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Introduction

Renormalization ↔ physics, combinatorics, algebra, number
theory,...

Particles physics described by renormalizable quantum field
theory (Standard Model).

Interpretation: physical constants depend on the observation
scale.

Noncommutative space:

definition of a new class of renormalization group (harmonic
term).

Topical problem of physics: compatibility between quantum
physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial
question.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Introduction

Renormalization ↔ physics, combinatorics, algebra, number
theory,...

Particles physics described by renormalizable quantum field
theory (Standard Model).

Interpretation: physical constants depend on the observation
scale.

Noncommutative space:

definition of a new class of renormalization group (harmonic
term).

Topical problem of physics: compatibility between quantum
physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial
question.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Introduction

Renormalization ↔ physics, combinatorics, algebra, number
theory,...

Particles physics described by renormalizable quantum field
theory (Standard Model).

Interpretation: physical constants depend on the observation
scale.

Noncommutative space:

definition of a new class of renormalization group (harmonic
term).

Topical problem of physics: compatibility between quantum
physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial
question.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Introduction

Renormalization ↔ physics, combinatorics, algebra, number
theory,...

Particles physics described by renormalizable quantum field
theory (Standard Model).

Interpretation: physical constants depend on the observation
scale.

Noncommutative space:

definition of a new class of renormalization group (harmonic
term).

Topical problem of physics: compatibility between quantum
physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial
question.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Introduction

Renormalization ↔ physics, combinatorics, algebra, number
theory,...

Particles physics described by renormalizable quantum field
theory (Standard Model).

Interpretation: physical constants depend on the observation
scale.

Noncommutative space:

definition of a new class of renormalization group (harmonic
term).

Topical problem of physics: compatibility between quantum
physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial
question.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Introduction

Renormalization ↔ physics, combinatorics, algebra, number
theory,...

Particles physics described by renormalizable quantum field
theory (Standard Model).

Interpretation: physical constants depend on the observation
scale.

Noncommutative space:

definition of a new class of renormalization group (harmonic
term).

Topical problem of physics: compatibility between quantum
physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial
question.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Introduction

Renormalization ↔ physics, combinatorics, algebra, number
theory,...

Particles physics described by renormalizable quantum field
theory (Standard Model).

Interpretation: physical constants depend on the observation
scale.

Noncommutative space:

definition of a new class of renormalization group (harmonic
term).

Topical problem of physics: compatibility between quantum
physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial
question.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Introduction

Renormalization ↔ physics, combinatorics, algebra, number
theory,...

Particles physics described by renormalizable quantum field
theory (Standard Model).

Interpretation: physical constants depend on the observation
scale.

Noncommutative space:

definition of a new class of renormalization group (harmonic
term).

Topical problem of physics: compatibility between quantum
physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial
question.



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Plan

1 Commutative scalar theory

2 Power counting

3 Renormalization

4 Hopf algebra interpretation

5 Noncommutative QFT



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Plan

1 Commutative scalar theory

2 Power counting

3 Renormalization

4 Hopf algebra interpretation

5 Noncommutative QFT



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Plan

1 Commutative scalar theory

2 Power counting

3 Renormalization

4 Hopf algebra interpretation

5 Noncommutative QFT



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Plan

1 Commutative scalar theory

2 Power counting

3 Renormalization

4 Hopf algebra interpretation

5 Noncommutative QFT



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Plan

1 Commutative scalar theory

2 Power counting

3 Renormalization

4 Hopf algebra interpretation

5 Noncommutative QFT



Commutative scalar theory Power counting Renormalization Hopf algebra Noncommutative QFT

Definition of the theory

Action with parameters m and λ:

S [φ] =

∫
dDx

(1

2
(∂µφ)2 +

m2

2
φ2 + λφ4

)
Feynman graphs: arbitrary graphs whose vertices are of
coordination 4 (internal) or 1 (external).

1PI graphs: connected and still connected after cutting any
internal line.

Amplitudes of the graphs:

Each line carries an oriented impulsion k ∈ RD .

Conservation of impulsion for every vertex.

Remaining internal impulsions are integrated over in the
amplitude.

Contribution of a vertex: λ.

Contribution of an internal line: 1
k2+m2 .
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Physical quantities

Physical quantities: correlation functions
ΓN(p1, . . . , pN): sum of the amplitudes of all 1PI Feynman
graphs with N external legs carying the impulsions pi .

Particles interpretation: Feynman graphs represent particles of
a certain impulsion propagating along the lines and interacting
at the vertices.

Some coefficients of λ are divergent. Example: the tadpole.∫
dDk

1

k2 + m2

is quadratically divergent for D = 4 in the UV sector
(|k | → ∞).
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Superficial degree of divergence

Let G be a 1PI Feynman graph with V vertices, L loops and N
external legs.

Amplitude:

AG (p1, .., pN) = δ(p1+..+pN)

∫ L∏
i=1

dki IG (p2, .., pN , k1, .., kL)

Euler characteristic ⇒ L = V + 1− N
2 .

Scale transformation: pi 7→ ρpi and ki 7→ ρki

A
(ρ)
G ∝ ρ

ω(G).

Superficial degree of divergence of the theory:

ω(G ) = D + (D − 4)V + (2− D)
N

2
.
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Renormalizability

A graph G is said primitively divergent if ω(G ) ≥ 0.

Theorem

The amplitude of a graph G is absolutely convergent if and only if
G and each of its 1PI subgraphs are not primitively divergent.

ω(G ) = D + (D − 4)V + (2− D)
N

2
.

D > 4: ∀N, ∃V , ω(G ) ≥ 0: non-renormalizable.

