Some Advances in

Broadcast Encryption and Traitor Tracing

Duong Hieu Phan

(Séminaire LIPN - 18 Novembre 2014)

Multi-receiver Encryption

From "One-to-one" to "one-to-many" communications

Provide all users with the same key \rightarrow problems:
(1) Impossibility to know the source of the key leakage (traitor)
(2) Impossibility to revoke a user, except by resetting the parameters

Broadcast Encryption [B91,FN94] \& Traitor Tracing [CFN94]

Desired Properties

- Tracing traitors from a pirate decoder

White-box tracing
Black-box confirmation, black-box tracing
(2) Revoking non-legitimate users

Broadcasting \& Tracing

Miserere Mei Deus

- Composed by G.Allegri (around 1630) for use in the Sistine Chapel on Wednesday and Friday
- Kept secret by the Vatican

Broadcasting \& Tracing

- The piece was revealed in 1771 (Mozart

Broadcasting \& Tracing

- The piece was revealed in 1771 (Mozart
- Only Mozart can do it!
- Same idea in traitor tracing: identify who is capable of producing the pirate decoder

Outline

(1) Randomized Exclusive Set System
(2) Lattice-based Encryption

(3) Extended Models

Outline

(1) Randomized Exclusive Set System

(2) Lattice-based Encryption

(3) Extended Models

Exclusive Set System (ESS)

[ALO98]

\mathcal{F} is an (N, ℓ, r, s)-ESS if:

- \mathcal{F} : a family of ℓ subsets of $[N]$
- For any $R \subseteq[N]$ of size at most r, there exists $S_{1}, \ldots S_{s} \in \mathcal{F}$ s.t.

$$
[N]-R=\bigcup_{i=1}^{s} s_{i}
$$

Exclusive Set System (ESS)

[ALO98]

\mathcal{F} is an (N, ℓ, r, s)-ESS if:

- \mathcal{F} : a family of ℓ subsets of $[N]$
- For any $R \subseteq[N]$ of size at most r, there exists $S_{1}, \ldots S_{s} \in \mathcal{F}$ s.t.

$$
[N]-R=\bigcup_{i=1}^{s} s_{i}
$$

From ESS to Revoke System

- Each $S_{i} \in \mathcal{F}$ is associated to a key K_{i}
- User u receives all keys K_{i} that $u \in S_{i}$
- To revoke a set $R \subseteq[N]$ of size at most r :

Find $S_{1}, \ldots S_{s} \in \mathcal{F}$ s.t. $[N]-R=\bigcup_{i=1}^{s} S_{i}$
Encrypt the message with each key K_{i}

NNL Schemes viewed as Exclusive Set Systems

 [NNL01]

- $\mathcal{F}=\left\{S_{1}, S_{2}, \ldots, S_{15}\right\}$
- S_{i} contains all users (i.e. leaves) in the subtree of node i (e.g. $\left.S_{2}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right)$
- Revoked set $R=\left\{u_{4}, u_{5}, u_{6}\right\}$
- Encrypt with keys at S_{4}, S_{7}, S_{10}
- Complete-subtree is a $(N, 2 N-1, r, r \log (N / r))$-ESS

Exclusive Set System under Code's View

		u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}
	S_{1}	1	1	1	1	1	1	1	1
	S_{2}	1	1	1	1				
	S_{3}					1	1	1	1
	S_{4}	1	1						
	S_{5}			1	1				
	S_{6}					1	1		
	S_{7}							1	1
	S_{8}	1						1	
$u_{1} u_{2}$	S_{9}		1						
	S_{10}			1					
	S_{11}				1				
	S_{12}					1			
	S_{13}						1		
	S_{14}							1	
	S_{15}								1

NNL Schemes

	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}
S_{1}	1	1	1	1	1	1	1	1
S_{2}	1	1	1	1				
S_{3}					1	1	1	1
S_{4}	1	1						
S_{5}			1	1				
S_{6}					1	1	1	1
S_{7}							1	
S_{8}	1	1						
S_{9}		1	1					
S_{10}				1				
S_{11}					1	1		
S_{12}							1	
S_{13}								1
S_{14}								

Tracing Levels for NNL schemes

- Relaxed level of black-box tracing
- Black-box tracing for "naive" decoders

NNL Schemes

	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}
S_{1}	1	1	1	1	1	1	1	1
S_{2}	1	1	1	1				
S_{3}					1	1	1	1
S_{4}	1	1						
S_{5}			1	1				
S_{6}					1	1		
S_{7}							1	1
S_{8}	1	1						
S_{9}		1	1					
S_{10}				1				
S_{11}					1	1		
S_{12}							1	
S_{13}								1
S_{15}								

