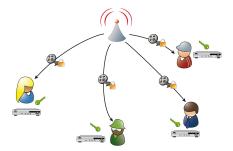
Some Advances in

Broadcast Encryption and Traitor Tracing

Duong Hieu Phan (Séminaire LIPN - 18 Novembre 2014)

• • • • • • • • • •

Duong Hieu Phan

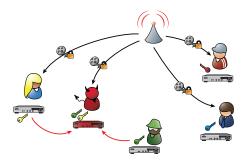

Some Advances in BE&TT

Séminaire LIPN 1 / 42

The Sec. 74

Multi-receiver Encryption

From "One-to-one" to 'one-to-many" communications



Provide all users with the same key \rightarrow problems:

- Impossibility to know the source of the key leakage (traitor)
- Impossibility to revoke a user, except by resetting the parameters

12 N A 12

Broadcast Encryption [B91,FN94] & Traitor Tracing [CFN94]

Desired Properties

Tracing traitors from a pirate decoder

- White-box tracing
- Black-box confirmation, black-box tracing

Pevoking non-legitimate users

Broadcasting & Tracing

Miserere Mei Deus

- Composed by G.Allegri (around 1630) for use in the Sistine Chapel on Wednesday and Friday
- Kept secret by the Vatican

Duong Hieu Phan

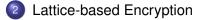
Some Advances in BE&TT

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Broadcasting & Tracing

• The piece was revealed in 1771 \rightarrow Mozart

Broadcasting & Tracing


- The piece was revealed in 1771 \rightarrow Mozart
- Only Mozart can do it!
- Same idea in traitor tracing: identify who is capable of producing the pirate decoder

< 6 b

Outline

Randomized Exclusive Set System

3 > 4 3

Outline

Randomized Exclusive Set System

2 Lattice-based Encryption

Exclusive Set System (ESS) [ALO98]

 \mathcal{F} is an (N, ℓ, r, s) -ESS if:

- \mathcal{F} : a family of ℓ subsets of [N]
- For any $R \subseteq [N]$ of size at most r, there exists $S_1, \ldots S_s \in \mathcal{F}$ s.t.

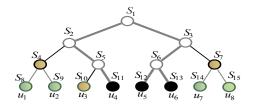
$$[N] - R = \bigcup_{i=1}^{s} S_i$$

Exclusive Set System (ESS) [ALO98]

 \mathcal{F} is an (N, ℓ, r, s) -ESS if:

- *F*: a family of *ℓ* subsets of [*N*]
- For any $R \subseteq [N]$ of size at most r, there exists $S_1, \ldots S_s \in \mathcal{F}$ s.t.

$$[N] - R = \bigcup_{i=1}^{s} S_i$$

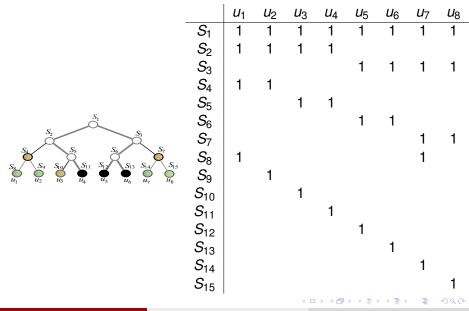

From ESS to Revoke System

- Each $S_i \in \mathcal{F}$ is associated to a key K_i
- User u receives all keys K_i that $u \in S_i$
- To revoke a set $R \subseteq [N]$ of size at most r:
 - Find $S_1, \ldots S_s \in \mathcal{F}$ s.t. $[N] R = \bigcup_{i=1}^s S_i$
 - Encrypt the message with each key K_i

3

イロト 不得 トイヨト イヨト

NNL Schemes viewed as Exclusive Set Systems [NNL01]



•
$$\mathcal{F} = \{S_1, S_2, \dots, S_{15}\}$$

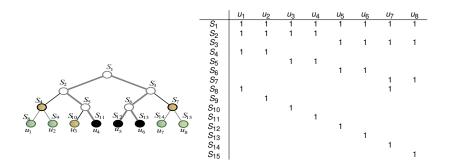

- S_i contains all users (*i.e.* leaves) in the subtree of node *i* (e.g.
 S₂ = {u₁, u₂, u₃, u₄})
- Revoked set $R = \{u_4, u_5, u_6\}$
- Encrypt with keys at S₄, S₇, S₁₀
- Complete-subtree is a (N, 2N 1, r, r log(N/r))-ESS

