Combinatorial aspects of renormalization in QFT

Axel de Goursac

Université Catholique de Louvain

Paris, March 29, 2011
Introduction

- **Renormalization** ↔ physics, combinatorics, algebra, number theory,…
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

Noncommutative space:

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.
→ Existence of renormalizable noncommutative QFT is a crucial question.
Introduction

- **Renormalization** ↔ physics, combinatorics, algebra, number theory,...

- Particles physics described by renormalizable quantum field theory (Standard Model).

- Interpretation: physical constants depend on the observation scale.

Noncommutative space:

- Definition of a new class of renormalization group (harmonic term).

- Topical problem of physics: compatibility between quantum physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial question.
Introduction

- Renormalization \leftrightarrow physics, combinatorics, algebra, number theory, ...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

Noncommutative space:
- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
 \Rightarrow At high energy scale, space-time could be noncommutative.
 \rightarrow Existence of renormalizable noncommutative QFT is a crucial question.
Introduction

- **Renormalization** ↔ physics, combinatorics, algebra, number theory,…
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

Noncommutative space:

- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
 ⇒ At high energy scale, space-time could be noncommutative.
 → Existence of renormalizable noncommutative QFT is a crucial question.
Introduction

- **Renormalization** ↔ physics, combinatorics, algebra, number theory,…
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

Noncommutative space:
- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.
→ Existence of renormalizable noncommutative QFT is a crucial question.
Introduction

- **Renormalization** ↔ physics, combinatorics, algebra, number theory,…
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

Noncommutative space:
- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
 - At high energy scale, space-time could be noncommutative.
 - Existence of renormalizable noncommutative QFT is a crucial question.
Introduction

- **Renormalization** ↔ physics, combinatorics, algebra, number theory, ...
- Particles physics described by renormalizable quantum field theory (Standard Model).
- Interpretation: physical constants depend on the observation scale.

Noncommutative space:
- definition of a new class of renormalization group (harmonic term).
- Topical problem of physics: compatibility between quantum physics and general relativity.
 ⇒ At high energy scale, space-time could be noncommutative.
 → Existence of renormalizable noncommutative QFT is a crucial question.
Introduction

• **Renormalization** ↔ physics, combinatorics, algebra, number theory,…

• Particles physics described by renormalizable quantum field theory (Standard Model).

• Interpretation: physical constants depend on the observation scale.

Noncommutative space:

• definition of a new class of renormalization group (harmonic term).

• Topical problem of physics: compatibility between quantum physics and general relativity.

⇒ At high energy scale, space-time could be noncommutative.

→ Existence of renormalizable noncommutative QFT is a crucial question.
Plan

1. Commutative scalar theory
2. Power counting
3. Renormalization
4. Hopf algebra interpretation
5. Noncommutative QFT
Plan

1. Commutative scalar theory
2. Power counting
3. Renormalization
4. Hopf algebra interpretation
5. Noncommutative QFT
Plan

1. Commutative scalar theory
2. Power counting
3. Renormalization
4. Hopf algebra interpretation
5. Noncommutative QFT
Plan

1. Commutative scalar theory
2. Power counting
3. Renormalization
4. Hopf algebra interpretation
5. Noncommutative QFT
Plan

1. Commutative scalar theory
2. Power counting
3. Renormalization
4. Hopf algebra interpretation
5. Noncommutative QFT
Definition of the theory

- Action with parameters m and λ:

$$ S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right) $$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

Amplitudes of the graphs:
- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ.
- Contribution of an internal line: $\frac{1}{k^2 + m^2}$.
Definition of the theory

- Action with parameters m and λ:

$$S[\phi] = \int d^D x \left(\frac{1}{2}(\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

Amplitudes of the graphs:

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ.
- Contribution of an internal line: $\frac{1}{k^2 + m^2}$.
Definition of the theory

- Action with parameters m and λ:
 \[S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right) \]

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

Amplitudes of the graphs:
- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ.
- Contribution of an internal line: $\frac{1}{k^2 + m^2}$.
Definition of the theory

- Action with parameters \(m \) and \(\lambda \):

\[
S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right)
\]

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

Amplitudes of the graphs:
- Each line carries an oriented impulsion \(k \in \mathbb{R}^D \).
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: \(\lambda \).
- Contribution of an internal line: \(\frac{1}{k^2 + m^2} \).
Definition of the theory

- Action with parameters m and λ:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

Amplitudes of the graphs:
- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ.
- Contribution of an internal line: $\frac{1}{k^2 + m^2}$.
Definition of the theory

- Action with parameters m and λ:

$$S[\phi] = \int d^Dx \left(\frac{1}{2}(\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

Amplitudes of the graphs:

- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.

- Contribution of a vertex: λ.
- Contribution of an internal line: $\frac{1}{k^2 + m^2}$.
Definition of the theory

- Action with parameters m and λ:

$$S[\phi] = \int d^Dx \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right)$$

- Feynman graphs: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- 1PI graphs: connected and still connected after cutting any internal line.

Amplitudes of the graphs:
- Each line carries an oriented impulsion $k \in \mathbb{R}^D$.
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: λ.
- Contribution of an internal line: $\frac{1}{k^2 + m^2}$.
Definition of the theory

- **Action with parameters** \(m \) and \(\lambda \):
 \[
 S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right)
 \]

- **Feynman graphs**: arbitrary graphs whose vertices are of coordination 4 (internal) or 1 (external).
- **1PI graphs**: connected and still connected after cutting any internal line.

Amplitudes of the graphs:
- Each line carries an oriented impulsion \(k \in \mathbb{R}^D \).
- Conservation of impulsion for every vertex.
- Remaining internal impulsions are integrated over in the amplitude.
- Contribution of a vertex: \(\lambda \).
- Contribution of an internal line: \(\frac{1}{k^2 + m^2} \).
Physical quantities

Physical quantities: correlation functions

\[\Gamma_N(p_1, \ldots, p_N) : \text{sum of the amplitudes of all 1PI Feynman graphs with } N \text{ external legs carrying the impulsions } p_i. \]

Particles interpretation: Feynman graphs represent particles of a certain impulsion propagating along the lines and interacting at the vertices.