Weakness in Black-box Tracing

- Highly structured matrix
- Pirate could thus detect "dangerous" queries and refuse to decrypt

NNL Schemes

	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}
S_{1}	1	1	1	1	1	1	1	1
S_{2}	1	1	1	1				
S_{3}					1	1	1	1
S_{4}	1	1						
S_{5}			1	1				
S_{6}					1	1	1	1
S_{7}	1						1	
S_{8}	1	1						
S_{9}			1					
S_{11}				1				
S_{12}					1	1		
S_{13}							1	
S_{14}								1
S_{15}								

In General, Previous Results for ESS

- Black-box tracing for "naive" decoders (decrypt all ciphertexts without any strategy)
- c-traceability: a white-box tracing for "imperfect" decoders

NNL Schemes

	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}
S_{1}	1	1	1	1	1	1	1	1
S_{2}	1	1	1	1				
S_{3}					1	1	1	1
S_{4}	1	1						
S_{5}			1	1				
S_{6}					1	1		
S_{7}							1	1
S_{8}	1	1						
S_{9}		1	1					
S_{10}				1				
S_{11}					1			
S_{12}						1	1	
S_{13}								1
S_{15}								

Our Objectives

Black-box tracing in ESS for "smart" decoders (efficiency comparable to NNL schemes)

Randomized ESS

Recall

- 1 row $\rightarrow 1$ subset $\rightarrow 1$ key
- 1 column $\rightarrow 1$ user \rightarrow user j has key K_{i} iff $M_{i j}=1$

Randomized ESS

Recall

- 1 row $\rightarrow 1$ subset $\rightarrow 1$ key
- 1 column $\rightarrow 1$ user \rightarrow user j has key K_{i} iff $M_{i j}=1$

Randomized ESS

Broadcasted ciphertext

Property

- Set $n=r \log _{2}\left(N^{2} e / r\right), b=4 r$
- With overwhelming probability $\rightarrow\left(N, 8 r^{2} \log N, r, 8 r \log N\right)$-ESS. (complete-subtree is $(N, 2 N-1, r, r(\log (N / r))$-ESS)

Tracing for ESS

White-box

Tracer can open the box \rightarrow get the pirate word w which is the union of traitors' codewords

White-box Tracing for ESS

White-box Tracing

- (r, s, N, I)-ESS is also a r-disjunct matrix, i.e., no column is contained in the union of any r other columns
- r-disjunct matrix: from the union of at most r columns, one can find back the r columns (the Group Testing technique)
$\leftrightarrow \quad$ Given the pirate word w, trace back the traitors

White-box Tracing for ESS

White-box Tracing

- (r, s, N, I)-ESS is also a r-disjunct matrix, i.e., no column is contained in the union of any r other columns
- r-disjunct matrix: from the union of at most r columns, one can find back the r columns (the Group Testing technique)
$\leftrightarrow \quad$ Given the pirate word w, trace back the traitors

Challenge for Black-box Tracing

How to find the pirate word w ?

Black-box Tracing for ESS

Shadow Group Testing Technique[NPP, Algorithmica13]

Black-box access to pirate decoder
Asking random queries of the same form as broadcasted ciphertexts

Black-box Tracing for ESS

Shadow Group Testing Technique[NPP, Algorithmica13]

Black-box Access to Pirate Decoder
Asking random queries of the same form as broadcasted ciphertexts

Black-box Tracing for ESS

Shadow Group Testing Technique[NPP, Algorithmica13]

- Test the decryptability of the piarte decoder on the queries \rightarrow Get "Feedback" vector = union of the columns at position 1 in the pirate word w

Black-box Tracing for ESS

Shadow Group Testing Technique[NPP, Algorithmica13]

- We show that the matrix of queries is also an ESS \rightarrow From "Feedback" vector, get the pirate word w
- Large number of queries
\rightarrow the tracing is efficient when the number of traitors is $O(\log N)$

Black-box Tracing for ESS

Shadow Group Testing Technique[NPP, Algorithmica13]

In brief:

- We get $\left(N, 8 r^{2} \log N, r, 8 r \log N\right)$-ESS
- Ciphertext: constant factor w.r.t the complete-subtree and a $\log N$ factor w.r.t the subset-difference scheme
- The first black-box tracing ESS against non-naive pirates

Combinatorial Approach: Other Contributions

Constant-size Ciphertext [BP08]:

- Based on Robust Collusion Secure Code [S06,N09]
- Drawback: large secret key size $\left(O\left(t^{2} \log ^{2}(N / \epsilon)\right)\right)$

Combinatorial Approach: Other Contributions

Hiding a mark at position 5 in a sequence of 7 blocks.