< ロ > < 同 > < 回 > < 回 >

Exclusive Set System under Code's View

Duong Hieu Phan

Tracing Levels for NNL schemes


- Relaxed level of black-box tracing
- Black-box tracing for "naive" decoders

Duong Hieu Phan

Some Advances in BE&TT

Séminaire LIPN 11 / 42

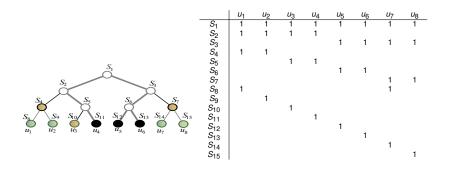
< 6 b

Weakness in Black-box Tracing


- Highly structured matrix
- Pirate could thus detect "dangerous" queries and refuse to decrypt

Duong Hieu Phan

Some Advances in BE&TT

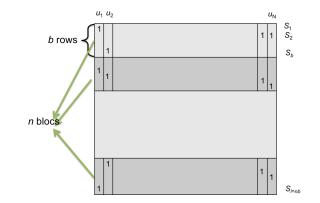

Séminaire LIPN 11 / 42

< A

In General, Previous Results for ESS

- Black-box tracing for "naive" decoders (decrypt all ciphertexts without any strategy)
- *c*-traceability: a white-box tracing for "imperfect" decoders

Our Objectives

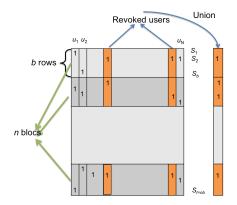

Black-box tracing in ESS for "smart" decoders (efficiency comparable to NNL schemes)

Duong Hieu Phan

Some Advances in BE&TT

Séminaire LIPN 11 / 42

Randomized ESS

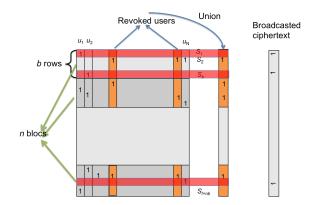


Recall

- 1 row \rightarrow 1 subset \rightarrow 1 key
- 1 column \rightarrow 1 user \rightarrow user *j* has key K_i iff $M_{ij} = 1$

Duong Hieu Phan

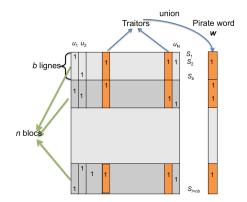
Randomized ESS



Recall

- 1 row \rightarrow 1 subset \rightarrow 1 key
- 1 column \rightarrow 1 user \rightarrow user *j* has key K_i iff $M_{ij} = 1$

Duong Hieu Phan


Randomized ESS

Property

- Set $n = r \log_2(N^2 e/r), b = 4r$
- With overwhelming probability → (N, 8r² log N, r, 8r log N)-ESS. (complete-subtree is (N, 2N - 1, r, r(log(N/r))-ESS)

Tracing for ESS

White-box

Tracer can open the box \rightarrow get the pirate word *w* which is the union of traitors' codewords

		《曰》《國》《臣》《臣》 臣	500
Duong Hieu Phan	Some Advances in BE&TT	Séminaire LIPN	13 / 42

White-box Tracing for ESS

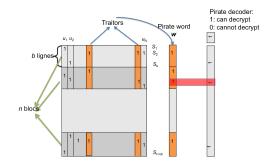
White-box Tracing

- (*r*, *s*, *N*, *l*)-ESS is also a *r*-disjunct matrix, *i.e.*, no column is contained in the union of any *r* other columns
- *r*-disjunct matrix: from the union of at most *r* columns, one can find back the *r* columns (the *Group Testing technique*)
 - \leftrightarrow Given the pirate word *w*, trace back the traitors

B N A **B** N

White-box Tracing for ESS

White-box Tracing

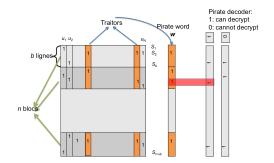

- (*r*, *s*, *N*, *l*)-ESS is also a *r*-disjunct matrix, *i.e.*, no column is contained in the union of any *r* other columns
- *r*-disjunct matrix: from the union of at most *r* columns, one can find back the *r* columns (the *Group Testing technique*)
 - \leftrightarrow Given the pirate word *w*, trace back the traitors

Challenge for Black-box Tracing

How to find the pirate word w?