Some coefficients of \(\lambda \) are divergent. Example: the tadpole.

\[\int d^D k \frac{1}{k^2 + m^2} \]

is quadratically divergent for \(D = 4 \) in the UV sector (\(|k| \to \infty \)).
Physical quantities

- Physical quantities: correlation functions
 \[\Gamma_N(p_1, \ldots, p_N) \]: sum of the amplitudes of all 1PI Feynman graphs with \(N \) external legs carrying the impulsions \(p_i \).

- Particles interpretation: Feynman graphs represent particles of a certain impulsion propagating along the lines and interacting at the vertices.

- Some coefficients of \(\lambda \) are divergent. Example: the tadpole.

\[\int d^D k \frac{1}{k^2 + m^2} \]

is quadratically divergent for \(D = 4 \) in the UV sector (\(|k| \to \infty \)).
Physical quantities

- Physical quantities: correlation functions
 \[\Gamma_N(p_1, \ldots, p_N) : \text{sum of the amplitudes of all } 1\text{PI Feynman graphs} \text{ with } N \text{ external legs carrying the impulses } p_i. \]

- Particles interpretation: Feynman graphs represent particles of a certain impulsion propagating along the lines and interacting at the vertices.

- Some coefficients of \(\lambda \) are divergent. Example: the tadpole.

\[\int d^Dk \frac{1}{k^2 + m^2} \]

is quadratically divergent for \(D = 4 \) in the UV sector \((|k| \to \infty)\).
Superficial degree of divergence

Let G be a 1PI Feynman graph with V vertices, L loops and N external legs.

- Amplitude:
 \[
 A_G(p_1,..,p_N) = \delta(p_1+..+p_N) \int \prod_{i=1}^{L} dk_i \ I_G(p_2,..,p_N,k_1,..,k_L)
 \]

- Euler characteristic $\Rightarrow L = V + 1 - \frac{N}{2}$.
- Scale transformation: $p_i \mapsto \rho p_i$ and $k_i \mapsto \rho k_i$
 \[
 A_G^{(\rho)} \propto \rho^\omega(G).
 \]

- Superficial degree of divergence of the theory:
 \[
 \omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}.
 \]
Superficial degree of divergence

Let G be a 1PI Feynman graph with V vertices, L loops and N external legs.

- **Amplitude:**

$$ A_G(p_1, .., p_N) = \delta(p_1 + .. + p_N) \int \prod_{i=1}^{L} dk_i \ I_G(p_2, .., p_N, k_1, .., k_L) $$

- **Euler characteristic** $\Rightarrow L = V + 1 - \frac{N}{2}$.

- **Scale transformation:** $p_i \mapsto \rho p_i$ and $k_i \mapsto \rho k_i$

$$ A_G^{(\rho)} \propto \rho^{\omega(G)}. $$

- Superficial degree of divergence of the theory:

$$ \omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}. $$
Let G be a 1PI Feynman graph with V vertices, L loops and N external legs.

- **Amplitude:**

$$A_G(p_1, \ldots, p_N) = \delta(p_1 + \ldots + p_N) \int \prod_{i=1}^{L} dk_i \ I_G(p_2, \ldots, p_N, k_1, \ldots, k_L)$$

- **Euler characteristic** $\Rightarrow L = V + 1 - \frac{N}{2}$.

- **Scale transformation:** $p_i \mapsto \rho p_i$ and $k_i \mapsto \rho k_i$

$$A_G^{(\rho)} \propto \rho^{\omega(G)}.$$

- **Superficial degree of divergence** of the theory:

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}.$$
Superficial degree of divergence

Let G be a 1PI Feynman graph with V vertices, L loops and N external legs.

- **Amplitude:**

$$A_G(p_1,..,p_N) = \delta(p_1+..+p_N) \int \prod_{i=1}^{L} dk_i \ I_G(p_2,..,p_N,k_1,..,k_L)$$

- **Euler characteristic** ⇒ $L = V + 1 - \frac{N}{2}$.

- **Scale** transformation: $p_i \mapsto \rho p_i$ and $k_i \mapsto \rho k_i$

$$A^{(\rho)}_G \propto \rho^{\omega(G)}.$$

- **Superficial degree of divergence of the theory:**

$$\omega(G) = D + (D-4)V + (2-D)\frac{N}{2}.$$
A graph G is said **primitively divergent** if $\omega(G) \geq 0$.

Theorem

The amplitude of a graph G is absolutely convergent if and only if G and each of its 1PI subgraphs are not primitively divergent.

\[
\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}.
\]

- $D > 4$: $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- $D < 4$: finite number of (N, V) such that $\omega(G) \geq 0$: super-renormalizable.
- $D = 4$: $N = 2, 4 \Leftrightarrow \omega(G) \geq 0$: renormalizable.
Renormalizability

A graph G is said primitively divergent if $\omega(G) \geq 0$.

Theorem

The amplitude of a graph G is absolutely convergent if and only if G and each of its 1PI subgraphs are not primitively divergent.

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}.$$

- $D > 4$: $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- $D < 4$: finite number of (N, V) such that $\omega(G) \geq 0$: super-renormalizable.
- $D = 4$: $N = 2, 4 \iff \omega(G) \geq 0$: renormalizable.
A graph G is said **primitively divergent** if $\omega(G) \geq 0$.

Theorem

The amplitude of a graph G is absolutely convergent if and only if G and each of its 1PI subgraphs are not primitively divergent.

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}.$$

- **$D > 4$:** $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- **$D < 4$:** finite number of (N, V) such that $\omega(G) \geq 0$: super-renormalizable.
- **$D = 4$:** $N = 2, 4 \iff \omega(G) \geq 0$: renormalizable.
A graph G is said **primitively divergent** if $\omega(G) \geq 0$.

Theorem

The amplitude of a graph G is absolutely convergent if and only if G and each of its 1PI subgraphs are not primitively divergent.