Message Tracing with Optimal Transmission Rate [PPS12]

- The rate between ciphertext and plaintext is ≈ 1 (constant size is achieved in [KY01)]
- It requires us to construct an efficient construction of 2-user Anonymous BE
- Large size plaintext \rightarrow suitable for broadcasting messages

Outline

(1) Randomized Exclusive Set System

(2) Lattice-based Encryption

(3) Extended Models

From Encryption to Multi-receiver Encryption

ElGamal Encryption Scheme

- $G=<g>$ of order q
- Secret key: $\alpha \leftarrow \mathbb{Z}_{q}$
- Public key: $y=g^{\alpha}$
- Ciphertext: $\left(g^{r}, y^{r} m\right)$, where $r \leftarrow \mathbb{Z}_{q}$
- Decryption: from α, compute $y^{r}=\left(g^{r}\right)^{\alpha}$ and recover m

From Encryption to Multi-receiver Encryption

ElGamal Encryption Scheme

- $G=<g>$ of order q
- Secret key: $\alpha \leftarrow \mathbb{Z}_{q}$
- Public key: $y=g^{\alpha}$
- Ciphertext: $\left(g^{r}, y^{r} m\right)$, where $r \leftarrow \mathbb{Z}_{q}$
- Decryption: from α, compute $y^{r}=\left(g^{r}\right)^{\alpha}$ and recover m

Boneh-Franklin Multi-receiver Encryption

- Main problem: How to extend the same y to support many users?

From Encryption to Multi-receiver Encryption

ElGamal Encryption Scheme

- $G=<g>$ of order q
- Secret key: $\alpha \leftarrow \mathbb{Z}_{q}$
- Public key: $y=g^{\alpha}$
- Ciphertext: $\left(g^{r}, y^{r} m\right)$, where $r \leftarrow \mathbb{Z}_{q}$
- Decryption: from α, compute $y^{r}=\left(g^{r}\right)^{\alpha}$ and recover m

Boneh-Franklin Multi-receiver Encryption

- Main problem: How to extend the same y to support many users?
- Each user receive a representation $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of y in a public basis $\left(h_{1}, \ldots, h_{k}\right)$: $\left(y=h_{1}^{\alpha_{1}} \ldots h_{k}^{\alpha_{k}}\right)$
- Each user can compute y^{r} from $\left(h_{1}^{r}, \ldots, h_{k}^{r}\right)$

From Encryption to Multi-receiver Encryption

ElGamal Encryption Scheme

- $G=<g>$ of order q
- Secret key: $\alpha \leftarrow \mathbb{Z}_{q}$
- Public key: $y=g^{\alpha}$
- Ciphertext: $\left(g^{r}, y^{r} m\right)$, where $r \leftarrow \mathbb{Z}_{q}$
- Decryption: from α, compute $y^{r}=\left(g^{r}\right)^{\alpha}$ and recover m

Boneh-Franklin Multi-receiver Encryption

- Main problem: How to extend the same y to support many users?
- Each user receive a representation $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of y in a public basis $\left(h_{1}, \ldots, h_{k}\right)$: $\left(y=h_{1}^{\alpha_{1}} \ldots h_{k}^{\alpha_{k}}\right)$
- Each user can compute y^{r} from $\left(h_{1}^{r}, \ldots, h_{k}^{r}\right)$
- Public key: $\left(y, h_{1}, \ldots, h_{k}\right)$
- Ciphertext: $\left(h_{1}^{r}, \ldots, h_{k}^{r}, y^{r} m\right)$

Boneh-Franklin Scheme

Boneh-Franklin Traitor Tracing

- Transformation from Elgamal Encryption to Traitor Tracing: linear loss in the number of traitors
- Achieve white-box tracing and Black-box confirmation

Boneh-Franklin Scheme

Boneh-Franklin Traitor Tracing

- Transformation from Elgamal Encryption to Traitor Tracing: linear loss in the number of traitors
- Achieve white-box tracing and Black-box confirmation

Our Work

- Study the problem in lattice-based setting
- Get a more efficient transformation:

LWE-based Encryption \approx LWE traitor tracing

- Achieve Black-box confirmation as in Boneh-Franklin scheme

The SIS and LWE problems

- Params: $m, n, q \geq 0, A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$

SIS

Find small $\mathbf{x} \in \mathbb{Z}^{m} \backslash \mathbf{0}$
s.t. $\mathbf{x}^{t} A=\mathbf{0}[q]$

The SIS and LWE problems

- Params: $m, n, q \geq 0, A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$

The SIS and LWE problems

- Params: $m, n, q \geq 0, A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$

SIS

Find small $\mathbf{x} \in \mathbb{Z}^{m} \backslash \mathbf{0}$ s.t. $\mathbf{x}^{t} A=\mathbf{0}[q]$

LWE

Dist. $A \mathbf{s}+\mathbf{e}$ and $U\left(\mathbb{Z}_{q}^{m}\right)$, for $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$, noise $\mathbf{e} \in$ \mathbb{Z}^{m}

Applications

 Hash function [Ajt'96], signature [GPV'08], encryption [Reg'05], ...
SIS $\rightarrow k$-SIS and LWE $\rightarrow k$-LWE

- Params: $m, n, q \geq 0, A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$
- k small hints $\left(\mathbf{x}_{i}\right)_{i \leq k}$ s.t. $\mathbf{x}_{i}^{t} A=\mathbf{0}[q]$
k-SIS [BoFr'11]
Find small $\mathbf{x} \in \mathbb{Z}^{m}$ s.t.
- $\mathbf{x}^{t} A=\mathbf{0}[q]$
- $\mathbf{x} \notin \operatorname{Span}\left(\mathbf{x}_{i}\right)$

SIS $\rightarrow k$-SIS and LWE $\rightarrow k$-LWE

- Params: $m, n, q \geq 0, A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$
- k small hints $\left(\mathbf{x}_{i}\right)_{i \leq k}$ s.t. $\mathbf{x}_{i}^{t} A=\mathbf{0}[q]$

k-SIS [BoFr'11]

Find small $\mathbf{x} \in \mathbb{Z}^{m}$ s.t.

- $\mathbf{x}^{t} A=\mathbf{0}[q]$
- $\mathbf{x} \notin \operatorname{Span}\left(\mathbf{x}_{i}\right)$

k-LWE
Distinguish As $+\mathbf{e}$ and $U\left(\operatorname{Span}\left(\mathbf{x}_{i}\right)^{\perp}\right)+\mathbf{e}^{\prime}$ for $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and small noises $\mathbf{e}, \mathbf{e}^{\prime} \in \mathbb{Z}^{m}$

SIS $\rightarrow k$-SIS and LWE $\rightarrow k$-LWE

- Params: $m, n, q \geq 0, A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$
- k small hints $\left(\mathbf{x}_{i}\right)_{i \leq k}$ s.t. $\mathbf{x}_{i}^{t} A=\mathbf{0}[q]$
k-SIS [BoFr'11]
Find small $\mathbf{x} \in \mathbb{Z}^{m}$ s.t.
- $\mathbf{x}^{t} A=\mathbf{0}[q]$
- $\mathbf{x} \notin \operatorname{Span}\left(\mathbf{x}_{i}\right)$
k-LWE
Distinguish As $+\mathbf{e}$ and $U\left(\operatorname{Span}\left(\mathbf{x}_{i}\right)^{\perp}\right)+\mathbf{e}^{\prime}$ for $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and small noises $\mathbf{e}, \mathbf{e}^{\prime} \in \mathbb{Z}^{m}$

Original application of k-SIS: Homomorphic signatures [BoFr'11]

Contributions [LPSS, Crypto14]

New Variant of LWE

- Introduction of k-LWE
- A reduction from LWE to k-LWE (and from SIS to k-SIS) with polynomial loss in k
(Boneh-Freeman11 from SIS to k-SIS: exponential loss in k. They left the open question to improve the reduction)

Application

- Application to traitor tracing encryption, à la Boneh-Franklin
- A modification that enjoys public traceability

A Multi-receiver Dual-Regev Encryption (based on [GPv'08])

Dual-Regev Encryption

- Public key: $A \in \mathbb{Z}_{q}^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_{q}^{n}$
- Secret key: x gaussian s.t. $\mathbf{x}^{t} A=\mathbf{u}^{t}[q]$
- Ciphertext: $\left(\mathbf{c}_{1}, c_{2}\right)$
- Decryption: $c_{2}-\mathbf{x}^{t} \mathbf{c}_{1}$