A B F A B F

Shadow Group Testing Technique[NPP, Algorithmica13]

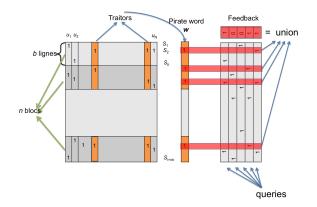

Black-box access to pirate decoder

Asking random queries of the same form as broadcasted ciphertexts

D)uo	na	Hie	uР	han

< ロ > < 同 > < 回 > < 回 >

Shadow Group Testing Technique[NPP, Algorithmica13]

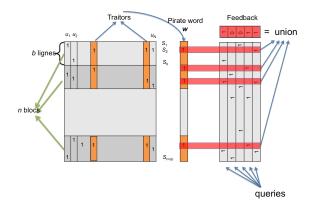

Black-box Access to Pirate Decoder

Asking random queries of the same form as broadcasted ciphertexts

E	luor	na	Hie	au F	Phan

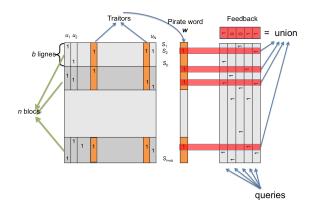
★ ∃ > < ∃ >

Shadow Group Testing Technique[NPP, Algorithmica13]



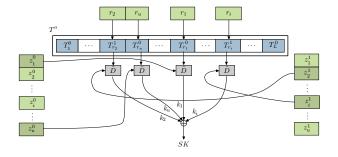
Test the decryptability of the piarte decoder on the queries
 → Get "Feedback" vector = union of the columns at position 1 in
 the pirate word w

Duong I	lieu l	Phan
---------	--------	------


Some Advances in BE&TT

Shadow Group Testing Technique[NPP, Algorithmica13]

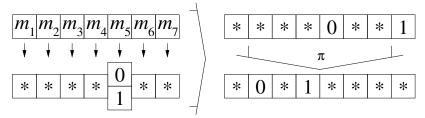
- We show that the matrix of queries is also an ESS
 → From "Feedback" vector, get the pirate word w
- Large number of queries
 - \rightarrow the tracing is efficient when the number of traitors is $O(\log N)$


Shadow Group Testing Technique[NPP, Algorithmica13]

In brief:

- We get $(N, 8r^2 \log N, r, 8r \log N)$ -ESS
- Ciphertext: constant factor w.r.t the complete-subtree and a log *N* factor w.r.t the subset-difference scheme
- The first black-box tracing ESS against non-naive pirates.

Combinatorial Approach: Other Contributions

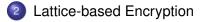


Constant-size Ciphertext [BP08]:

- Based on Robust Collusion Secure Code [S06,N09]
- Drawback: large secret key size $(O(t^2 \log^2(N/\epsilon)))$

∃ ► < ∃</p>

Combinatorial Approach: Other Contributions



Hiding a mark at position 5 in a sequence of 7 blocks.

Message Tracing with Optimal Transmission Rate [PPS12]

- The rate between ciphertext and plaintext is \approx 1 (constant size is achieved in [KY01)]
- It requires us to construct an efficient construction of 2-user Anonymous BE
- $\bullet\,$ Large size plaintext \rightarrow suitable for broadcasting messages

Duong Hieu Phan

Some Advances in BE&TT

Séminaire LIPN 18 / 42

ElGamal Encryption Scheme

- *G* =< *g* > of order *q*
- Secret key: $\alpha \leftarrow \mathbb{Z}_q$
- Public key: $y = g^{\alpha}$
- Ciphertext: $(g^r, y^r m)$, where $r \leftarrow \mathbb{Z}_q$
- Decryption: from α , compute $y^r = (g^r)^{\alpha}$ and recover *m*

A B A A B A

ElGamal Encryption Scheme

- $G = \langle g \rangle$ of order q
- Secret key: $\alpha \leftarrow \mathbb{Z}_q$
- Public key: $y = g^{\alpha}$
- Ciphertext: $(g^r, y^r m)$, where $r \leftarrow \mathbb{Z}_q$
- Decryption: from α , compute $y^r = (g^r)^{\alpha}$ and recover *m*

Boneh-Franklin Multi-receiver Encryption

• Main problem: How to extend the same y to support many users?