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}.$$

- $D > 4$: $\forall N, \exists V, \omega(G) \geq 0$: **non-renormalizable**.
- $D < 4$: finite number of (N, V) such that $\omega(G) \geq 0$: **super-renormalizable**.
- $D = 4$: $N = 2, 4 \iff \omega(G) \geq 0$: **renormalizable**.
A graph G is said **primitively divergent** if $\omega(G) \geq 0$.

Theorem

The amplitude of a graph G is absolutely convergent if and only if G and each of its 1PI subgraphs are not primitively divergent.

$$\omega(G) = D + (D - 4)V + (2 - D)\frac{N}{2}.$$

- $D > 4$: $\forall N, \exists V, \omega(G) \geq 0$: non-renormalizable.
- $D < 4$: finite number of (N, V) such that $\omega(G) \geq 0$: super-renormalizable.
- $D = 4$: $N = 2, 4 \iff \omega(G) \geq 0$: renormalizable.
Subtraction scheme

- **Dimensional regularization**: analytic continuation $D \in \mathbb{C}$. Singularity of the amplitudes for $D = 4$.

- Subtraction operator: Taylor

 $$\tau A_G(p_1,..,p_N) = \delta(p_1+..+p_N) \sum_{j=0}^{\omega(G)} \frac{1}{j!} \frac{d^j}{dt^j} A_G(tp_2,..,tp_N)|_{t=0}$$

- G: prim. div. graph without prim. div. subgraph

 $$A_G^R = (1 - \tau) A_G$$: renormalized amplitude
Subtraction scheme

- **Dimensional regularization**: analytic continuation $D \in \mathbb{C}$. Singularity of the amplitudes for $D = 4$.
- **Subtraction operator**: Taylor

 \[
 \tau A_G(p_1, .., p_N) = \delta(p_1 + \ldots + p_N) \sum_{j=0}^{\omega(G)} \frac{1}{j!} \frac{d^j}{dt^j} A_G(tp_2, .., tp_N)|_{t=0}
 \]

- G: prim. div. graph without prim. div. subgraph

 \[
 A_G^R = (1 - \tau)A_G: \text{renormalized amplitude}
 \]
Subtraction scheme

- **Dimensional regularization**: analytic continuation $D \in \mathbb{C}$. Singularity of the amplitudes for $D = 4$.

- Subtraction operator: Taylor

 $$\tau A_G(p_1, \ldots, p_N) = \delta(p_1 + \ldots + p_N) \sum_{j=0}^{\omega(G)} \frac{1}{j!} \frac{d^j}{dt^j} A_G(tp_2, \ldots, tp_N)\big|_{t=0}$$

- G: prim. div. graph without prim. div. subgraph

 $$A_G^R = (1 - \tau)A_G: \text{renormalized amplitude}$$
General formula

- **Contracted graph**: let g be a subgraph of G. \(G/g \): graph G where g is contracted to a point.

- G: graph with only one prim. div. subgraph g

 \[
 A_G^R = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})
 \]

- **General case**:

 \[
 A_G^R = A_G - \tau A_G - \sum_{g \subset G} (\tau A_g)A_{G/g}^R
 \]

 where g is summed over the 1PI prim. div. subgraphs of G.

 → Recursive method.

- Solution of the recursive equations: forest formula (Zimmermann).
General formula

- **Contracted graph:** let g be a subgraph of G. G/g: graph G where g is contracted to a point.

- G: graph with only one prim. div. subgraph g

$$A_G^R = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})$$

- General case:

$$A_G^R = A_G - \tau A_G - \sum_{g \subset G} (\tau A_g)A_{G/g}^R$$

where g is summed over the 1PI prim. div. subgraphs of G.

→ Recursive method.

- Solution of the recursive equations: forest formula (Zimmermann).
Contracted graph: let g be a subgraph of G. G/g: graph G where g is contracted to a point.

G: graph with only one prim. div. subgraph g

$$A_G^R = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})$$

General case:

$$A_G^R = A_G - \tau A_G - \sum_{g \subset G} (\tau A_g)A_{G/g}^R$$

where g is summed over the 1PI prim. div. subgraphs of G.

→ Recursive method.

• Solution of the recursive equations: forest formula (Zimmermann).
General formula

- **Contracted graph**: let g be a subgraph of G. G/g: graph G where g is contracted to a point.
- G: graph with only one prim. div. subgraph g

\[
A^R_G = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})
\]

- General case:

\[
A^R_G = A_G - \tau A_G - \sum_{g \subset G} (\tau A_g)A^R_{G/g}
\]

where g is summed over the 1PI prim. div. subgraphs of G.

→ Recursive method.

- Solution of the recursive equations: forest formula (Zimmermann).
General formula

- **Contracted graph**: let g be a subgraph of G. G/g: graph G where g is contracted to a point.
- G: graph with only one prim. div. subgraph g

$$A^R_G = A_G - \tau A_G - (\tau A_g)(A_{G/g} - \tau A_{G/g})$$

- General case:

$$A^R_G = A_G - \tau A_G - \sum_{g \subseteq G} (\tau A_g)A^R_{G/g}$$

where g is summed over the 1PI prim. div. subgraphs of G.

→ Recursive method.

- Solution of the recursive equations: forest formula (Zimmermann).
Properties:

- **The renormalized amplitudes are convergent for** $D \rightarrow 4$.
- **Locality:** All the divergent counterterms $c_G = A_G - A^R_G$ are of the form of the action, so that they can be included in the constants: $\lambda \mapsto \lambda_R$, $m \mapsto m_R$...
- The correlation function $\Gamma_N(p_1, \ldots, p_N)$ is the sum of the renormalized amplitudes of all 1PI Feynman graphs with N external legs carrying the impulsions p_i for the renormalized constants.

→ experimental verification.
Properties:

- The renormalized amplitudes are **convergent** for $D \to 4$.
- **Locality**: All the divergent counterterms $c_G = A_G - A_G^R$ are of the form of the action, so that they can be included in the constants: $\lambda \mapsto \lambda_R$, $m \mapsto m_R$...
- The correlation function $\Gamma_N(p_1, \ldots, p_N)$ is the sum of the renormalized amplitudes of all 1PI Feynman graphs with N external legs carrying the impulses p_i for the renormalized constants.

