The neighbours of Baxter numbers

Veronica Guerrini

University of Siena, DIISM

31 January 2017, LIPN, Paris

Goal 1.

To provide a continuum from Catalan to Baxter through Schröder.

permutations,...

Goal 1.
To provide a continuum from Catalan to Baxter through Schröder.

Schröder sequence: 1,2,6,22,90,...(A006318)
Schröder paths, separable
permutations,...

Catalan sequence:

$$
\begin{gathered}
1,2,5,14,42, \ldots(\mathrm{~A} 000108) \\
\text { Dyck paths, } \mathcal{A} \mathcal{V}(132), \ldots
\end{gathered}
$$

How to establish such continuum?

At the abstract level of generating trees and succession rules so that each inclusion is valid for all the families of objects enumerated by the corresponding sequences.

ECO method. Enumerating Combinatorial Objects is a method for the exhaustive generation of a class \mathcal{C} of combinatorial objects equipped with a size $|\cdot|: \mathcal{C} \rightarrow \mathbb{N}$.
An ECO-operator is $\vartheta: \mathcal{C}_{n} \rightarrow 2^{\mathcal{C}_{n+1}}$ s.t.

- for any $o, o^{\prime} \in \mathcal{C}_{n}$, if $o \neq o^{\prime}$, then $\vartheta(o) \cap \vartheta\left(o^{\prime}\right)=\emptyset$;
- $\bigcup_{o \in \mathcal{C}_{n}} \vartheta(o)=\mathcal{C}_{n+1}$.

How to establish such continuum?

At the abstract level of generating trees and succession rules so that each inclusion is valid for all the families of objects enumerated by the corresponding sequences.

ECO method. Enumerating Combinatorial Objects is a method for the exhaustive generation of a class \mathcal{C} of combinatorial objects equipped with a size $|\cdot|: \mathcal{C} \rightarrow \mathbb{N}$.
An ECO-operator is $\vartheta: \mathcal{C}_{n} \rightarrow 2^{\mathcal{C}_{n+1}}$ s.t.

- for any $o, o^{\prime} \in \mathcal{C}_{n}$, if $o \neq o^{\prime}$, then $\vartheta(o) \cap \vartheta\left(o^{\prime}\right)=\emptyset$;
- $\bigcup_{o \in \mathcal{C}_{n}} \vartheta(o)=\mathcal{C}_{n+1}$.

A permutation π of length n avoids τ of length $k \leq n$ iff there are no i_{1}, \ldots, i_{k} such that $\pi_{i_{1}} \ldots \pi_{i_{k}}$ is order isomorphic to τ.

Example. $\pi=64 \underline{2} 1 \underline{5} \underline{3}$ contains $\tau=132$; $\rho=643512$ avoids τ.

How to establish such continuum?

At the abstract level of generating trees and succession rules so that each inclusion is valid for all the families of objects enumerated by the corresponding sequences.

ECO method. Enumerating Combinatorial Objects is a method for the exhaustive generation of a class \mathcal{C} of combinatorial objects equipped with a size $|\cdot|: \mathcal{C} \rightarrow \mathbb{N}$.
An ECO-operator is $\vartheta: \mathcal{C}_{n} \rightarrow 2^{\mathcal{C}_{n+1}}$ s.t.

- for any $o, o^{\prime} \in \mathcal{C}_{n}$, if $o \neq o^{\prime}$, then $\vartheta(o) \cap \vartheta\left(o^{\prime}\right)=\emptyset$;
- $\bigcup_{o \in \mathcal{C}_{n}} \vartheta(o)=\mathcal{C}_{n+1}$.

A permutation π of length n avoids τ of length $k \leq n$ iff there are no i_{1}, \ldots, i_{k} such that $\pi_{i_{1}} \ldots \pi_{i_{k}}$ is order isomorphic to τ.

Example. $\pi=64 \underline{2} 1 \underline{5} \underline{3}$ contains $\tau=132$; $\rho=643512$ avoids τ.

How to establish such continuum?

At the abstract level of generating trees and succession rules so that each inclusion is valid for all the families of objects enumerated by the corresponding sequences.

ECO method. Enumerating Combinatorial Objects is a method for the exhaustive generation of a class \mathcal{C} of combinatorial objects equipped with a size $|\cdot|: \mathcal{C} \rightarrow \mathbb{N}$.
An ECO-operator is $\vartheta: \mathcal{C}_{n} \rightarrow 2^{\mathcal{C}_{n+1}}$ s.t.

- for any $o, o^{\prime} \in \mathcal{C}_{n}$, if $o \neq o^{\prime}$, then $\vartheta(o) \cap \vartheta\left(o^{\prime}\right)=\emptyset$;
- $\bigcup_{o \in \mathcal{C}_{n}} \vartheta(o)=\mathcal{C}_{n+1}$.

A permutation π of length n avoids τ of length $k \leq n$ iff there are no i_{1}, \ldots, i_{k} such that $\pi_{i_{1}} \ldots \pi_{i_{k}}$ is order isomorphic to τ.