ElGamal Encryption Scheme

- $G = \langle g \rangle$ of order q
- Secret key: $\alpha \leftarrow \mathbb{Z}_q$
- Public key: $y = g^{\alpha}$
- Ciphertext: $(g^r, y^r m)$, where $r \leftarrow \mathbb{Z}_q$
- Decryption: from α , compute $y^r = (g^r)^{\alpha}$ and recover *m*

Boneh-Franklin Multi-receiver Encryption

- Main problem: How to extend the same y to support many users?
- Each user receive a representation (α₁,..., α_k) of y in a public basis (h₁,..., h_k): (y = h₁^{α₁}..., h_k^{α_k})
- Each user can compute y^r from (h_1^r, \ldots, h_k^r)

ElGamal Encryption Scheme

- $G = \langle g \rangle$ of order q
- Secret key: $\alpha \leftarrow \mathbb{Z}_q$
- Public key: $y = g^{\alpha}$
- Ciphertext: $(g^r, y^r m)$, where $r \leftarrow \mathbb{Z}_q$
- Decryption: from α , compute $y^r = (g^r)^{\alpha}$ and recover *m*

Boneh-Franklin Multi-receiver Encryption

- Main problem: How to extend the same y to support many users?
- Each user receive a representation (α₁,..., α_k) of y in a public basis (h₁,..., h_k): (y = h₁^{α₁}..., h_k^{α_k})
- Each user can compute y^r from (h_1^r, \ldots, h_k^r)
- Public key: (*y*, *h*₁,...,*h*_{*k*})
- Ciphertext: $(h_1^r, \ldots, h_k^r, y^r m)$

Boneh-Franklin Scheme

Boneh-Franklin Traitor Tracing

- Transformation from Elgamal Encryption to Traitor Tracing: linear loss in the number of traitors
- Achieve white-box tracing and Black-box confirmation

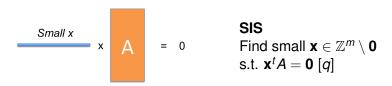
(B)

Boneh-Franklin Scheme

Boneh-Franklin Traitor Tracing

- Transformation from Elgamal Encryption to Traitor Tracing: linear loss in the number of traitors
- Achieve white-box tracing and Black-box confirmation

Our Work

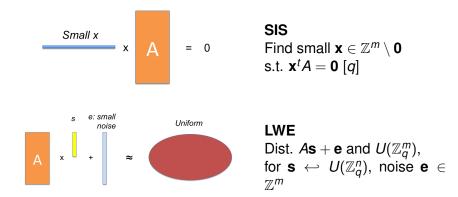

- Study the problem in lattice-based setting
- Get a more efficient transformation:

LWE-based Encryption \approx LWE traitor tracing

Achieve Black-box confirmation as in Boneh-Franklin scheme

The SIS and LWE problems

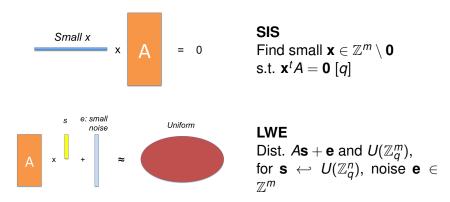
• Params: $m, n, q \ge 0, A \leftarrow U(\mathbb{Z}_q^{m \times n})$



Séminaire LIPN 21 / 42

3

The SIS and LWE problems

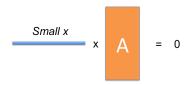

• Params: $m, n, q \ge 0, A \leftarrow U(\mathbb{Z}_q^{m \times n})$

Séminaire LIPN 21 / 42

The SIS and LWE problems

• Params: $m, n, q \ge 0, A \leftarrow U(\mathbb{Z}_q^{m \times n})$

Applications

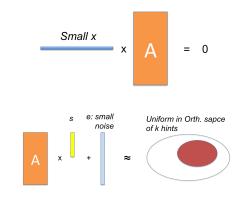

Hash function [Ajt'96], signature [GPV'08], encryption [Reg'05], ...

