Knots and their related q-series (joint with Don Zagier)

Stavros Garoufalidis stavros@mpim-bonn.mpg.de

Shenzhen, China

Séminaire CALIN: Combinatorics, Algorithms and Interactions and GDR EFI: Équations fonctionnelles et interactions

27 April, 2021

Outline

(1) A q-series
(2) Hyperbolic geometry
(3) Jones/Kashaev
(4) 3D-index
(5) Teichmüller TQFT/Complex Chern-Simons theory
(6) Convergent/divergent series
(7) Resurgence
(8) q-holonomy
(9) Synthesis: extension to $\mathrm{SL}_{2}(\mathbb{Z})$
(10) Holomoprhic quantum modular forms

Spin networks are plane trivalent graphs with multiple edges/loops. The evaluation of quantum spin networks produces (multi-parameter) power series in q with integer coefficients. For the simplest spin network, the tetrahedron, the corresponding q-series is

$$
\begin{aligned}
G_{0}(q) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n(n+1) / 2}}{(q ; q)_{n}^{2}} \\
& =1-q-2 q^{2}-2 q^{3}-2 q^{4}+q^{6}+\ldots
\end{aligned}
$$

where $(q ; q)_{n}=\prod_{j=1}^{n}\left(1-q^{j}\right)$ is the n-th quantum factorial. Integer coefficients with both positive and negative signs.
$G_{0}(q)$ is an analytic function of $|q|<1$. Let $q=e^{2 \pi i \tau}$ and $g_{0}(\tau)=G_{0}(q)$ for $\operatorname{Im}(\tau)>0$. What is the asymptotics as $\tau \rightarrow 0$?

A hard numerical computation shows that the osciallation is about 0.3230659472 . I recognized this number to be approximately $V /(2 \pi)$ where

$$
V=2 \operatorname{Im}\left(\operatorname{Li}_{2}\left(e^{2 \pi i / 6}\right)\right), \quad \operatorname{Li}_{2}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}
$$

An even harder numerical computation (using numerical evaluation of the q-series, extrapolation by Richardson transform and recognition of the numbers) reveals that

$$
g_{0}(\tau) \sim \sqrt{\tau}(\widehat{\Phi}(2 \pi i \tau)-i \widehat{\Phi}(-2 \pi i \tau))
$$

where

$$
\begin{gathered}
\widehat{\Phi}(x)=e^{i V / x} \Phi(x) \\
\Phi(x)=\sum_{j=0}^{\infty} A_{j} x^{j}, \quad A_{j}=\frac{1}{\sqrt[4]{3}}\left(\frac{1}{72 \sqrt{-3}}\right)^{j} \frac{a_{j}}{j!}
\end{gathered}
$$

and $a_{j} \in \mathbb{Q}$ with

j	0	1	2	3	4	5	6	7
a_{j}	1	11	697	$\frac{724351}{5}$	$\frac{278392949}{5}$	$\frac{244284791741}{7}$	$\frac{1140363907117019}{35}$	$\frac{212114205337147471}{5}$

Don remembered the number 697 in some of the hundreds of joint pari files, grep-ed the answer and found it in relation to the asymptotics of the Kashaev invariant of the 4_{1} knot.

We knew 150 terms of the $\widehat{\Phi}$-series of the 4_{1} knot and once we matched 11 and 697, we were able to further match 20 more. But what does $G_{0}(q)$ have to do with the 4_{1} knot?

By hyperbolic metric we mean a complete, finite volume, constant curvature -1 Riemannian metric.

