## Algebraic area* of lattice random walks and exclusion statistics

Joint work with Stéphane Ouvry (LPTMS) and Alexios Polychronakos (CCNY)

Li Gan<br>LPTMS**, Université Paris-Saclay

October 2023

* a.k.a signed area

Laboratoire de Physique Théorique et Modèles Statistiques


Algebraic area $A$ of closed random walks on a square lattice


Question: a formula for the number $C_{\mathbf{n}}(A)$ of closed $\mathbf{n}$ step lattice walks that enclose an algebraic area $A$ ?
e.g. square lattice walks:

$$
C_{2}(0)=4, C_{4}(0)=28, \quad C_{4}(1)=C_{4}(-1)=4
$$

$$
A=1+2-4=-1
$$



## square lattice walks

$$
\leftrightarrows v^{-1} u^{-1} v u=Q^{1}
$$

- non commutative relation $v u=\mathrm{Q} u v$
- generating function for $\mathbf{n}$-step closed walks

$$
\begin{aligned}
\left(u+u^{-1}+v+v^{-1}\right)^{\mathbf{n}} & =\sum_{A} C_{\mathbf{n}}(A) \mathrm{Q}^{A}+\ldots \\
\operatorname{Tr}\left(v^{n} u^{m}\right) & =\delta_{n, 0} \delta_{m, 0}
\end{aligned}
$$

$\Rightarrow \operatorname{Tr}\left(u+u^{-1}+v+v^{-1}\right)^{\mathbf{n}}=\sum_{A} C_{\mathbf{n}}(A) \mathrm{Q}^{A}$
e.g. $\operatorname{Tr}\left(u+u^{-1}+v+v^{-1}\right)^{4}=28+4 \mathrm{Q}+4 \mathrm{Q}^{-1}$
physics
Hofstadter model: a charged particle hopping on a square lattice in a constant magnetic field

- Hamiltonian $H=u+u^{-1}+v+v^{-1}$
- $\mathrm{Q}=\mathrm{e}^{\mathrm{i} \gamma} ; \gamma=2 \pi \phi / \phi_{0}$ : magnetic flux per plaquette rational flux $\phi / \phi_{0}=p / q$ with $p, q$ coprime
- $\sum_{A} C_{\mathbf{n}}(A) \mathrm{Q}^{A}=\mathbf{T r} H^{\mathbf{n}}$
aim: compute $\operatorname{Tr} H^{\mathbf{n}}$
rational flux, i.e., $\mathrm{Q}=\mathrm{e}^{2 \mathrm{i} \pi p / q}$ with $p, q$ coprime $v u=\mathrm{Q} u v$ : noncommutative 2-tori algebra, quantum torus algebra, Weyl commutation relation, Weyl braiding relation, Q-commutativity, etc.

$$
u=\mathrm{e}^{\mathrm{i} k_{x}}\left(\begin{array}{cccccc}
\mathrm{Q} & 0 & 0 & \cdots & 0 & 0 \\
0 & \mathrm{Q}^{2} & 0 & \cdots & 0 & 0 \\
0 & 0 & \mathrm{Q}^{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \mathrm{Q}^{q-1} & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right), v=\mathrm{e}^{\mathrm{i} k_{y}}\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

$$
\begin{array}{lc}
\text { quantum trace } & \begin{array}{c}
u \rightarrow-u v, v \rightarrow v \\
k_{x}=k_{y}=0, \mathbf{n}<q \\
\operatorname{Tr} H^{\mathbf{n}}=\frac{1}{q} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{d k_{x}}{2 \pi} \frac{d k_{y}}{2 \pi} \operatorname{tr} H^{\mathbf{n}}
\end{array} \quad \text { reduces to }
\end{array} \quad \text { usual trace } \operatorname{Tr} H^{\mathbf{n}}=\frac{1}{q} \operatorname{tr} H_{2}^{\mathbf{n}} \quad H_{2}=\left(\begin{array}{ccccc}
0 & f_{1} & 0 & \cdots & 0 \\
g_{1} & 0 & f_{2} & \cdots & 0 \\
0 & g_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
0 & f_{q-1} \\
0 & 0 & 0 & \cdots & g_{q-1} \\
0
\end{array}\right)
$$

- approach 1: secular determinant $\operatorname{det}\left(I-z H_{2}\right)$ and its relation to exclusion statistics

$$
\ln \operatorname{det}\left(I-z H_{2}\right)=\operatorname{tr} \ln \left(I-z H_{2}\right)=-\sum_{\mathbf{n}=1}^{\infty} \frac{z^{\mathbf{n}}}{\mathbf{n}} \operatorname{tr} H_{2}^{\mathbf{n}}
$$