A Multi-receiver Dual-Regev Encryption (based on [GPvo8))

Multi-receiver Encryption

- Public key: $A \in \mathbb{Z}_{q}^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_{q}^{n}$
- Secret keys: \mathbf{x}_{i} gaussian s.t. $\mathbf{x}_{i}^{t} A=\mathbf{u}^{t}[q]$
- Ciphertext: $\left(\mathbf{c}_{1}, c_{2}\right)$
- Decryption: $c_{2}-\mathbf{x}^{t} \mathbf{c}_{1}$

Using trapdoor T (full rank small $T \in \mathbb{Z}^{m \times m}$ s.t. $T \cdot A=0[q]$, one can sample many secret keys \mathbf{x}_{i} [GPV08]

k-LWE-based Traitor Tracing, à la Boneh-Frranklin

Pirate

- Up to k users may collude
\Rightarrow A coalition is given up to k LWE hints to create a pirate decryption box

k-LWE-based Traitor Tracing, à la Boneh-Frranklin

Pirate

- Up to k users may collude
\Rightarrow A coalition is given up to k LWE hints to create a pirate decryption box

Tracer

- Assume we suspect the coalition to be among users 1 to k.
- Test the behaviour of the box on the fake ciphertexts:

$$
U\left(\left(\operatorname{Span}_{i \leq k}\left(\mathbf{x}_{i}^{t} \mid 1\right)\right)^{\perp}\right) .
$$

- The coalition owns only those \mathbf{x}_{j} ' $s \rightarrow$ the fake and normal ciphertexts are indistinguishable, under k-LWE

How to Prove The Hardness of k-SIS and k-LWE

and k hints for A^{*}

Reducing LWE to k-LWE

- Input: a SIS / LWE instance corresponding to A
- From A, construct A^{*} along with k hints for A^{*}
- Give A^{*} and the k hints to a k-SIS / k-LWE solver
- Based on a k-SIS or k-LWE solution for A^{*}, derive a SIS / LWE solution for A

Hardness of k-LWE: The [BF11] Approach

Main Idea

(1) Sample k hints $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ that form a $k \times(m+k)$ matrix $X^{*}=(H \mid G)$ (using the \mathbf{x}_{i} 's as rows)
(2) Append to A an extra $k \times n$ matrix $A^{\prime}=-G^{-1} H \cdot A$ [q]
(3) Append to $\mathbf{b}=A \mathbf{s}+\mathbf{e}$ an extra $\mathbf{b}^{\prime}=-\mathbf{G}^{-1} H \cdot \mathbf{b}$ [q]

Hardness of k-LWE: The [BF11] Approach

Obstacle

- We have $\mathbf{b}^{\prime}=A^{\prime} \mathbf{s}+\mathbf{e}^{\prime}$ with $\mathbf{e}^{\prime}=-G^{-1} H \cdot \mathbf{e}[q]$
- \mathbf{e}^{\prime} is not small!
- To fix it, multiply everything by $\operatorname{det}(G)$
- Blow-up: $\left\|\mathbf{e}^{\prime}\right\| \approx k!\|\mathbf{e}\|$, which is $\ll q$ for tiny k

Our Reduction: Polynomial Loss in k

Main Steps

(1) Generate a small transformation matrix T such that it is easy to generate gaussian X^{*} (k hints matrix) : $X^{*} \times T=0$
(2) $T(A \mathbf{s}+\mathbf{e})=(T A) \mathbf{s}+(T \mathbf{e})=A^{*}+\mathbf{e}^{*}$
(0) Avoid "exponential noise blowup", $T \mathbf{e}$ is of polynomial size in \mathbf{e}

Transformation Matrix T and Hints X^{*}

(1) Main tool: A small U such that the first k rows of U^{-1} are small Gaussian (relying on LHL)
(2) Sampling a Gaussian matrix V
(3) Define X^{*} as the first k rows of $V \| U^{-1}$
(0) $\operatorname{LWE}(A, A \mathbf{s}+\mathbf{e}) \rightarrow k-\operatorname{LWE}\left(T A, T(A \mathbf{s}+\mathbf{e})+\mathbf{e}^{\prime}\right)$

Public Traceability

Public Traceability [CPP05]

- Classical tracing: relies on the secret information.
\Rightarrow Complete trust in the tracing authority, huge tracing cost.
- Public tracing: anyone can trace using the public key \Rightarrow Delegation of the tracing procedure