\rightarrow experimental verification.
Properties:

- The renormalized amplitudes are convergent for $D \to 4$.
- **Locality:** All the divergent counterterms $c_G = A_G - A^R_G$ are of the form of the action, so that they can be included in the constants: $\lambda \mapsto \lambda_R$, $m \mapsto m_R$...
- The correlation function $\Gamma_N(p_1, \ldots, p_N)$ is the sum of the renormalized amplitudes of all 1PI Feynman graphs with N external legs carrying the impulsions p_i for the renormalized constants.

→ experimental verification.
BPHZ renormalization

Properties:

- The renormalized amplitudes are convergent for $D \rightarrow 4$.
- **Locality**: All the divergent counterterms $c_G = A_G - A_G^R$ are of the form of the action, so that they can be included in the constants: $\lambda \mapsto \lambda_R, \; m \mapsto m_R$...
- The correlation function $\Gamma_N(p_1, \ldots, p_N)$ is the sum of the renormalized amplitudes of all 1PI Feynman graphs with N external legs carrying the impulsions p_i for the renormalized constants.

→ experimental verification.
Hopf algebra of graphs

- Complex vector space associated to 1PI Feynman graphs. Empty graph = 1 (unit).
- Product μ: (disconnected) juxtaposition of graphs. H: generated algebra. Graded by number of loops.
- Counit is trivial: $\epsilon : H \to \mathbb{C}$, $\epsilon(1) = 1$.
- Coproduct: $\Delta : H \to H \otimes H$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \subset G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.
- Antipode: $S(G) = -G - \sum_g S(g)(G/g)$, $S(1) = 1$.

Theorem (Connes Kreimer)

Endowed with the coproduct Δ, H is a graded Hopf algebra.
Hopf algebra of graphs

- Complex vector space associated to 1PI Feynman graphs. Empty graph $\mathbb{1}$ (unit).
- Product μ: (disconnected) juxtaposition of graphs.
- \mathcal{H}: generated algebra. Graded by number of loops.
 - Counit is trivial: $\varepsilon: \mathcal{H} \to \mathbb{C}$, $\varepsilon(\mathbb{1}) = 1$.
 - Coproduct: $\Delta: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$

$$\Delta G = G \otimes \mathbb{1} + \mathbb{1} \otimes G + \sum_{g \subset G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.
- Antipode: $S(G) = -G - \sum_g S(g)(G/g)$, $S(\mathbb{1}) = \mathbb{1}$.

Theorem (Connes Kreimer)

Endowed with the coproduct Δ, \mathcal{H} is a graded Hopf algebra.
Hopf algebra of graphs

- Complex vector space associated to 1PI Feynman graphs. Empty graph = 1 (unit).
- Product μ: (disconnected) juxtaposition of graphs.
- H: generated algebra. Graded by number of loops.
- Counit is trivial: $\varepsilon : H \to \mathbb{C}$, $\varepsilon(1) = 1$.
- Coproduct: $\Delta : H \to H \otimes H$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \subset G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.
- Antipode: $S(G) = -G - \sum_g S(g)(G/g)$, $S(1) = 1$.

Theorem (Connes Kreimer)

Endowed with the coproduct Δ, H is a graded Hopf algebra.
Hopf algebra of graphs

- Complex vector space associated to 1PI Feynman graphs.
 Empty graph = 1 (unit).
- Product μ: (disconnected) juxtaposition of graphs.
 $\rightarrow \mathcal{H}$: generated algebra. Graded by number of loops.
- Counit is trivial: $\varepsilon : \mathcal{H} \rightarrow \mathbb{C}, \varepsilon(1) = 1$.
- Coproduct: $\Delta : \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$

\[\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \subset G} g \otimes G/g \]

where the sum is over the 1PI prim. div. subgraphs g of G.
- Antipode: $S(G) = -G - \sum_{g} S(g)(G/g)$, $S(1) = 1$.

Theorem (Connes Kreimer)

Endowed with the coproduct Δ, \mathcal{H} is a graded Hopf algebra.
Hopf algebra of graphs

- Complex vector space associated to 1PI Feynman graphs. Empty graph=1 (unit).
- Product μ: (disconnected) juxtaposition of graphs.
- \mathcal{H}: generated algebra. Graded by number of loops.
- Counit is trivial: $\varepsilon : \mathcal{H} \to \mathbb{C}$, $\varepsilon(1) = 1$.
- Coproduct: $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \subset G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.
- Antipode: $S(G) = -G - \sum g S(g)(G/g)$, $S(1) = 1$.

Theorem (Connes Kreimer)

Endowed with the coproduct Δ, \mathcal{H} is a graded Hopf algebra.
Hopf algebra of graphs

- Complex vector space associated to 1PI Feynman graphs. Empty graph = 1 (unit).
- Product μ: (disconnected) juxtaposition of graphs. $\rightarrow \mathcal{H}$: generated algebra. Graded by number of loops.
- Counit is trivial: $\varepsilon: \mathcal{H} \rightarrow \mathbb{C}$, $\varepsilon(1) = 1$.
- Coproduct: $\Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$

$$\Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \subset G} g \otimes G/g$$

where the sum is over the 1PI prim. div. subgraphs g of G.
- Antipode: $S(G) = -G - \sum_g S(g)(G/g)$, $S(1) = 1$.

Theorem (Connes Kreimer)

Endowed with the coproduct Δ, \mathcal{H} is a graded Hopf algebra.
Hopf algebra of graphs

- Complex vector space associated to 1PI Feynman graphs. Empty graph = \(1\) (unit).
- Product \(\mu\): (disconnected) juxtaposition of graphs.
- \(\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}\):
 \[
 \Delta G = G \otimes 1 + 1 \otimes G + \sum_{g \subset G} g \otimes G/g,
 \]
 where the sum is over the 1PI prim. div. subgraphs \(g\) of \(G\).
- Antipode: \(S(G) = -G - \sum_g S(g)(G/g)\), \(S(1) = 1\).