Example. $\pi=64 \underline{2} 1 \underline{5} \underline{3}$ contains $\tau=132$; $\rho=643512$ avoids τ.

How to establish such continuum?

At the abstract level of generating trees and succession rules so that each inclusion is valid for all the families of objects enumerated by the corresponding sequences.

ECO method. Enumerating Combinatorial Objects is a method for the exhaustive generation of a class \mathcal{C} of combinatorial objects equipped with a size $|\cdot|: \mathcal{C} \rightarrow \mathbb{N}$.
An ECO-operator is $\vartheta: \mathcal{C}_{n} \rightarrow 2^{\mathcal{C}_{n+1}}$ s.t.

- for any $o, o^{\prime} \in \mathcal{C}_{n}$, if $o \neq o^{\prime}$, then $\vartheta(o) \cap \vartheta\left(o^{\prime}\right)=\emptyset$;
- $\bigcup_{o \in \mathcal{C}_{n}} \vartheta(o)=\mathcal{C}_{n+1}$.

A permutation π of length n avoids τ of length $k \leq n$ iff there are no i_{1}, \ldots, i_{k} such that $\pi_{i_{1}} \ldots \pi_{i_{k}}$ is order isomorphic to τ.

Example. $\pi=64 \underline{2} 1 \underline{5} \underline{3}$ contains $\tau=132$; $\rho=643512$ avoids τ.

How to establish such continuum?

At the abstract level of generating trees and succession rules so that each inclusion is valid for all the families of objects enumerated by the corresponding sequences.

ECO method. Enumerating Combinatorial Objects is a method for the exhaustive generation of a class \mathcal{C} of combinatorial objects equipped with a size $|\cdot|: \mathcal{C} \rightarrow \mathbb{N}$.
An ECO-operator is $\vartheta: \mathcal{C}_{n} \rightarrow 2^{\mathcal{C}_{n+1}}$ s.t.

- for any $o, o^{\prime} \in \mathcal{C}_{n}$, if $o \neq o^{\prime}$, then $\vartheta(o) \cap \vartheta\left(o^{\prime}\right)=\emptyset$;
- $\bigcup_{o \in \mathcal{C}_{n}} \vartheta(o)=\mathcal{C}_{n+1}$.

A permutation π of length n avoids τ of length $k \leq n$ ff there are no i_{1}, \ldots, i_{k} such that $\pi_{i_{1}} \ldots \pi_{i_{k}}$ is order isomorphic to τ.

Example. $\pi=64 \underline{2} 1 \underline{5} \underline{3}$ contains $\tau=132$; $\rho=643512$ avoids τ.

How to establish such continuum?

Definition.

Let ϑ be an ECO-operator for \mathcal{C}. A generating tree for \mathcal{C} is a infinite rooted tree such that the vertices at level n are the objects of size n and their sons are the objects produced by ϑ.

A compact notation for generating trees is the notion of:

Definition.

A succession rule is system $((r), \mathcal{S})$ consisting of an axiom (r) and a set of productions \mathcal{S}

$$
\Omega=\left\{\begin{array}{l}
(r) \\
(\ell) \rightsquigarrow\left(e_{1}\right),\left(e_{2}\right), \ldots,\left(e_{k(\ell)}\right)
\end{array}\right.
$$

How to establish such continuum?

Definition.

Let ϑ be an ECO-operator for \mathcal{C}. A generating tree for \mathcal{C} is a infinite rooted tree such that the vertices at level n are the objects of size n and their sons are the objects produced by ϑ.

A compact notation for generating trees is the notion of:

Definition.

A succession rule is system $((r), \mathcal{S})$ consisting of an axiom (r) and a set of productions \mathcal{S}

$$
\Omega=\left\{\begin{array}{l}
(r) \\
(\ell) \rightsquigarrow\left(e_{1}\right),\left(e_{2}\right), \ldots,\left(e_{k(\ell)}\right)
\end{array}\right.
$$

How to establish such continuum?

Definition.

Let ϑ be an ECO-operator for \mathcal{C}. A generating tree for \mathcal{C} is a infinite rooted tree such that the vertices at level n are the objects of size n and their sons are the objects produced by ϑ.

$$
\Omega_{C a t}=\left\{\begin{array}{l}
(1) \\
(i) \rightsquigarrow(1),(2), \ldots,(i),(i+1)
\end{array}\right.
$$

A compact notation for generating trees is the notion of:

Definition.