D	luor	าต	Hie	eu P	han

Séminaire LIPN 21 / 42

$SIS \rightarrow k$ -SIS and $LWE \rightarrow k$ -LWE

- Params: $m, n, q \ge 0, A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- k small hints $(\mathbf{x}_i)_{i \leq k}$ s.t. $\mathbf{x}_i^t A = \mathbf{0} [q]$



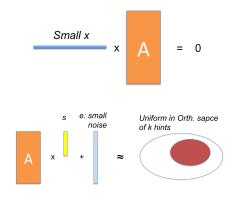
k-SIS [BoFr'11] Find small $\mathbf{x} \in \mathbb{Z}^m$ s.t. • $\mathbf{x}^t A = \mathbf{0} [q]$ • $\mathbf{x} \notin \operatorname{Span}(\mathbf{x}_i)$

Séminaire LIPN 22 / 42

SIS \rightarrow *k*-SIS and LWE \rightarrow *k*-LWE

- Params: $m, n, q \ge 0, A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- k small hints $(\mathbf{x}_i)_{i \leq k}$ s.t. $\mathbf{x}_i^t A = \mathbf{0} [q]$

k-SIS [BoFr'11] Find small $\mathbf{x} \in \mathbb{Z}^m$ s.t. • $\mathbf{x}^t A = \mathbf{0} [q]$ • $\mathbf{x} \notin \operatorname{Span}(\mathbf{x}_i)$


k-LWE Distinguish $A\mathbf{s} + \mathbf{e}$ and $U(\operatorname{Span}(\mathbf{x}_i)^{\perp}) + \mathbf{e}'$ for $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$ and small noises $\mathbf{e}, \mathbf{e}' \in \mathbb{Z}^m$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Séminaire LIPN 22 / 42

SIS \rightarrow *k*-SIS and LWE \rightarrow *k*-LWE

- Params: $m, n, q \ge 0, A \leftarrow U(\mathbb{Z}_q^{m \times n})$
- k small hints $(\mathbf{x}_i)_{i \leq k}$ s.t. $\mathbf{x}_i^t A = \mathbf{0} [q]$

k-SIS [BoFr'11] Find small $\mathbf{x} \in \mathbb{Z}^m$ s.t. • $\mathbf{x}^t A = \mathbf{0} [q]$ • $\mathbf{x} \notin \operatorname{Span}(\mathbf{x}_i)$

k-LWE Distinguish $A\mathbf{s} + \mathbf{e}$ and $U(\operatorname{Span}(\mathbf{x}_i)^{\perp}) + \mathbf{e}'$ for $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$ and small noises $\mathbf{e}, \mathbf{e}' \in \mathbb{Z}^m$

イロト 不得 トイヨト イヨト 二日

Original application of k-SIS: Homomorphic signatures [BoFr'11]

Duong H	lieu Phan
---------	-----------

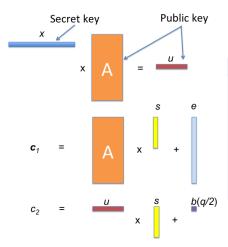
Some Advances in BE&TT

Séminaire LIPN 22 / 42

Contributions [LPSS, Crypto14]

New Variant of LWE

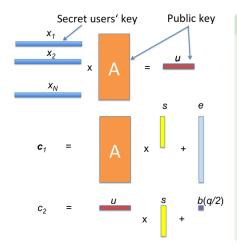
- Introduction of k-LWE
- A reduction from LWE to *k*-LWE (and from SIS to *k*-SIS) with polynomial loss in *k*


(Boneh-Freeman11 from SIS to k-SIS: exponential loss in k. They left the open question to improve the reduction)

Application

- Application to traitor tracing encryption, à la Boneh-Franklin
- A modification that enjoys public traceability

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


A Multi-receiver Dual-Regev Encryption (based on [GPV'08])

Dual-Regev Encryption

- Public key: $A \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$
- Secret key: x gaussian s.t. x^tA = u^t [q]
- Ciphertext: $(\mathbf{c}_1, \mathbf{c}_2)$

A Multi-receiver Dual-Regev Encryption (based on [GPV'08])

Multi-receiver Encryption

- Public key: $A \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{u} \in \mathbb{Z}_q^n$
- Secret keys: x_i gaussian s.t. x^t_iA = u^t [q]
- Ciphertext: $(\mathbf{c}_1, \mathbf{c}_2)$
- Decryption: c₂ x^tc₁

Using trapdoor T (full rank small $T \in \mathbb{Z}^{m \times m}$ s.t. $T \cdot A = 0$ [*q*]), one can sample many secret keys \mathbf{x}_i [GPV08]