Theorem (Connes Kreimer)

Endowed with the coproduct \(\Delta\), \(\mathcal{H}\) is a graded Hopf algebra.
Renormalized amplitudes

- A_ε: algebra of Laurent series in ε.
- Amplitude $A : \mathcal{H} \to A_\varepsilon$ is a homomorphism.
- Taylor operator is a projection $\tau : A_\varepsilon \to A_\varepsilon$.
- Convolution product: if $f, g \in Hom(\mathcal{H}, A_\varepsilon)$,
 \[
 f \ast g := \mu_{A_\varepsilon} \circ (f \otimes g) \circ \Delta.
 \]
- Counterterm: twisted antipode
 \[
 c_G = -\tau \left(A_G + \sum_{g \subset G} c_g A_{G/g} \right)
 \]
- Renormalized amplitude:
 \[
 A^R_G = (c \ast A)(G).
 \]
Renormalized amplitudes

- \mathcal{A}_ε: algebra of Laurent series in ε.
- **Amplitude** $A : \mathcal{H} \to \mathcal{A}_\varepsilon$ is a homomorphism.
- Taylor operator is a projection $\tau : \mathcal{A}_\varepsilon \to \mathcal{A}_\varepsilon$.
- Convolution product: if $f, g \in \text{Hom}(\mathcal{H}, \mathcal{A}_\varepsilon)$,

$$f \ast g := \mu_{\mathcal{A}_\varepsilon} \circ (f \otimes g) \circ \Delta.$$

- Counterterm: twisted antipode

$$c_G = -\tau \left(A_G + \sum_{g \subset G} c_g A_{G/g} \right)$$

- Renormalized amplitude:

$$A^R_G = (c \ast A)(G).$$
Renormalized amplitudes

- A_ϵ: algebra of Laurent series in ϵ.
- **Amplitude** $A : \mathcal{H} \to A_\epsilon$ is a homomorphism.
- Taylor operator is a projection $\tau : A_\epsilon \to A_\epsilon$.
- **Convolution product**: if $f, g \in \text{Hom}(\mathcal{H}, A_\epsilon)$,
 \[f \ast g := \mu_{A_\epsilon} \circ (f \otimes g) \circ \Delta. \]

- **Counterterm**: twisted antipode
 \[c_G = -\tau \left(A_G + \sum_{g \subset G} c_g A_{G/g} \right). \]

- **Renormalized amplitude**:
 \[A^R_G = (c \ast A)(G). \]
Renormalized amplitudes

- \mathcal{A}_ε: algebra of Laurent series in ε.
- **Amplitude** $A : \mathcal{H} \rightarrow \mathcal{A}_\varepsilon$ is a homomorphism.
- Taylor operator is a projection $\tau : \mathcal{A}_\varepsilon \rightarrow \mathcal{A}_\varepsilon$.
- **Convolution product:** if $f, g \in \text{Hom}(\mathcal{H}, \mathcal{A}_\varepsilon)$,
 \[
 f \ast g := \mu_{\mathcal{A}_\varepsilon} \circ (f \otimes g) \circ \Delta.
 \]

- **Counterterm:** twisted antipode
 \[
 c_G = -\tau \left(A_G + \sum_{g \in G} c_g A_{G/g} \right)
 \]

- **Renormalized amplitude:**
 \[A_G^R = (c \ast A)(G). \]
Renormalized amplitudes

- \mathcal{A}_ε: algebra of Laurent series in ε.
- Amplitude $A : \mathcal{H} \rightarrow \mathcal{A}_\varepsilon$ is a homomorphism.
- Taylor operator is a projection $\tau : \mathcal{A}_\varepsilon \rightarrow \mathcal{A}_\varepsilon$.
- Convolution product: if $f , g \in \text{Hom}(\mathcal{H}, \mathcal{A}_\varepsilon)$,
 \[f \ast g := \mu_{\mathcal{A}_\varepsilon} \circ (f \otimes g) \circ \Delta. \]
- Counterterm: twisted antipode
 \[c_G = -\tau \left(A_G + \sum_{g \subset G} c_g A_{G/g} \right) \]
- Renormalized amplitude:
 \[A^R_G = (c \ast A)(G). \]
Renormalized amplitudes

- \mathcal{A}_ε: algebra of Laurent series in ε.
- **Amplitude** $A : \mathcal{H} \to \mathcal{A}_\varepsilon$ is a homomorphism.
- Taylor operator is a projection $\tau : \mathcal{A}_\varepsilon \to \mathcal{A}_\varepsilon$.
- **Convolution product:** if $f, g \in \text{Hom}(\mathcal{H}, \mathcal{A}_\varepsilon)$,
 \[f \ast g := \mu_{\mathcal{A}_\varepsilon} \circ (f \otimes g) \circ \Delta. \]

- **Counterterm:** twisted antipode
 \[c_G = -\tau \left(A_G + \sum_{g \subset G} c_g A_{G/g} \right) \]

- **Renormalized amplitude:**
 \[A_G^R = (c \ast A)(G). \]
The Moyal space

- **Space of Schwartz functions** \(f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C}) \).
- **Deformed product:**

\[
(f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^Dy d^Dz \ f(x + y) g(x + z) e^{-2iy\Theta^{-1}z}
\]

\[
\Theta = \theta \Sigma, \quad \Sigma = \begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
& & & \ddots
\end{pmatrix}
\]

- For \(\theta = 0 \): \((f \star g)(x) = f(x) \cdot g(x)\).
- Extension to the multiplier algebra: \(\mathcal{M}_\theta \).
- **Tracial property:**

\[
\int (f \star g) = \int (f \cdot g).
\]
The Moyal space

- **Space of Schwartz functions** $f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C})$.

- **Deformed product**:

$$\begin{align*}
(f \star g)(x) &= \frac{1}{\pi^D \theta^D} \int d^D y d^D z \ f(x + y) g(x + z) e^{-2iy\Theta^{-1}z} \\
\Theta &= \theta \Sigma, \\
\Sigma &= \begin{pmatrix}
0 & -1 & 0 & \cdots \\
1 & 0 & 0 & \cdots \\
0 & 0 & -1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\end{align*}$$

- For $\theta = 0$: $(f \star g)(x) = f(x) \cdot g(x)$.