A succession rule is system $((r), \mathcal{S})$ consisting of an axiom (r) and a set of productions \mathcal{S}

$$
\Omega=\left\{\begin{array}{l}
(r) \\
(\ell) \rightsquigarrow\left(e_{1}\right),\left(e_{2}\right), \ldots,\left(e_{k(\ell)}\right)
\end{array}\right.
$$

Examples

 sequencesCatalan succession rule:

$$
\Omega_{C a t}=\left\{\begin{array}{l}
(1) \\
(i) \rightsquigarrow(1),(2), \ldots,(i),(i+1)
\end{array}\right.
$$

Schröder succession rule:

$$
\Omega_{S e p}=\left\{\begin{array}{l}
(2) \\
(j) \rightsquigarrow(2),(3), \ldots,(j),(j+1),(j+1)
\end{array}\right.
$$

Baxter succession rule:

$$
\Omega_{B a x}=\left\{\begin{array}{rr}
(1,1) \\
(h, k) \rightsquigarrow & (1, k+1), \ldots,(h, k+1) \\
& (h+1,1), \ldots,(h+1, k)
\end{array}\right.
$$

Baxter permutations

Comparison of the generating trees

sequences

Generating trees

 Slicings of parallelogram polyominoesSlicings generalizations Permutations

$$
\Omega_{C a t}=\left\{\begin{array}{l}
(1) \\
(i) \rightsquigarrow(1),(2), \ldots,(i),(i+1)
\end{array}\right.
$$

Baxter slicings

Definition.

A parallelogram polyomino P is a set of cells in the Cartesian plane whose boundary is given by two non-intersecting lattice paths. The size of P is its semi-perimeter minus 1 .

The number of parallelogram polyominoes of size n is the nth Catalan number.

Definition.

A Baxter slicing is a parallelogram polyomino P of size n whose interior is divided in n blocks of width or height 1 such that removing the most outer block it remains a Baxter slicing of size $n-1$.

Baxter slicings

Definition.

A parallelogram polyomino P is a set of cells in the Cartesian plane whose boundary is given by two non-intersecting lattice paths. The size of P is its semi-perimeter minus 1 .

The number of parallelogram polyominoes of size n is the nth Catalan number.

Definition.

A Baxter slicing is a parallelogram polyomino P of size n whose interior is divided in n blocks of width or height 1 such that removing the most outer block it remains a Baxter slicing of size $n-1$.

Baxter slicings

Definition.

A parallelogram polyomino P is a set of cells in the Cartesian plane whose boundary is given by two non-intersecting lattice paths. The size of P is its semi-perimeter minus 1 .

The number of parallelogram polyominoes of size n is the nth Catalan number.

Definition.

A Baxter slicing is a parallelogram polyomino P of size n whose interior is divided in n blocks of width or height 1 such that removing the most outer block it remains a Baxter slicing of size $n-1$.

Baxter slicings

Definition.

A parallelogram polyomino P is a set of cells in the Cartesian plane whose boundary is given by two non-intersecting lattice paths. The size of P is its semi-perimeter minus 1 .

The number of parallelogram polyominoes of size n is the nth Catalan number.

Definition.

A Baxter slicing is a parallelogram polyomino P of size n whose interior is divided in n blocks of width or height 1 such that removing the most outer block it remains a Baxter slicing of size $n-1$.

Baxter slicings

sequences

Theorem.

Baxter slicings grow according to

$$
\Omega_{B a x}=\left\{\begin{array}{r}
(1,1) \\
(h, k) \rightsquigarrow(1, k+1), \ldots,(h, k+1) \\
(h+1,1), \ldots,(h+1, k)
\end{array}\right.
$$

Hence, they are enumerated by Baxter numbers.

Catalan and Schröder slicings

Definition.

A Catalan slicing is a Baxter slicing having all horizontal blocks of width 1.

Definition.

A Schröder slicing is a Baxter slicing having the width of any horizontal block u limited by $r(u)+1$.

Every Catalan slicing is a Schröder slicing. The new Schröder family of slicings restricts the Baxter family and includes the Catalan family.

Catalan and Schröder slicings

Definition.

A Catalan slicing is a Baxter slicing having all horizontal blocks of width 1.

Definition.

A Schröder slicing is a Baxter slicing having the width of any horizontal block u limited by $r(u)+1$.

Every Catalan slicing is a Schröder slicing. The new Schröder family of slicings restricts the Baxter family and includes the Catalan family.

New Schröder succession rule

Theorem.

The enumeration sequence associated with this new rule $\Omega_{S c h}$ is that of Schröder numbers.

- The rules $\Omega_{S c h}$ and $\Omega_{S e p}$ produce isomorphic generating trees.