< 17 ▶

3 + 4 = +

k-LWE-based Traitor Tracing, à la Boneh-Frranklin

Pirate

Up to k users may collude
 ⇒ A coalition is given up to k LWE hints to create a pirate decryption box

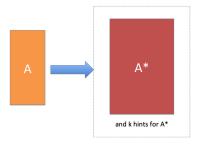
4 3 5 4 3 5 5

k-LWE-based Traitor Tracing, à la Boneh-Frranklin

Pirate

Up to k users may collude
 ⇒ A coalition is given up to k LWE hints to create a pirate decryption box

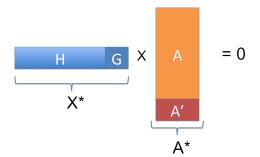
Tracer


- Assume we suspect the coalition to be among users 1 to k.
- Test the behaviour of the box on the fake ciphertexts:

$$U\left((\operatorname{Span}_{i\leq k}(\mathbf{x}_i^t|1))^{\perp}
ight).$$

The coalition owns only those x_j's → the fake and normal ciphertexts are indistinguishable, under k-LWE

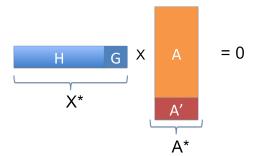
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


How to Prove The Hardness of k-SIS and k-LWE

Reducing LWE to *k*-LWE

- Input: a SIS / LWE instance corresponding to A
- From A, construct A* along with k hints for A*
- Give A* and the k hints to a k-SIS / k-LWE solver
- Based on a k-SIS or k-LWE solution for A*, derive a SIS / LWE solution for A

Hardness of k-LWE: The [BF11] Approach

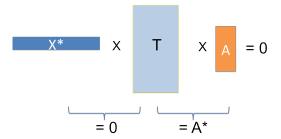


Main Idea

- Sample k hints $\mathbf{x}_1, \ldots, \mathbf{x}_k$ that form a $k \times (m+k)$ matrix $X^* = (H|G)$ (using the \mathbf{x}_i 's as rows)
- 2 Append to A an extra $k \times n$ matrix $A' = -G^{-1}H \cdot A$ [q]
- 3 Append to $\mathbf{b} = A\mathbf{s} + \mathbf{e}$ an extra $\mathbf{b}' = -G^{-1}H \cdot \mathbf{b}$ [q]

э.

Hardness of k-LWE: The [BF11] Approach

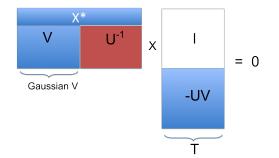

Obstacle

- We have $\mathbf{b}' = A'\mathbf{s} + \mathbf{e}'$ with $\mathbf{e}' = -G^{-1}H \cdot \mathbf{e}$ [q]
- e' is not small!
- To fix it, multiply everything by det(G)
- Blow-up: $\|\mathbf{e}'\| \approx k! \|\mathbf{e}\|$, which is $\ll q$ for tiny k

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Our Reduction: Polynomial Loss in k


Main Steps

Generate a small transformation matrix T such that it is easy to generate gaussian X^* (k hints matrix) : $X^* \times T = 0$

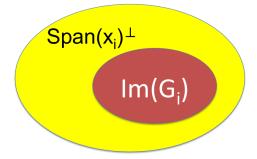
3
$$T(A\mathbf{s} + \mathbf{e}) = (TA)\mathbf{s} + (T\mathbf{e}) = A^* + \mathbf{e}^*$$

Avoid "exponential noise blowup", Te is of polynomial size in e

Transformation Matrix T and Hints X^*

- Main tool: A small U such that the first k rows of U^{-1} are small Gaussian (relying on LHL)
- Sampling a Gaussian matrix V
- **③** Define X^* as the first k rows of $V \parallel U^{-1}$

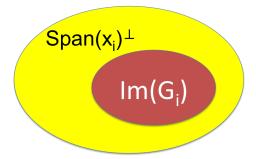
Public Traceability


Public Traceability [CPP05]

- Classical tracing: relies on the secret information.
 ⇒ Complete trust in the tracing authority, huge tracing cost.
- Public tracing: anyone can trace using the public key ⇒ Delegation of the tracing procedure