D < 4: finite number of (N,V ) such that ω(G ) ≥ 0:
super-renormalizable.

D = 4: N = 2, 4 ⇔ ω(G ) ≥ 0: renormalizable.
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Subtraction scheme

Dimensional regularization: analytic continuation D ∈ C.
Singularity of the amplitudes for D = 4.

Subtraction operator: Taylor

τAG (p1, .., pN) = δ(p1+..+pN)

ω(G)∑
j=0

1

j!

dj

dt j
AG (tp2, .., tpN)|t=0

G : prim. div. graph without prim. div. subgraph

AR
G = (1− τ)AG : renormalized amplitude
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General formula

Contracted graph: let g be a subgraph of G . G/g : graph G
where g is contracted to a point.

G : graph with only one prim. div. subgraph g

AR
G = AG − τAG − (τAg )(AG/g − τAG/g )

General case:

AR
G = AG − τAG −

∑
g⊂G

(τAg )AR
G/g

where g is sumed over the 1PI prim. div. subgraphs of G .

→ Recursive method.

Solution of the recursive equations: forest formula (Zimmermann).
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BPHZ renormalization

Properties:

The renormalized amplitudes are convergent for D → 4.

Locality: All the divergent counterterms cG = AG − AR
G are of

the form of the action, so that they can be included in the
constants: λ 7→ λR , m 7→ mR ...

The correlation function ΓN(p1, . . . , pN) is the sum of the
renormalized amplitudes of all 1PI Feynman graphs with N
external legs carying the impulsions pi for the renormalized
constants.

→ experimental verification.
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Hopf algebra of graphs

Complex vector space associated to 1PI Feynman graphs.
Empty graph=1l (unit).

Product µ: (disconnected) juxtaposition of graphs.

→ H: generated algebra. Graded by number of loops.

Counit is trivial: ε : H → C, ε(1l) = 1.

Coproduct: ∆ : H → H⊗H

∆G = G ⊗ 1l + 1l⊗ G +
∑
g⊂G

g ⊗ G/g

where the sum is over the 1PI prim. div. subgraphs g of G .

Antipode: S(G ) = −G −
∑

g S(g)(G/g), S(1l) = 1l.

Theorem (Connes Kreimer)

Endowed with the coproduct ∆, H is a graded Hopf algebra.
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Antipode: S(G ) = −G −
∑

g S(g)(G/g), S(1l) = 1l.

Theorem (Connes Kreimer)

Endowed with the coproduct ∆, H is a graded Hopf algebra.
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Renormalized amplitudes

Aε: algebra of Laurent series in ε.

Amplitude A : H → Aε is a homomorphism.

Taylor operator is a projection τ : Aε → Aε.
Convolution product: if f , g ∈ Hom(H,Aε),

f ∗ g := µAε ◦ (f ⊗ g) ◦∆.

Counterterm: twisted antipode

cG = −τ
(
AG +

∑
g⊂G

cg AG/g

)

Renormalized amplitude:

AR
G = (c ∗ A)(G ).
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The Moyal space

Space of Schwartz functions f , g ∈ S(RD ,C).

Deformed product:

(f ? g)(x) =
1

πDθD

∫
dDydDz f (x + y)g(x + z)e−2iyΘ−1z

Θ = θΣ, Σ =


0 −1

1 0
0

0
0 −1

1 0
. . .


For θ = 0: (f ? g)(x) = f (x)·g(x).

Extension to the multiplier algebra: Mθ.

Tracial property: ∫
(f ? g) =

∫
(f ·g).
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UV-IR mixing

Action φ4 on the Moyal space:

S [φ] =

∫
dDx

(1

2
(∂µφ)2 +

m2

2
φ2 + λφ?φ?φ?φ

)
Feynman rules: λ 7→ λe i

θ2

2
(p1Θ−1p2+p1Θ−1p3+p2Θ−1p3)

UV-IR mixing for this theory (Minwalla et al. ’00).

Tadpole:

λ

∫
d4k

e ikΘp

k2 + m2
∝|p|→0

1

θ2p2

→ Non-renormalizability of the theory.
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Harmonic solution

Addition of a harmonic term to the action:

S [φ] =

∫
dDx

(1

2
(∂µφ)2 +

Ω2

2
x2φ2 +

m2

2
φ2 + λφ ? φ ? φ ? φ

)
.

Power counting (D = 4: renormalizable).

Form of the counterterms (structure of the Moyal product).

⇒ Renormalizability of the theory to all orders (D = 2, 4)
(Grosse Wulkenhaar ’04).

New properties of the flow (Disertori Gurau Magnen Rivasseau ’06).

Vacuum of the theory (A.G. Tanasa Wallet ’08).

Interprétation of the action with a deformation of a
superspace (Bieliavsky A.G. Tuynman ’10).

Gauge model (A.G. Wallet Wulkenhaar ’07).
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Solution with 1/p2

Addition of the term 1/p2 in the action:

S̃ [φ] = S [φ] +

∫
dDp

a

2θ2p2
φ̂(−p)φ̂(p).

Power counting (D = 4: renormalizable).

Form of the counterterms (structure of the Moyal product).

⇒ Renormalizability of the theory to all orders (D = 4)
(Gurau Magnen Rivasseau Tanasa ’09).

Invariance under translations.

Same properties of the flow as in the commutative theory.

Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt ’08).
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Conclusion

Ingredients of the renormalization: power counting and
locality.

BPHZ subtraction scheme has a Hopf algebra structure.

Noncommutative field theory exhibits a new divergence:
UV-IR mixing.

First solution: with harmonic term. It defines a new class of
renormalization group.

Second solution: with term 1/p2. Translation-invariant but
same properties as in the commutative theory.
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