Comparison of the generating trees

 sequences
Slicings of

 parallelogram polyominoes```
Slicings
```

generalizations


$$
\Omega_{S c h}=\left\{\begin{array}{l}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow(1, k+1),(2, k+1), \ldots,(h, k+1), \\
\\
(2,1),(2,2), \ldots,(2, k-1),(h+1, k)
\end{array}
\end{array}\right.
$$

## Row-restricted slicings

Definition. A m-row-restricted slicing is a Baxter slicing having the width of any horizontal block $u$ limited by $m$, where $m \geq 1$.


$$
\Omega_{\text {row }}^{(m)}=\left\{\begin{array}{rr}
(1,1) & \\
(h, k) \rightsquigarrow & (1, k+1),(2, k+1), \ldots,(h, k+1), \\
& (h+1,1), \ldots,(h+1, k), \text { if } h<m, \\
& (m, 1), \ldots,(m, k), \text { if } h=m .
\end{array}\right.
$$

## System for m-row-restricted slicings

The generating function of $m$-row-restricted slicings is given by $G_{1}(1,1)+\ldots+G_{m}(1,1)$, where each $G_{i}(u, v)=\sum_{\alpha} u^{i} v^{k(\alpha)} x^{n(\alpha)}$ is defined by

$$
\left\{\begin{array}{l}
G_{1}(u, v)=x u v+x u v\left(G_{1}(1, v)+G_{2}(1, v)+\ldots+G_{m}(1, v)\right) \\
\vdots \\
G_{i}(u, v)=\frac{x u^{i} v}{1-v}\left(G_{i-1}(1,1)-G_{i-1}(1, v)\right)+x u^{i} v\left(G_{i}(1, v)+\ldots+G_{m}(1, v)\right) \\
\vdots \\
G_{m}(u, v)=\frac{x u^{m} v}{1-v}\left(G_{m}(1,1)-G_{m}(1, v)+G_{m-1}(1,1)-G_{m-1}(1, v)\right)+x u^{m} v G_{m}(1, v)
\end{array}\right.
$$

## System for m-row-restricted slicings

The generating function of $m$-row-restricted slicings is given by $G_{1}(1,1)+\ldots+G_{m}(1,1)$, where each $G_{i}(u, v)=\sum_{\alpha} u^{i} v^{k(\alpha)} x^{n(\alpha)}$ is defined by

$$
\left\{\begin{array}{l}
G_{1}(u, v)=x u v+x u v\left(G_{1}(1, v)+G_{2}(1, v)+\ldots+G_{m}(1, v)\right) \\
\vdots \\
G_{i}(u, v)=\frac{x u^{i} v}{1-v}\left(G_{i-1}(1,1)-G_{i-1}(1, v)\right)+x u^{i} v\left(G_{i}(1, v)+\ldots+G_{m}(1, v)\right) \\
\vdots \\
G_{m}(u, v)=\frac{x u^{m} v}{1-v}\left(G_{m}(1,1)-G_{m}(1, v)+G_{m-1}(1,1)-G_{m-1}(1, v)\right)+x u^{m} v G_{m}(1, v)
\end{array}\right.
$$

This system can be rewritten

- without $u$ in $H_{i}(v) \equiv G_{i}(1, v)$;
- in the form of a matrix equation.


## System for m-row-restricted slicings

$$
\mathrm{K}_{m}(v)=\left(\begin{array}{cccccc}
1-x v & -x v & -x v & -x v & \cdots & -x v \\
\frac{x v}{1-v} & 1-x v & -x v & -x v & \cdots & -x v \\
0 & \frac{x v}{1-v} & 1-x v & -x v & \cdots & -x v \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{x v}{1-v} & 1-x v & -x v \\
0 & 0 & 0 & \cdots & \frac{x v}{1-v} & 1-x v+\frac{x v}{1-v}
\end{array}\right), \mathbf{C}_{m}(v)=\left(\begin{array}{c}
x v \\
0 \\
\vdots \\
0
\end{array}\right)
$$

$$
\mathbf{H}_{m}(v)=\left(\begin{array}{c}
H_{1}(v) \\
\vdots \\
H_{m}(v)
\end{array}\right) \text { and } \mathbf{B}_{m}(v)=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \cdots & 0 \\
\frac{x v}{1-v} & 0 & 0 & 0 & \cdots & 0 \\
0 & \frac{x v}{1-v} & 0 & 0 & \cdots & 0 \\
0 & 0 & \frac{x v}{1-v} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \frac{x v}{1-v} & \frac{x v}{1-v}
\end{array}\right)
$$

## System for m-row-restricted slicings

Let $\mathbf{K}_{m}^{*}(v)=\left|\mathbf{K}_{m}(v)\right| \mathbf{K}_{m}^{-1}(v)$. Multiplying on the left by $\mathbf{K}_{m}^{*}(v)$ gives

$$
\left|\mathbf{K}_{m}(v)\right| \mathbf{H}_{m}(v)=\mathbf{K}_{m}^{*}(v)\left[\mathbf{B}_{m}(v) \mathbf{H}_{m}(1)+\mathbf{C}_{m}(v)\right] .
$$

- The RHS of the $m$ th equation is a linear combination of all the $m$ unknows $H_{1}(1), \ldots, H_{m}(1)$;
- The equation $\left|\mathbf{K}_{m}(v)\right|=0$ has $m-2$ solutions in $v$ which are finite at $x=0$. (N. R. Beaton)


## System for m-row-restricted slicings

Let $\mathbf{K}_{m}^{*}(v)=\left|\mathbf{K}_{m}(v)\right| \mathbf{K}_{m}^{-1}(v)$. Multiplying on the left by $\mathbf{K}_{m}^{*}(v)$ gives

$$