- Extension to the multiplier algebra: \mathcal{M}_θ.

- **Tracial property**:

$$\int (f \star g) = \int (f \cdot g)$$
The Moyal space

- Space of Schwartz functions $f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C})$.
- **Deformed product:**

 $$(f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^D y d^D z \, f(x + y) g(x + z) e^{-2iy\Theta^{-1}z}$$

 $$\Theta = \theta \Sigma, \quad \Sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

 For $\theta = 0$: $(f \star g)(x) = f(x) \cdot g(x)$.

- Extension to the multiplier algebra: \mathcal{M}_θ.
- Tracial property:

 $$\int (f \star g) = \int (f \cdot g).$$
The Moyal space

- Space of Schwartz functions \(f, g \in \mathcal{S}(\mathbb{R}^D, \mathbb{C}) \).
- **Deformed product:**
 \[
 (f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^D y d^D z \, f(x + y) g(x + z) e^{-2iy\Theta^{-1}z}
 \]
 \[
 \Theta = \theta \Sigma, \quad \Sigma = \begin{pmatrix}
 0 & -1 & 0 & \cdots \\
 1 & 0 & 0 & \cdots \\
 0 & 0 & -1 & \cdots \\
 \vdots & \vdots & \vdots & \ddots
 \end{pmatrix}
 \]
- For \(\theta = 0 \): \((f \star g)(x) = f(x) \cdot g(x) \).
- Extension to the multiplier algebra: \(\mathcal{M}_\theta \).
- Tracial property:
 \[
 \int (f \star g) = \int (f \cdot g).
 \]
The Moyal space

- Space of Schwartz functions \(f, g \in \mathcal{S} (\mathbb{R}^D, \mathbb{C}) \).

- **Deformed product:**

\[
(f \star g)(x) = \frac{1}{\pi^D \theta^D} \int d^D y d^D z \ f(x + y) g(x + z) e^{-2 i y \Theta^{-1} z}
\]

\[
\Theta = \theta \Sigma, \quad \Sigma = \begin{pmatrix}
0 & -1 & 0 & \cdots \\
1 & 0 & 0 & \cdots \\
0 & 0 & -1 & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]

- For \(\theta = 0 \): \((f \star g)(x) = f(x) \cdot g(x) \).

- Extension to the multiplier algebra: \(\mathcal{M}_\theta \).

- Tracial property:

\[
\int (f \star g) = \int (f \cdot g).
\]
Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \ast \phi \ast \phi \ast \phi \right)$$

Feynman rules: $\lambda \mapsto \lambda e^{i \frac{\theta^2}{2} (p_1 \Theta^{-1} p_2 + p_1 \Theta^{-1} p_3 + p_2 \Theta^{-1} p_3)}$

UV-IR mixing for this theory (Minwalla et al. '00).

Tadpole:

$$\lambda \int d^4 k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto |p| \to 0 \frac{1}{\theta^2 p^2}$$

\to Non-renormalizability of the theory.
UV-IR mixing

- Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \phi \phi \phi \right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i \frac{\Theta^2}{2} (p_1 \Theta^{-1} p_2 + p_1 \Theta^{-1} p_3 + p_2 \Theta^{-1} p_3)}$

- UV-IR mixing for this theory (Minwalla et al. '00).

- Tadpole:

$$\lambda \int d^4 k \frac{e^{i k \Theta p}}{k^2 + m^2} \propto |p| \to 0 \frac{1}{\theta^2 p^2}$$

→ Non-renormalizability of the theory.
UV-IR mixing

- Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} \left(\partial_{\mu} \phi \right)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \phi \phi \phi \phi \right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i\frac{\theta^2}{2} (p_1 \Theta^{-1} p_2 + p_1 \Theta^{-1} p_3 + p_2 \Theta^{-1} p_3)}$

- **UV-IR mixing** for this theory (Minwalla et al. '00).

- Tadpole:

$$\lambda \int d^4 k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto \frac{1}{|p| \to 0} \frac{1}{\theta^2 p^2}$$

\rightarrow Non-renormalizability of the theory.
UV-IR mixing

- Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi \right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i\frac{\theta^2}{2} (p_1 \Theta^{-1} p_2 + p_1 \Theta^{-1} p_3 + p_2 \Theta^{-1} p_3)}$

- UV-IR mixing for this theory (Minwalla et al. '00).

- Tadpole:

$$\lambda \int d^4 k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto |p| \rightarrow 0 \quad \frac{1}{\theta^2 p^2}$$

→ Non-renormalizability of the theory.
UV-IR mixing

- Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \phi \phi \phi \phi \right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i \frac{\theta^2}{2} (p_1 \Theta^{-1} p_2 + p_1 \Theta^{-1} p_3 + p_2 \Theta^{-1} p_3)}$

- UV-IR mixing for this theory (Minwalla et al. '00).

- Tadpole:

$$\lambda \int d^4 k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto |p| \rightarrow 0 \frac{1}{\theta^2 p^2}$$

→ Non-renormalizability of the theory.
UV-IR mixing

- Action ϕ^4 on the Moyal space:

$$S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{m^2}{2} \phi^2 + \lambda \phi^4 \right)$$

- Feynman rules: $\lambda \mapsto \lambda e^{i\frac{\theta^2}{2} (p_1 \Theta^{-1} p_2 + p_1 \Theta^{-1} p_3 + p_2 \Theta^{-1} p_3)}$

- UV-IR mixing for this theory (Minwalla et al. '00).

- Tadpole:

$$\lambda \int d^4 k \frac{e^{ik\Theta p}}{k^2 + m^2} \propto |p| \to 0 \frac{1}{\theta^2 p^2}$$

→ Non-renormalizability of the theory.
Harmonic solution

• Addition of a harmonic term to the action:

\[S[\phi] = \int d^D x \left(\frac{1}{2}(\partial_\mu \phi)^2 + \frac{\Omega^2}{2} x^2 \phi^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \ast \phi \ast \phi \ast \phi \right). \]

• Power counting \((D = 4):\) renormalizable).