Schemes with Public Traceability

- IPP code-based scheme [PST06]
- Pairings based scheme [BW06]: full collusion but with large ciphertext size $O(\sqrt{N})$

Public Traceability

$\operatorname{Span}\left(\mathrm{x}_{\mathrm{i}}\right)^{\perp}$

$\operatorname{Im}\left(G_{i}\right)$

Public Sampling

(1) Each \mathbf{x}_{i} is associated to a public matrix G_{i}
(2) Hard to distinguish $U\left(\operatorname{Span}\left(\mathbf{x}_{i}^{+}\right)^{\perp}\right)+$ noise and $\operatorname{Im}\left(G_{k}\right)+$ noise
(3) Publicly sample a signal in $U\left(\operatorname{Span}\left(\mathbf{x}_{i}^{+}\right)^{\perp}\right)+$ noise from G_{i}

Public Traceability

$\operatorname{Span}\left(\mathrm{x}_{\mathrm{i}}\right)^{\perp}$

$\operatorname{Im}\left(G_{i}\right)$

Public Tracing

(1) Public matrix G_{i}
(2) It is hard to distinguish $U\left(\operatorname{Span}_{i=1}^{j}\left(\mathbf{x}_{i}\right)^{\perp}\right)+$ noise and $\operatorname{Im}\left(G_{1}\right) \cap \ldots \cap \operatorname{Im}\left(G_{j}\right)+$ noise, for any $1 \leq j \leq k$
(3) We can thus sample tracing signals from G_{1}, \ldots, G_{k}

Algebraic Approach: Other Contributions

Pairings based Constructions

- BGW scheme: efficient pairing based broadcast encryption \Rightarrow Extension: inclusive-exclusive mode and adaptive security [PPSS12]
- Combination of algebraic and combinatorial methods that relies on parings and collusion secure codes.

```
Identity-based Traitor Tracing [ADMNPS07]
```

Identity-based Trace \& Revoke [PT11]

Outline

(1) Randomized Exclusive Set System

(2) Lattice-based Encryption

(3) Extended Models

Classical Collusions

Facts

- Each user contributes its whole key
- Traitors should trust each other

Pirates 2.0: Traitors Collaborating in Public [BP, Eurocrypt09]

Principle

- Each traitor contributes a partial or derived information
- "Imperfect" Pirate Decoder but still very efficient (inspired from Pirate Evolution Attack [KP07])
- High anonymity of traitors

Practical Impact of Pirates 2.0

Collusion Size

- Traitors do not need to trust anyone
- Guaranteed anonymity is a big incentive to contribute secrets
- Even partial information extracted from tamper resistant or obfuscated decoders can be useful
- Traitors can contribute information adaptatively

Practical Impact of Pirates 2.0

Impact for Subset Difference Scheme

- Considering the classical setting which covers 2^{32} users
- Then, 10000 traitors (1000 in adaptative attacks) can decrypt all ciphertexts with headers of size less than 128 Mb
- High anonymity level: each traitor is covered by 4 millions users

Extended Models: Other Contributions

Multi-channel Broadcast Encryption [PPT13]

- Consider simultanous broadcast encryption
- New scheme with constant ciphertext size
- Compress session keys of all channels into one header \rightarrow high-time complexity to decompress

Extended Models: Other Contributions

Multi-channel Broadcast Encryption [PPT13]

- Consider simultanous broadcast encryption
- New scheme with constant ciphertext size
- Compress session keys of all channels into one header \rightarrow high-time complexity to decompress

Decentralized Broadcast Encryption[PPS12]

- No need for a trusted authority
- Users agree on system parameters
- New tree-based scheme based on Diffie-Hellman perfect entropy extractor

Discussion

Summary

- Tools \& constructions for combinatorial and algebraic schemes
- Extended models of attacks and generailizations for BE/TT

Combinatorial Methods

- Better support for black-box tracing
- Larger key sizes
- Partial-leakage attacks

Algebraic Method

- Generally more efficient
- Full collusion solutions still not satisfactory

Open Questions

- Fully Collusion Resistance
- Either the schemes are still quite inefficient
- Or the security is still not clear (e.g., composite order multi-linear maps/iO)
- Additional Features
- Efficient decentralised BE in a constant number of rounds
- Efficient anonymous BE
- CCA lattice-based trace\&revoke schemes
- Efficient construction from more general primitives?
- Attribute-based encryption
- Functional encryption
- Tracing in electronic voting