\left|\mathbf{K}_{m}(v)\right| \mathbf{H}_{m}(v)=\mathbf{K}_{m}^{*}(v)\left[\mathbf{B}_{m}(v) \mathbf{H}_{m}(1)+\mathbf{C}_{m}(v)\right] .
$$

- The RHS of the $m$ th equation is a linear combination of all the $m$ unknows $H_{1}(1), \ldots, H_{m}(1)$;
- The equation $\left|\mathbf{K}_{m}(v)\right|=0$ has $m-2$ solutions in $v$ which are finite at $x=0$. (N. R. Beaton)


## Conjecture.

For all $m \geq 0$, the generating functions of $m$-row-restricted slicings are algebraic.

- It holds for small value of $m(m \leq 5)$.


## Skinny slicings

Definition. A m-skinny slicing is a Baxter slicing having the width of any horizontal block $u$ limited by $r(u)+m$.


$$
\Omega_{s k}^{(m)}=\left\{\begin{aligned}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow
\end{array} & (1, k+1),(2, k+1), \ldots,(h, k+1), \\
& (h+1,1), \ldots,(h+1, k-1),(h+1, k), \text { if } h<m \\
& (m+1,1), \ldots,(m+1, k-1),(h+1, k), \text { if } h \geq m .
\end{aligned}\right.
$$

## System for m-skinny slicings

$$
\left\{\begin{array}{l}
F_{1}(u, v)=x u v+x u v\left(F_{1}(1, v)+F_{2}(1, v)+\ldots+F_{m}(1, v)\right) \\
F_{2}(u, v)=\frac{x u^{2} v}{1-v}\left(F_{1}(1,1)-F_{1}(1, v)\right)+x u^{2} v\left(F_{2}(1, v)+\ldots+F_{m}(1, v)\right) \\
\vdots \\
F_{i}(u, v)=\frac{x u^{i} v}{1-v}\left(F_{i-1}(1,1)-F_{i-1}(1, v)\right)+x u^{i} v\left(F_{i}(1, v)+\ldots+F_{m}(1, v)\right) \\
\vdots \\
F_{m}(u, v)=\frac{x u^{m} v}{1-v}\left(F_{m-1}(1,1)-F_{m-1}(1, v)\right)+\frac{x u^{m+1}}{1-v}\left(v F_{m}(1,1)-F_{m}(1, v)\right)+x u F_{m}(u, v) \\
\begin{array}{l}
+\frac{x u v}{1-u}\left(u^{m-1} F_{m}(1, v)-F_{m}(u, v)\right),
\end{array}
\end{array}\right.
$$

where $F_{i}(u, v)=\sum_{\alpha} u^{i} v^{k(\alpha)} x^{n(\alpha)}$.

- The generating function of $m$-skinny slicings is given by $F_{1}(1,1)+\ldots+F_{m}(1,1)$.

|  | 0 | 1 | 2 | 3 | 4 | 5 | $\cdots$ | $\infty$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $m$-row-restricted <br> slicings | $\frac{1}{1-x}$ | $\frac{1-\sqrt{1-4 x}}{2 x}$ | alg. | alg. | alg. | alg. | $\cdots$ | D-fin. |
| $m$-skinny <br> slicings | alg. | $\frac{1-x-\sqrt{1-6 x+x^{2}}}{2 x}$ | alg. | alg. | $?$ | $?$ | $\cdots$ | D-fin. |

Goal 1.
To provide a continuum from Catalan to Baxter through Schröder.


## Permutations

The number of permutations of length $n$ is $n!$.

- For $n \geq 2$, factorial numbers satisfy:

$$
f_{n}=n f_{n-1}, \text { with } f_{1}=1
$$

- Succession rule:

$$
\Omega=\left\{\begin{array}{l}
(1) \\
(n) \rightarrow(n+1)^{n+1}
\end{array}\right.
$$



## Permutations

The number of permutations of length $n$ is $n!$.

- For $n \geq 2$, factorial numbers satisfy:

$$
f_{n}=n f_{n-1}, \text { with } f_{1}=1
$$

- Succession rule:

$$
\Omega=\left\{\begin{array}{l}
(1) \\
(n) \rightarrow(n+1)^{n+1}
\end{array}\right.
$$



## Permutations

The number of permutations of length $n$ is $n!$.

- For $n \geq 2$, factorial numbers satisfy:

$$
f_{n}=n f_{n-1}, \text { with } f_{1}=1 .
$$

- Succession rule:

$$
\Omega_{F a c}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow
\end{array}(1, h+k), \ldots,(h, k+1) \\
(h+k, 1), \ldots,(h+1, k)
\end{array}\right.
$$



## Semi-Baxter permutations

## Definition.

A semi-Baxter permutation $\pi$ is a permutation avoiding the generalized permutation pattern 2-41-3.


Theorem.
Semi-Baxter permutations grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow \\
(1, k+1), \ldots, \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array} \\
\quad(h+1)
\end{array}\right.
$$

## Semi-Baxter permutations

## Definition.

A semi-Baxter permutation $\pi$ is a permutation avoiding the generalized permutation pattern 2-41-3.


Theorem.
Semi-Baxter permutations grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow \\