Universal cover $\tilde{M}=\mathbb{H}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{+}, d s^{2}=\frac{d x^{2}+d y^{2}+d z^{2}}{z^{2}}$.

$$
\begin{gathered}
\operatorname{Isom}^{+}(\mathbb{H})=\operatorname{PSL}_{2}(\mathbb{C})=\mathrm{SL}_{2}(\mathbb{C}) / \pm l \\
\mathrm{SL}_{2}(\mathbb{C})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a d-b c=1\right\}
\end{gathered}
$$

$\rho: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\mathbb{C})$ is the discrete faithful representation of a hyperbolic manifold M.
The conjugacy class of $\gamma \in \pi_{1}(M)$ is represented by a unique geodesic whose complex length is essentially $\operatorname{tr}(\rho(\gamma)) \in \mathbb{C}$.
Trace field

$$
F(M)=\mathbb{Q}\left\langle\operatorname{tr}(\rho(\gamma)) \mid \gamma \in \pi_{1}(M)\right\rangle
$$

- $\pi_{1}(M)$ is finitely generated (even finitely presented),
- $\rho: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\overline{\mathbb{Q}})$

So, $F(M)$ is a number field.

$$
\begin{gathered}
\pi_{1}\left(4_{1}\right)=\left\langle a, b \mid b a b^{-1} a b=a b a^{-1} b a\right\rangle \\
\rho(a)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad \rho(b)=\left(\begin{array}{cc}
1 & 0 \\
-\epsilon^{2 \pi i / 6} & 1
\end{array}\right) \\
F\left(4_{1}\right)=\mathbb{Q}(\sqrt{-3}) .
\end{gathered}
$$

This is the story of finite dimensional representations of $U_{q}\left(\mathfrak{s l}_{2}\right)$ at roots of unity.

Upside-down cake:

$$
J(q)=\sum_{n=0}^{\infty}(-1)^{n} \frac{(q ; q)_{n}^{2}}{q^{n(n+1) / 2}}=\sum_{n=0}^{\infty}(q ; q)_{n}\left(q^{-1} ; q^{-1}\right)_{n}
$$

It can be evaluated when $q=e^{2 \pi i / N}$ is a root of unity.

N	1	2	3	4	5	6	\cdots	100
$J(q)$	1	5	13	27	$46+2 \sqrt{5} \approx 50.47$	89	\cdots	8.2×10^{16}

Volume Conjecture (Kashaev):

$$
\lim _{N} \frac{1}{N} \log J\left(e^{2 \pi i / N}\right)=\frac{V}{2 \pi} .
$$

Asymptotics to all orders in $1 / N$:

$$
J\left(e^{2 \pi i / N}\right) \sim N^{3 / 2} \widehat{\Phi}\left(\frac{2 \pi i}{N}\right)
$$

This is the story of Superconformal field theory and a 3d-3d correspondence of a six-dimensional theory X. The 3D-index was introduced by Dimofte-Gaiotto-Gukov.

Building block: the tetrahedron index:

$$
I_{\Delta}(m, e)=\sum_{n=\max \{0,-e\}}^{\infty}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)-\left(n+\frac{1}{2} e\right) m}}{(q)_{n}(q)_{n+e}}
$$

A knot complement is assembled out of ideal tetrahedra, each with its own building block, with contracted indices. For the 4_{1} knot:

$$
\operatorname{Ind}_{4_{1}}(q)=\sum_{k_{1}, k_{2} \in \mathbb{Z}} I_{\Delta}\left(k_{1}, k_{2}\right) I_{\Delta}\left(k_{2}, k_{1}\right)=1-8 q-9 q^{2}+18 q^{3}+46 q^{4}+90 q^{5}+\cdots
$$

An illegitemate calculation predicts that $\operatorname{Ind}_{4_{1}}(q)=G_{0}(q)^{2}$ but this is not true. So, the search for another series $G_{1}(q)$ starts.

This is the story of representations of the mapping class group in Hilbert spaces and of quantum hyperbolic geometry, introduced by Andersen-Kashaev. It is also the story of complex Chern-Simons theory introduced by Dimofte and Gukov.

The building block of this theory is Faddeev's quantum dilogarithm.

$$
\Phi_{b}(z)=\exp \left(\frac{1}{4} \int_{\mathbb{R}^{(+)}} \frac{e^{-2 i x z}}{\sinh (b x) \sinh \left(b^{-1} x\right)} \frac{d x}{x}\right) .
$$

$\left(\tau=b^{2}\right)$.

