◮ Put zero in resticted rows
◮ Put zero or one in unrestricted rows

1
0
0 1 1 1 1
0 0 1 0 1
0 0 0 01 1 1

000
0

1
0
0
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Distribution of the number of unrestricted rows

So, there are 2Un−1 extensions of T (all equally likely).

Let Un be the number of unrestricted rows in the extension of T .
Elementary calculations based on these earlier observations yield
that for 1 ≤ k ≤ Un−1 + 1

P(Un = k) =
1

2Un−1

(

Un−1

k − 1

)

= P(Bin(Un−1) = k − 1).

This means that,

L(Un|Un−1) = 1 + Bin(Un−1).
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Change of measure

Let Pn be the uniform probability on Tn and En integration w.r.t.
Pn. For a function f : R → R we have

Enf (Un) = EnE (f (Un)|Un−1) = EnE (f (1 + Bin(Un−1))|Un−1)

= En f̃ (Un−1).

The last integral over Tn−1 is not w.r.t. the uniform measure but
w.r.t. the measure induced by Pn. The relation is: for T ∈ Tn−1

with Un−1 unrestricted rows

Pn(T ) =
2Un−1

|Tn|
=

2Un−1

|Tn|
|Tn−1|Pn−1(T ).

So,

Enf (Un) =
|Tn−1|

|Tn|
En−12

Un−1 f̃ (Un−1).

We know |Tn−1|
|Tn|

= 1
n

but we don’t want to use it yet.
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Illustration
Theorem:For every n ≥ 0 |Tn+1| = (n + 1)!.
Proof: Count the elements of Tn+1 as follows

|Tn+1| =
∑

T∈Tn

2Un(T ).

Then

|Tn+1| = |Tn|
1

|Tn|

∑

T∈Tn

2Un(T ) = |Tn| ·En2
Un = |Tn| ·EnE (2Un |Un−1).

And

E (2Un |Un−1) = E (21+Bin(Un−1)|Un−1) = 2

(

3

2

)Un−1

,

Hence, by the change of measure

En2
Un = 2En

(

3

2

)Un−1

= 2
|Tn−1|

|Tn|
En−12

Un−1

(

3

2

)Un−1

= 2
|Tn−1|

|Tn|
En−13

Un−1 .
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Illustration

So,
|Tn+1| = |Tn| · En2

Un = 2|Tn−1| · En−13
Un−1 .

This can be iterated and gives

|Tn+1| = 2 · 3 · . . . · n · |T1| · E1(n + 1)U1 = (n + 1)!

◮ Methodology:
◮ condition: L(Un|Un−1) = 1 + Bin(Un−1)
◮ compute: expectation of a function of Bin(Un−1)
◮ change the measure and reduce from n to n − 1.
◮ iterate.
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Some results

We can get, in a unified and elementary way
Theorem: For a random tableau of length n:

◮ The number of unrestricted rows is distributed like
∑n

k=1 Jk ,
where Jk are independent indicators and P(Jk = 1) = 1/k .

◮ The number of ones in the first row is distributed like
∑n

k=2 Jk .

◮ The distribution of the number of rows is given by Eulerian
numbers

〈

n
·

〉

, permutations of [n] with “ · ” rises.

◮ For superfluous one’s: ESn = (n − 1)(n − 2)/12,
var(Sn) = (n − 2)(2n2 + 11n − 1)/360, and

Sn − n2/12

n3/180
=⇒ N(0, 1)

There is covergence to N(0, 1) in the first three cases, too.
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Remarks:

◮ The first three results can also be deduced from bijections
between permutation tableaux and permutations, an
involution on permutation tableaux, and known properties of
permutations.

◮ But, the combinatorics behind those results is not simple and
all three required different methods.

◮ The results about superfluous ones rely on a (bijectively
proved) fact that the number of superfluous ones is
equdistributed with the number of occurrences of the
generalized pattern 31-2 (i < j such that σi−1 > σj > σi ).

◮ But, there is no proof independent of the bijections between
permutation tableaux and permutations. One writes

S =
∑

2≤i<j≤n

Iσi−1>σj>σi

and proves the Central Limit Theorem for dependent random
variables (Janson).



Sample easy proof (unrestricted rows)

For the characteristic function of Un we have:

Ene
itUn = EnE

(

e itUn |Un−1

)

= EnE
(

e it(1+Bin(Un−1))|Un−1

)

= e itEn

(

e it + 1

2

)Un−1

=
e it

n
En−12

Un−1

(

e it + 1

2

)Un−1

=
e it

n
En−1

(

e it + 1
)Un−1

,

where we have used (in that order) conditioning, distributional
properties of Un, an obvious fact that for a complex number z ,

EzBin(m) =
(

z+1
2

)m
, and the change of measure.



Sample easy proof (unrestricted rows)

For the characteristic function of Un we have:

Ene
itUn = EnE

(

e itUn |Un−1

)

= EnE
(

e it(1+Bin(Un−1))|Un−1

)

= e itEn

(

e it + 1

2

)Un−1

=
e it

n
En−12

Un−1

(

e it + 1

2

)Un−1

=
e it

n
En−1

(

e it + 1
)Un−1

,

where we have used (in that order) conditioning, distributional
properties of Un, an obvious fact that for a complex number z ,

EzBin(m) =
(

z+1
2

)m
, and the change of measure.

Applying the same procedure to the last expectation, this time
with z = 1 + e it we see that

Ene
itUn =

e it(e it + 1)

n(n − 1)
En−2

(

e it + 2
)Un−2

.



Further iterations yield

Ene
itUn =

(

n−2
∏

k=0

e it + k

n − k

)

E1(e
it + n − 1)U1 =

n−1
∏

k=0

e it + k

k + 1

=
n

∏

k=1

(
e it

k
+ 1 −

1

k
).
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)

E1(e
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=
n
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(
e it

k
+ 1 −

1

k
).

The factor in the last term is the characteristic function of a
random variable that is 1 with probability 1/k and 0 with
probability 1 − 1/k .



Further iterations yield

Ene
itUn =

(

n−2
∏

k=0

e it + k

n − k

)

E1(e
it + n − 1)U1 =

n−1
∏

k=0

e it + k

k + 1

=
n

∏

k=1

(
e it

k
+ 1 −

1

k
).

The factor in the last term is the characteristic function of a
random variable that is 1 with probability 1/k and 0 with
probability 1 − 1/k .
Since the product corresponds to summing independent random
variables, we get that the characteristic function of Un is equal to
that of

∑n
k=1 Jk .