(1, k+1), \ldots, \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array} \\
\quad(h+1)
\end{array}\right.
$$

## Semi-Baxter permutations

## Definition.

A semi-Baxter permutation $\pi$ is a permutation avoiding the generalized permutation pattern 2-41-3.


Theorem.
Semi-Baxter permutations grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow \\
(1, k+1), \ldots, \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array} \\
\quad(h+1)
\end{array}\right.
$$

## Semi-Baxter permutations

## Definition.

A semi-Baxter permutation $\pi$ is a permutation avoiding the generalized permutation pattern 2-41-3.


Theorem.
Semi-Baxter permutations grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow \\
(1, k+1), \ldots, \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array} \\
\quad(h+1)
\end{array}\right.
$$

## Semi-Baxter permutations

## Definition.

A semi-Baxter permutation $\pi$ is a permutation avoiding the generalized permutation pattern 2-41-3.


Theorem.
Semi-Baxter permutations grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow(1, k+1), \ldots, \\
(h+k+1) \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array}
\end{array}\right.
$$

## Semi-Baxter permutations

## Definition.

A semi-Baxter permutation $\pi$ is a permutation avoiding the generalized permutation pattern 2-41-3.


Theorem.
Semi-Baxter permutations grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow \\
(1, k+1), \ldots, \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array}
\end{array}\right.
$$

## Semi-Baxter permutations

## Definition.

A semi-Baxter permutation $\pi$ is a permutation avoiding the generalized permutation pattern 2-41-3.


Theorem.
Semi-Baxter permutations grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow(1, k+1), \ldots, \\
(h+k+1) \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array}
\end{array}\right.
$$

## Plane permutations

## Definition.

A plane permutation $\pi$ is a permutation avoiding the generalized permutation pattern 2-14-3.

- Enumerating plane permutations: open problem by Bousquet -Mélou and Butler.


Theorem.
Plane permutations grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow \\
(1, k+1), \ldots, \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array}
\end{array}\right.
$$

## Comparison of the generating trees



$$
\Omega_{\text {semi }}=\left\{\begin{aligned}
&(1,1) \\
&(h, k) \rightsquigarrow(1, k+1), \ldots, \\
&(h, k+1) \\
&(h+k, 1), \ldots, \\
&(h+1, k)
\end{aligned}\right.
$$

## Enumerative properties

From $\Omega_{\text {semi }}, S(x ; y, z) \equiv S(y, z)=\sum_{n, h, k \geq 1} S_{h, k} x^{n} y^{h} z^{k}$ satisfies:

$$
S(y, z)=x y z+\frac{x y z}{1-y}(S(1, z)-S(y, z))+\frac{x y z}{z-y}(S(y, z)-S(y, y))
$$

- Set $y=1+a$. Write the kernel form:

$$
K(a, z) S(1+a, z)=x z(1+a)+\frac{x z(1+a)}{a} S(1, z)-\frac{x z(1+a)}{z-1-a} S(1+a, 1+a)
$$

- By exploiting transformations that leave $K(a, z)$ unchanged, we obtain a system of 5 equations in 6 overlapping unknowns.
- Set $Z_{+}$be such that $K\left(a, Z_{+}\right)=0$. Eliminating overlapping unknowns, yields:

$$
S(1+a, 1+a)-\frac{(1+a)^{2} x}{a^{4}} S(1,1+\bar{a})-P\left(a, Z_{+}\right)=0 .
$$

## Enumerative properties

From $\Omega_{\text {semi }}, S(x ; y, z) \equiv S(y, z)=\sum_{n, h, k \geq 1} S_{h, k} x^{n} y^{h} z^{k}$ satisfies:

$$
S(y, z)=x y z+\frac{x y z}{1-y}(S(1, z)-S(y, z))+\frac{x y z}{z-y}(S(y, z)-S(y, y))
$$

Theorem.
Let $W(x ; a) \equiv W$ be such that

$$
W=x \bar{a}(1+a)(W+1+a)(W+a) .
$$

The series solution $S(y, z)$ satisfies

$$
\begin{gathered}
S(1+a, 1+a)=\Omega_{\geq}[P(a, W+1+a)], \text { where } \\
P(a, W+1+a)=(1+a)^{2} \times+\left(\bar{a}^{5}+\bar{a}^{4}+2+2 a\right) \times W-\left(\bar{a}^{5}+\bar{a}^{4}\right. \\