• Form of the counterterms \(\text{(structure of the Moyal product)}\).

\[\Rightarrow \text{Renormalizability of the theory to all orders} \ (D = 2, 4) \]
\(\text{(Grosse Wulkenhaar '04).}\)

• New properties of the flow \(\text{(Disertori Gurau Magnen Rivasseau '06).}\)

• Vacuum of the theory \(\text{(A.G. Tanasa Wallet '08).}\)

• Interprétation of the action with a deformation of a superspace \(\text{(Beliavsky A.G. Tuynman '10).}\)

• Gauge model \(\text{(A.G. Wallet Wulkenhaar '07).}\)
Addition of a harmonic term to the action:

\[S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{\Omega^2}{2} x^2 \phi^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi \right). \]

- **Power counting** \((D = 4): \text{renormalizable}).
- Form of the counterterms (structure of the Moyal product).
- Renormalizability of the theory to all orders \((D = 2, 4)\) (Grosse Wulkenhaar ‘04).
- New properties of the flow (Disertori Gurai Magnen Rivasseau ‘06).
- Vacuum of the theory (A.G. Tanasa Wallet ‘08).
- Interprétation of the action with a deformation of a superspace (Bieliavsky A.G. Tuynman ‘10).
Harmonic solution

- Addition of a harmonic term to the action:

\[S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{\Omega^2}{2} x^2 \phi^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi \right). \]

- **Power counting** \((D = 4):\) renormalizable.
- **Form of the counterterms** (structure of the Moyal product).
 \[\Rightarrow \text{Renormalizability of the theory to all orders} \ (D = 2, 4) \]
 (Grosse Wulkenhaar '04).
- **New properties of the flow** (Disertori Gurau Magnen Rivasseau '06).
- **Vacuum of the theory** (A.G. Tanasa Wallet '08).
- **Interprétation of the action with a deformation of a superspace** (Bieliavsky A.G. Tuynman '10).
- **Gauge model** (A.G. Wallet Wulkenhaar '07).
Harmonic solution

- Addition of a harmonic term to the action:

\[S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{\Omega^2}{2} x^2 \phi^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi \right). \]

- **Power counting** \((D = 4):\) renormalizable.
- **Form of the counterterms** (structure of the Moyal product).
- \(\Rightarrow\) **Renormalizability** of the theory to all orders \((D = 2, 4)\)

 (Grosse Wulkenhaar '04).

- New properties of the flow (Disertori Gurau Magnen Rivasseau '06).
- Vacuum of the theory (A.G. Tanasa Wallet '08).
- Interprétation of the action with a deformation of a superspace (Beliavsky A.G. Tuynman '10).
- Gauge model (A.G. Wallet Wulkenhaar '07).
Harmonic solution

- Addition of a harmonic term to the action:

\[S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{\Omega^2}{2} x^2 \phi^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi \right). \]

- **Power counting** \((D = 4): \) renormalizable).

- **Form of the counterterms** \(\) (structure of the Moyal product).

 \[\Rightarrow \textbf{Renormalizability} \ \text{of the theory to all orders} \ (D = 2, 4) \]
 \(\) (Grosse Wulkenhaar '04).

- **New properties of the flow** \(\) (Disertori Gurau Magnen Rivasseau '06).

- **Vacuum of the theory** \(\) (A.G. Tanasa Wallet '08).

- **Interprétation of the action with a deformation of a superspace** \(\) (Beliavsky A.G. Tuynman '10).

- **Gauge model** \(\) (A.G. Wallet Wulkenhaar '07).
Harmonic solution

- Addition of a harmonic term to the action:

\[
S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{\Omega^2}{2} x^2 \phi^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi \right).
\]

- **Power counting** \((D = 4):\) renormalizable).

- **Form of the counterterms** (structure of the Moyal product).

 \(\Rightarrow\) **Renormalizability** of the theory to all orders \((D = 2, 4)\)

 (Grosse Wulkenhaar '04).

- **New properties of the flow** (Disertori Gurau Magnen Rivasseau '06).

- **Vacuum of the theory** (A.G. Tanasa Wallet '08).

- **Interprétation of the action with a deformation of a superspace** (Bieliavsky A.G. Tuynman '10).

- **Gauge model** (A.G. Wallet Wulkenhaar '07).
Harmonic solution

- Addition of a harmonic term to the action:

\[S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{\Omega^2}{2} x^2 \phi^2 + \frac{m^2}{2} \phi^2 + \lambda \phi * \phi * \phi * \phi \right). \]

- **Power counting** \((D = 4): \text{renormalizable}).

- **Form of the counterterms** (structure of the Moyal product).

 \(\Rightarrow \) **Renormalizability** of the theory to all orders \((D = 2, 4)\)

 \((\text{Grosse Wulkenhaar '04}).\)

- **New properties of the flow** \((\text{Disertori Gurau Magnen Rivasseau '06}).\)

- **Vacuum of the theory** \((\text{A.G. Tanasa Wallet '08}).\)

- **Interprétation of the action with a deformation of a superspace** \((\text{Bieliavsky A.G. Tuynman '10}).\)

- **Gauge model** \((\text{A.G. Wallet Wulkenhaar '07}).\)
Harmonic solution

- Addition of a harmonic term to the action:

\[
S[\phi] = \int d^D x \left(\frac{1}{2} (\partial_\mu \phi)^2 + \frac{\Omega^2}{2} x^2 \phi^2 + \frac{m^2}{2} \phi^2 + \lambda \phi \star \phi \star \phi \star \phi \right).
\]

- **Power counting** \((D = 4): \text{renormalizable} \).
- **Form of the counterterms** \((\text{structure of the Moyal product})\).
 \(\Rightarrow\) **Renormalizability** of the theory to all orders \((D = 2, 4)\)
 \(\text{(Grosse Wulkenhaar '04).}\)
- **New properties of the flow** \(\text{(Disertori Gurau Magnen Rivasseau '06).}\)
- **Vacuum of the theory** \(\text{(A.G. Tanasa Wallet '08).}\)
- **Interprétation of the action with a deformation of a superspace** \(\text{(Beliavsky A.G. Tuynman '10).}\)
- **Gauge model** \(\text{(A.G. Wallet Wulkenhaar '07).}\)
Solution with $1/p^2$