Schemes with Public Traceability

- IPP code-based scheme [PST06]
- Pairings based scheme [BW06]: full collusion but with large ciphertext size $O(\sqrt{N})$


Public Traceability

Public Sampling

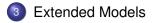
- **1** Each \mathbf{x}_i is associated to a public matrix G_i
- 2 Hard to distinguish $U(\text{Span}(\mathbf{x}_i^+)^{\perp}) + noise$ and $\text{Im}(G_k) + noise$
- Solution Publicly sample a signal in $U(\text{Span}(\mathbf{x}_i^+)^{\perp}) + noise$ from G_i

Public Traceability

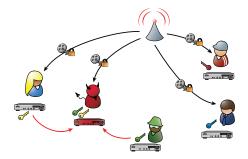
Public Tracing

- Public matrix G_i
- ② It is hard to distinguish $U(\text{Span}_{i=1}^{j}(\mathbf{x}_{i})^{\perp}) + noise$ and $\text{Im}(G_{1}) \cap \ldots \cap \text{Im}(G_{j}) + noise$, for any $1 \leq j \leq k$
- **③** We can thus sample tracing signals from G_1, \ldots, G_k

Algebraic Approach: Other Contributions

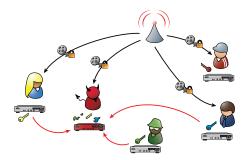

Pairings based Constructions

- BGW scheme: efficient pairing based broadcast encryption
 ⇒ Extension: inclusive-exclusive mode and adaptive security
 [PPSS12]
- Combination of algebraic and combinatorial methods that relies on parings and collusion secure codes.
 - Identity-based Traitor Tracing [ADMNPS07]
 - Identity-based Trace & Revoke [PT11]


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 Lattice-based Encryption

Classical Collusions

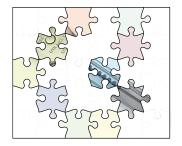

Facts

- Each user contributes its whole key
- Traitors should trust each other

(B)

A b

Pirates 2.0: Traitors Collaborating in Public [BP, Eurocrypt09]



Principle

- Each traitor contributes a partial or derived information
- "Imperfect" Pirate Decoder but still very efficient (inspired from Pirate Evolution Attack [KP07])
- High anonymity of traitors

Some Advances in BE&TT

Practical Impact of Pirates 2.0

Collusion Size

- Traitors do not need to trust anyone
- Guaranteed anonymity is a big incentive to contribute secrets
- Even partial information extracted from tamper resistant or obfuscated decoders can be useful
- Traitors can contribute information adaptatively

Practical Impact of Pirates 2.0

Impact for Subset Difference Scheme

- Considering the classical setting which covers 2³² users
- Then, 10000 traitors (1000 in adaptative attacks) can decrypt all ciphertexts with headers of size less than 128 Mb
- High anonymity level: each traitor is covered by 4 millions users

Some Advances in BE&TT

Extended Models: Other Contributions

Multi-channel Broadcast Encryption [PPT13]

- Consider simultanous broadcast encryption
- New scheme with constant ciphertext size
- Compress session keys of all channels into one header \rightarrow high-time complexity to decompress

Extended Models: Other Contributions

Multi-channel Broadcast Encryption [PPT13]

- Consider simultanous broadcast encryption
- New scheme with constant ciphertext size
- Compress session keys of all channels into one header \rightarrow high-time complexity to decompress

Decentralized Broadcast Encryption[PPS12]

- No need for a trusted authority
- Users agree on system parameters
- New tree-based scheme based on Diffie-Hellman perfect entropy extractor

4 3 > 4 3

Discussion

Summary

- Tools & constructions for combinatorial and algebraic schemes
- Extended models of attacks and generalizations for BE/TT

Combinatorial Methods

- Better support for black-box tracing
- Larger key sizes
- Partial-leakage attacks

Algebraic Method

- Generally more efficient
- Full collusion solutions still not satisfactory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Open Questions

- Fully Collusion Resistance
 - Either the schemes are still quite inefficient
 - Or the security is still not clear (e.g., composite order multi-linear maps/iO)
- Additional Features
 - Efficient decentralised BE in a constant number of rounds
 - Efficient anonymous BE
- CCA lattice-based trace&revoke schemes
- Efficient construction from more general primitives?
 - Attribute-based encryption
 - Functional encryption
- Tracing in electronic voting

(B)