\left.-\bar{a}^{3}+\bar{a}^{2}+\bar{a}-1\right) \times W^{2}-\left(\bar{a}^{4}-\bar{a}^{2}\right) \times W^{3} .
\end{gathered}
$$

## Enumerative properties

## Corollary.

For all $n \geq 1$, the semi-Baxter numbers $S B_{n}$ satisfy:

$$
\begin{array}{r}
S B_{n+1}=\frac{1}{n} \sum_{j=0}^{n}\binom{n}{j}\left[2\binom{n+1}{j+2}\binom{n+j+2}{n+2}+\binom{n}{j+1}\binom{n+j+2}{n-3}+3\binom{n}{j+4}\binom{n+j+4}{n+1}\right. \\
\\
\left.+2 \frac{n j-j^{2}-n^{2}-8 j+4 n-15}{(n+1)(j+5)}\binom{n}{j+2}\binom{n+j+4}{n}+\frac{2 n}{j+3}\binom{n}{j+2}\binom{n+j+2}{n}\right]
\end{array}
$$

## Conjecture. (PhD thesis by D. Bevan)

For $n \geq 2$,

$$
S B_{n}=\frac{24\left(\left(5 n^{3}-5 n+6\right) a_{n+1}-\left(5 n^{2}+15 n+18\right) a_{n}\right)}{5(n-1) n^{2}(n+2)^{2}(n+3)^{2}(n+4)}
$$

where $a_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}$ is the $n$th Apéry number.

## P-recursiveness

The numbers $S B_{n}$ are recursively defined by $S B_{0}=0, S B_{1}=1$ and for $n \geq 2$,

$$
S B_{n}=\frac{11 n^{2}+11 n-6}{(n+4)(n+3)} S B_{n-1}+\frac{(n-3)(n-2)}{(n+4)(n+3)} S B_{n-2} .
$$

It holds for Baxter numbers that $B_{0}=0, B_{1}=1$ and for $n \geq 2$,

$$
B_{n}=\frac{7 n^{2}+7 n-2}{(n+3)(n+2)} B_{n-1}+\frac{8(n-2)(n-1)}{(n+3)(n+2)} B_{n-2} .
$$

## P-recursiveness

The numbers $S B_{n}$ are recursively defined by $S B_{0}=0, S B_{1}=1$ and for $n \geq 2$,

$$
S B_{n}=\frac{11 n^{2}+11 n-6}{(n+4)(n+3)} S B_{n-1}+\frac{(n-3)(n-2)}{(n+4)(n+3)} S B_{n-2} .
$$

It holds for Baxter numbers that $B_{0}=0, B_{1}=1$ and for $n \geq 2$,

$$
B_{n}=\frac{7 n^{2}+7 n-2}{(n+3)(n+2)} B_{n-1}+\frac{8(n-2)(n-1)}{(n+3)(n+2)} B_{n-2} .
$$

- $S B_{n} \underset{n \rightarrow \infty}{\sim} A \frac{\mu^{n}}{n^{6}}\left(1+O\left(\frac{1}{n}\right)\right)$, where $\mu=\frac{11}{2}+\frac{5}{2} \sqrt{5}$ and $A \approx 94.34$


## Another occurrence

## Definition.

An inversion sequence is an integer sequence ( $e_{1}, e_{2}, \ldots, e_{n}$ ) satisfying $0 \leq e_{i}<i$ for all $i \in\{1,2, \ldots, n\}$.

Example. $(0,1,2)$ is an inversion sequence, $(0,2,1)$ is not.
The inversion sequence $e=(0,0, \underline{2}, \underline{1}, 4, \underline{1}, 3,7)$ avoids 210 , but contains 100.

Theorem. (Conjectured by Martinez and Savage ${ }^{1}$ ) The family of inversion sequences avoiding 210 and 100 is enumerated by semi-Baxter numbers.

[^0]
## Factorial paths

## Definition.

A factorial path is a Dyck path $P$ in which every free (not lying in a valley) up steps $U$ has a label in $[1, e+1]$, where $e$ is the number of down steps preceeding $U$ in $P$.


## Theorem.

Factorial paths satisfy the recursive relation for factorial numbers

$$
f_{n}=n f_{n-1}, \text { where } f_{1}=1
$$

## Factorial paths

## Definition.

A factorial path is a Dyck path $P$ in which every free (not lying in a valley) up steps $U$ has a label in $[1, e+1]$, where $e$ is the number of down steps preceeding $U$ in $P$.


## Theorem.

Factorial paths satisfy the recursive relation for factorial numbers

$$
f_{n}=n f_{n-1}, \text { where } f_{1}=1
$$

## Factorial paths

## Definition.

A factorial path is a Dyck path $P$ in which every free (not lying in a valley) up steps $U$ has a label in $[1, e+1]$, where $e$ is the number of down steps preceeding $U$ in $P$.


## Theorem.

Factorial paths satisfy the recursive relation for factorial numbers

$$
f_{n}=n f_{n-1}, \text { where } f_{1}=1
$$

## Factorial paths

## Definition.

A factorial path is a Dyck path $P$ in which every free (not lying in a valley) up steps $U$ has a label in $[1, e+1]$, where $e$ is the number of down steps preceeding $U$ in $P$.


## Theorem.

Factorial paths satisfy the recursive relation for factorial numbers

$$
f_{n}=n f_{n-1}, \text { where } f_{1}=1
$$