- Addition of the term $1/p^2$ in the action:

$$\tilde{S}[\phi] = S[\phi] + \int d^D p \frac{a}{2\theta^2 p^2} \hat{\phi}(-p)\hat{\phi}(p).$$

- Power counting ($D = 4$: renormalizable).
- Form of the counterterms (structure of the Moyal product).
 \Rightarrow Renormalizability of the theory to all orders ($D = 4$)
 (Gurau Magnen Rivasseau Tanasa '09).
- Invariance under translations.
- Same properties of the flow as in the commutative theory.
- Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).
Solution with $1/p^2$

- Addition of the term $1/p^2$ in the action:

$$\tilde{S}[\phi] = S[\phi] + \int d^D p \frac{a}{2\theta^2 p^2} \hat{\phi}(-p)\hat{\phi}(p).$$

- Power counting ($D = 4$: renormalizable).

- Form of the counterterms (structure of the Moyal product).

\Rightarrow Renormalizability of the theory to all orders ($D = 4$)

(Gurau Magnen Rivesveau Tanasa '09).

- Invariance under translations.

- Same properties of the flow as in the commutative theory.

- Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).
Solution with $1/p^2$

- Addition of the term $1/p^2$ in the action:

$$\tilde{S}[\phi] = S[\phi] + \int d^D p \frac{a}{2\theta^2 p^2} \hat{\phi}(-p)\hat{\phi}(p).$$

- Power counting ($D = 4$: renormalizable).
- Form of the counterterms (structure of the Moyal product).

\Rightarrow Renormalizability of the theory to all orders ($D = 4$) (Gurau Magnen Rivasseau Tanasa '09).

- Invariance under translations.
- Same properties of the flow as in the commutative theory.
- Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).
Solution with $1/p^2$

- Addition of the term $1/p^2$ in the action:

$$\tilde{S}[\phi] = S[\phi] + \int d^Dp \frac{a}{2\theta^2 p^2} \hat{\phi}(-p)\hat{\phi}(p).$$

- Power counting ($D = 4$: renormalizable).
- Form of the counterterms (structure of the Moyal product).

\Rightarrow Renormalizability of the theory to all orders ($D = 4$)

(Gurau Magnen Rivasseau Tanasa '09).

- Invariance under translations.
- Same properties of the flow as in the commutative theory.
- Gauge model (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).
Solution with $1/p^2$

- Addition of the term $1/p^2$ in the action:

$$\tilde{S}[\phi] = S[\phi] + \int d^D p \frac{a}{2\theta^2 p^2} \hat{\phi}(-p)\hat{\phi}(p).$$

- **Power counting** ($D = 4$: renormalizable).
- **Form of the counterterms** (structure of the Moyal product).

\Rightarrow **Renormalizability** of the theory to all orders ($D = 4$)

(Gurau Magnen Rivasseau Tanasa '09).

- **Invariance under translations.**
- **Same properties of the flow as in the commutative theory.**
- **Gauge model** (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).
Solution with $1/p^2$

- Addition of the term $1/p^2$ in the action:

$$\tilde{S}[\phi] = S[\phi] + \int d^D p \frac{a}{2\theta^2 p^2} \hat{\phi}(-p)\hat{\phi}(p).$$

- **Power counting** ($D = 4$: renormalizable).
- **Form of the counterterms** (structure of the Moyal product).
 - **Renormalizability** of the theory to all orders ($D = 4$)
 (Gurau Magnen Rivasseau Tanasa '09).
- **Invariance under translations.**
- **Same properties of the flow as in the commutative theory.**
- **Gauge model** (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).
Solution with $1/p^2$

- Addition of the term $1/p^2$ in the action:

\[\tilde{S}[\phi] = S[\phi] + \int d^D p \frac{a}{2\theta^2 p^2} \hat{\phi}(-p)\hat{\phi}(p). \]

- **Power counting** ($D = 4$: renormalizable).
- **Form of the counterterms** (structure of the Moyal product).

\Rightarrow **Renormalizability** of the theory to all orders ($D = 4$)
(Gurau Magnen Rivasseau Tanasa '09).

- Invariance under translations.
- Same properties of the flow as in the commutative theory.
- **Gauge model** (Blaschke Gieres Kronberger Schweda Wohlgenannt '08).
Conclusion

- Ingredients of the renormalization: power counting and locality.
- BPHZ subtraction scheme has a Hopf algebra structure.
- Noncommutative field theory exhibits a new divergence: UV-IR mixing.
- First solution: with harmonic term. It defines a new class of renormalization group.
- Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.
Ingredients of the renormalization: power counting and locality.

BPHZ subtraction scheme has a Hopf algebra structure.

Noncommutative field theory exhibits a new divergence: UV-IR mixing.

First solution: with harmonic term. It defines a new class of renormalization group.

Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.
Conclusion

- Ingredients of the renormalization: power counting and locality.
- BPHZ subtraction scheme has a Hopf algebra structure.
- Noncommutative field theory exhibits a new divergence: UV-IR mixing.
 - First solution: with harmonic term. It defines a new class of renormalization group.
 - Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.
Conclusion

- Ingredients of the renormalization: *power counting* and *locality*.
- BPHZ subtraction scheme has a *Hopf algebra structure*.
- Noncommutative field theory exhibits a new divergence: *UV-IR mixing*.
- First solution: with harmonic term. It defines a *new class* of renormalization group.
- Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.
Conclusion

- Ingredients of the renormalization: power counting and locality.
- BPHZ subtraction scheme has a Hopf algebra structure.
- Noncommutative field theory exhibits a new divergence: UV-IR mixing.
- First solution: with harmonic term. It defines a new class of renormalization group.
- Second solution: with term $1/p^2$. Translation-invariant but same properties as in the commutative theory.