Given an ideal triangulation of a knot complement, we place one quantum dilogarithm at each tetrahedron and contract indices. For the 4_{1} knot we have (Andersen-Kashaev):

$$
Z_{4_{1}}(\tau)=\int_{\mathbb{R}+i \varepsilon} \Phi_{\sqrt{\tau}}(x)^{2} e^{-\pi i x^{2}} d x \quad\left(\tau \in \mathbb{C}^{\prime}=\mathbb{C} \backslash(-\infty, 0]\right)
$$

(G.-Kashaev) When $\operatorname{Im}(\tau)>0$, we have:

$$
\begin{equation*}
2 i(\tilde{q} / q)^{1 / 24} Z_{4_{1}}(\tau)=\tau^{1 / 2} G_{1}(q) G_{0}(\tilde{q})-\tau^{-1 / 2} G_{0}(q) G_{1}(\tilde{q}), \tag{1}
\end{equation*}
$$

where $q=e^{2 \pi i \tau}$ and $\tilde{q}=e^{-2 \pi i / \tau}$
where

$$
\begin{aligned}
G_{1}(q) & =\sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m(m+1) / 2}}{(q)_{m}^{2}}\left(E_{1}(q)+2 \sum_{j=1}^{m} \frac{1+q^{j}}{1-q^{j}}\right) \\
& =1-7 q-14 q^{2}-8 q^{3}-2 q^{4}+30 q^{5}+43 q^{6}+95 q^{7}+109 q^{8}+\ldots
\end{aligned}
$$

where $E_{1}(q)$ is

$$
E_{1}(q)=1-4 \sum_{n=1}^{\infty} \frac{q^{n}}{1-q^{n}}=1-4 \sum_{n=1}^{\infty} d(n) q^{n}
$$

where $d(n)$ is the number of divisors of n.

The relation of G_{0}, G_{1} and the 3D-index:

$$
\operatorname{Ind}_{4_{1}}(q)=G_{0}(q) G_{1}(q)
$$

The asymptotics of $g_{1}(\tau)=G_{1}\left(e^{2 \pi i \tau}\right)$ at $\tau \rightarrow 0$:

$$
g_{1}(\tau) \sim \frac{1}{\sqrt{\tau}}(\widehat{\Phi}(2 \pi i \tau)+i \widehat{\Phi}(-2 \pi i \tau))
$$

So, the quantum invariants of the 4_{1} involve the pair of q-series $\left(G_{0}(q), G_{1}(q)\right)$ and the pair

$$
\left(\widehat{\Phi}^{\left(\sigma_{1}\right)}(h), \widehat{\Phi}^{\left(\sigma_{2}\right)}(h)\right):=(\widehat{\Phi}(h), i \widehat{\Phi}(-h))
$$

of factorially divergent asymptotic power series, labeled by the boundary parabolic $\mathrm{SL}_{2}(\mathbb{C})$-representations of the fundamental group.

Define:

$$
Q(u)=e^{-V /(2 \pi)} \Phi(2 \pi i u) \Phi\left(-\frac{2 \pi i u}{1+u}\right)-e^{V /(2 \pi)} \Phi\left(\frac{2 \pi i u}{1+u}\right) \Phi(-2 \pi i u)
$$

Then, $Q(u)$ is a convergent power series with radius of convergence 1 .

k	0	50	100	150
$\left[h^{k}\right] \Phi(h)$	0.75	$6.7 \cdot 10^{71}$	$3.1 \cdot 10^{174}$	$7.4 \cdot 10^{283}$
$\left[v^{k}\right] Q(v)$	-0.379	0.012	-0.007	0.002

In fact, (G.Zagier)

$$
Z_{4_{1}}(u+1)=Q(u)
$$

The search for more series is on. $\widehat{\Phi}(h)$ is a resurgent series (G.-Gu-Mariõ) whose Borel transform involves singularities with integer Stokes constants that lead to new q-series that emerge out of the peacock-pattern:

This leads to next-generation descendant q-series $\left(G_{0}^{(m)}(q), G_{1}^{(m)}(q)\right)$ for integers m where

$$
\begin{aligned}
& G_{0}^{(m)}(q)=\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n(n+1) / 2+m n}}{(q ; q)_{n}^{2}} \\
& G_{1}^{(m)}(q)=\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n(n+1) / 2+m n}}{(q ; q)_{n}^{2}}\left(2 m+E_{1}(q)+2 \sum_{j=1}^{n} \frac{1+q^{j}}{1-q^{j}}\right) .
\end{aligned}
$$

$G_{0}^{(m)}(q)$ and $G_{1}^{(m)}(q)$ are a basis of solutions of the linear q-difference equation (G.-Gu-Mariõ)

$$
y_{m+1}(q)-\left(2-q^{m}\right) y_{m}(q)+y_{m-1}(q)=0 \quad(m \in \mathbb{Z})
$$

whose Wronskian satisfies the determinant

$$
\operatorname{det} W_{m}(q)=2
$$

and the symmetry

$$
W_{m}\left(q^{-1}\right)=W_{-m}(q)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and the orthogonality

$$
\frac{1}{2} W_{m}(q)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) W_{m}(q)^{T}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Likewise, there is a descendant of the pair of the $\widehat{\Phi}$-power series that also satisfies the above linear q-difference equation and relations. So, the quantum invariants of the 4_{1} involve a 2×2 matrix of q-series $Q(q)$ and of h-series $\widehat{\Phi}(h)$.

The function

$$
W(S, \tau):=Q\left(e^{-2 \pi i / \tau}\right) Q\left(e^{2 \pi i \tau}\right)
$$

is holomorphic for $\tau \in \mathbb{C} \backslash(-\infty, 0]$, and together with $W(T, \tau):=1$
define an $\mathrm{SL}_{2}(\mathbb{Z})$ cocycle of matrix-valued holomorphic functions on a cut plane that satisfy the equation

$$
W\left(\gamma^{\prime}, x\right) W\left(\gamma, \gamma^{\prime} x\right)=W\left(\gamma \gamma^{\prime}, x\right)
$$

for all γ and γ^{\prime} in $\mathrm{SL}_{2}(\mathbb{Z})$. Recall that $\mathrm{SL}_{2}(\mathbb{Z})$ is generated by
$S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

The story generalizes to all hyperbolic knots, conjecturally.

The story generalizes to all hyperbolic knots, conjecturally. For the next simplest knot, the 5_{2} knot

the trace field $F\left(5_{2}\right)$ is cubic $x^{3}-x^{2}+1=0$, of discriminant -23 , giving rise to 3 boundary parabolic connections.

The story generalizes to all hyperbolic knots, conjecturally. For the next simplest knot, the 5_{2} knot

the trace field $F\left(5_{2}\right)$ is cubic $x^{3}-x^{2}+1=0$, of discriminant -23 , giving rise to 3 boundary parabolic connections. $Q^{5_{2}}$ is a 3×3 matrix that consists of $9 q$-series defined for $|q|<1$ and 9 more defined for $|q|>1$ giving a total of $18 q$-series.

For the next simplest hyperbolic knot, the $(-2,3,7)$ pretzel knot, $F((-2,3,7))=F\left(5_{2}\right)$ but there are 6 boundary parabolic connections, 3 defined over the trace field and 3 more defined over $\mathbb{Q}(2 \cos (2 \pi / 7))$.

For the next simplest hyperbolic knot, the $(-2,3,7)$ pretzel knot, $F((-2,3,7))=F\left(5_{2}\right)$ but there are 6 boundary parabolic connections, 3 defined over the trace field and 3 more defined over $\mathbb{Q}(2 \cos (2 \pi / 7))$. $Q^{(-2,3,7)}$ is a 6×6 matrix giving a total of only $72 q$-series, analyzed in detail in the paper with Don.

These cocycles are new, and their entries are holomorphic quantum modular forms.

If you want to learn more about these fascinating objects, Don Zagier is giving an online course in MPI-ICTP-SISSA.
https://zoom.us/j/96952516566?pwd= Z3NyZW04M2YxSHo2MWdlOHJ4M1NpUT09
Meeting ID: 96952516566
Passcode: 307018

Merci beaucoup!