## Factorial paths

## Definition.

A factorial path is a Dyck path $P$ in which every free (not lying in a valley) up steps $U$ has a label in $[1, e+1]$, where $e$ is the number of down steps preceeding $U$ in $P$.


## Theorem.

Factorial paths satisfy the recursive relation for factorial numbers

$$
f_{n}=n f_{n-1}, \text { where } f_{1}=1
$$

## Factorial paths

## Definition.

A factorial path is a Dyck path $P$ in which every free (not lying in a valley) up steps $U$ has a label in $[1, e+1$ ], where $e$ is the number of down steps preceeding $U$ in $P$.


## Theorem.

Factorial paths satisfy the recursive relation for factorial numbers

$$
f_{n}=n f_{n-1}, \text { where } f_{1}=1
$$

## Factorial paths

## Definition.

A factorial path is a Dyck path $P$ in which every free (not lying in a valley) up steps $U$ has a label in $[1, e+1]$, where $e$ is the number of down steps preceeding $U$ in $P$.


## Theorem.

Factorial paths satisfy the recursive relation for factorial numbers

$$
f_{n}=n f_{n-1}, \text { where } f_{1}=1
$$

## Semi-Baxter paths

## Definition.

A semi-Baxter path is a factorial path in which, for every pair of consecutive free up step $\left(U^{\prime}, U^{\prime \prime}\right)$, the label of $U^{\prime \prime}$ is in $[1, h]$, where $h \geq 1$ is given by summing the label of $U^{\prime}$ with the number of down steps between $U^{\prime}$ and $U^{\prime \prime}$.


Theorem.
Semi-Baxter paths grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow(1, k+1), \ldots, \\
(h+k+1) \\
(h+k, 1), \ldots, \\
(h+1, k)
\end{array}
\end{array}\right.
$$

## Semi-Baxter paths

## Definition.

A semi-Baxter path is a factorial path in which, for every pair of consecutive free up step $\left(U^{\prime}, U^{\prime \prime}\right)$, the label of $U^{\prime \prime}$ is in $[1, h]$, where $h \geq 1$ is given by summing the label of $U^{\prime}$ with the number of down steps between $U^{\prime}$ and $U^{\prime \prime}$.


Theorem.
Semi-Baxter paths grow according to

$$
\Omega_{\text {semi }}=\left\{\begin{array}{r}
\begin{array}{l}
(1,1) \\
(h, k) \rightsquigarrow \\
(1, k+1), \ldots,(h, k+1) \\
\\
(h+k, 1), \ldots,(h+1, k)
\end{array}
\end{array}\right.
$$

## Baxter paths

## Definition.

A Baxter path is a factorial path in which, for every pair of consecutive free up step $\left(U^{\prime}, U^{\prime \prime}\right)$, the label of $U^{\prime \prime}$ is in $[1, h]$, where $h \geq 1$ is given by summing the label of $U^{\prime}$ with the number of $D U$ factors between $U^{\prime}$ and $U^{\prime \prime}$.


Theorem.
Baxter paths grow according to

$$
\Omega_{B a x}=\left\{\begin{array}{rr}
(1,1) \\
(h, k) \rightsquigarrow & (1, k+1), \ldots,(h, k+1) \\
& (h+1,1), \ldots,(h+1, k)
\end{array}\right.
$$

## Baxter paths

## Definition.

A Baxter path is a factorial path in which, for every pair of consecutive free up step $\left(U^{\prime}, U^{\prime \prime}\right)$, the label of $U^{\prime \prime}$ is in $[1, h]$, where $h \geq 1$ is given by summing the label of $U^{\prime}$ with the number of $D U$ factors between $U^{\prime}$ and $U^{\prime \prime}$.


Theorem.
Baxter paths grow according to

$$
\Omega_{B a x}=\left\{\begin{array}{rr}
(1,1) & \\
(h, k) \rightsquigarrow(1, k+1), \ldots,(h, k+1) \\
& (h+1,1), \ldots,(h+1, k)
\end{array}\right.
$$

## Further work

- Investigate skew representation of factorial paths:


It may suggest some constraints to impose on the family of factorial paths to discover other sequences generalizing Baxter.

- Steady paths


They are enumerated by $1,2,6,23,105,549, \ldots$ (A113227) and are in simple bijection with $\mathcal{A V}(1-34-2)$.

Generating trees
Slicings of
parallelogram polyominoes

THANK YOU

## for your kind attention


[^0]:    ${ }^{1}$ Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, online available on Arxiv1609.08106.