- approach 2: direct computation (combinatorics of periodic Dyck paths*)

$$
\operatorname{tr} H_{2}^{\mathbf{n}}=\sum_{k_{1}=1}^{q} \sum_{k_{2}=1}^{q} \cdots \sum_{k_{\mathbf{n}}=1}^{q} h_{k_{1} k_{2}} h_{k_{2} k_{3}} \cdots h_{k_{\mathbf{n}} k_{1}}
$$

Approach 1: via secular determinant $\operatorname{det}\left(I-z H_{2}\right)$
secular determinant $\operatorname{det}\left(I-z H_{2}\right)=\sum_{n=0}^{\lfloor q / 2\rfloor}(-1)^{n} Z_{n} z^{2 n}$

$$
H_{2}=\left(\begin{array}{cccccc}
0 & f_{1} & 0 & \cdots & 0 & 0 \\
g_{1} & 0 & f_{2} & \cdots & 0 & 0 \\
0 & g_{2} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & f_{q-1} \\
0 & 0 & 0 & \cdots & g_{q-1} & 0
\end{array}\right)
$$

Kreft coefficient $Z_{n}=\sum_{k_{1}=1}^{q-2 n+1} \sum_{k_{2}=1}^{k_{1}} \cdots \sum_{k_{n}=1}^{k_{n-1}} s_{k_{1}+2 n-2} s_{k_{2}+2 n-4} \cdots s_{k_{n-1}+2} s_{k_{n},}, s_{k}:=g_{k} f_{k}=4 \sin ^{2}(k \pi p / q)$
"+2 shifts"

$$
\text { e.g. for } q=7, \quad Z_{3}=s_{1} s_{3} s_{5}+s_{1} s_{3} s_{6}+s_{1} s_{4} s_{6}+s_{2} s_{4} s_{6}
$$

interpretation in statistical mechanics
exclusion
parameter $g$ bosons $(g=0)$ fermions $(g=1) \quad g=2$
$Z_{n}$ : partition function for $n$ particles occupying $q-1$ quantum states. These particles obey $g=2$ exclusion statistics (no two particles can occupy adjacent quantum states)
stronger exclusion than fermions!
closed random walks on a square lattice
exclusion statistics with exclusion parameter $g=2$

Using techniques from statistical mechanics to compute $\operatorname{Tr} H_{2}^{\mathrm{n}}$

## Approach 1: via secular determinant $\operatorname{det}\left(I-z H_{2}\right)$

Kreft coefficient $Z_{n}=\sum_{k_{1}=1}^{q-2 n+1} \sum_{k_{2}=1}^{k_{1}} \cdots \sum_{k_{n}=1}^{k_{n-1}} s_{k_{1}+2 n-2} s_{k_{2}+2 n-4} \cdots s_{k_{n-1}+2} s_{k_{n}}, s_{k}:=g_{k} f_{k}=4 \sin ^{2}(k \pi p / q)$


$$
\begin{array}{r}
C_{\mathbf{n}}(A)=2 n \sum_{\substack{l_{1}, l_{2}, \ldots, l_{j} \\
\text { composition of } n}} c_{2}\left(l_{1}, l_{2}, \ldots, l_{j}\right) \sum_{k_{3}=-l_{3}}^{l_{3}} \sum_{k_{4}=-l_{4}}^{l_{4}} \ldots \sum_{k_{j}=-l_{j}}^{l_{j}}\binom{2 l_{1}}{l_{1}+A+\sum_{i=3}^{j}(i-2) k_{i}}\binom{2 l_{2}}{l_{2}-A-\sum_{i=3}^{j}(i-1) k_{i}} \prod_{i=3}^{j}\binom{2 l_{i}}{l_{i}+k_{i}} \\
\text { [Ouvry, Wu 2019] }
\end{array}
$$

|  | $\mathbf{n}=2$ | 4 | 6 | 8 | 10 |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 4 | 28 | 232 | 2156 | 21944 |
| $\pm 1$ |  | 8 | 144 | 2016 | 26320 |
| $\pm 2$ |  |  | 24 | 616 | 11080 |
| $\pm 3$ |  |  |  | 96 | 3120 |
| $\pm 4$ |  |  |  | 16 | 840 |
| $\pm 5$ |  |  |  |  | 160 |
| $\pm 6$ |  |  |  |  | 40 |
| counting | 4 | 36 | 400 | 4900 | 63504 |

$$
\operatorname{det}\left(I-z H_{2}\right) \Longrightarrow Z_{n} \leadsto b_{n} \leadsto \operatorname{tr} H_{2}^{\mathrm{n}=2 n}
$$

$\rightarrow$ generalize to the " $+g$ shifts" ( $g$-exclusion)
$C_{\mathbf{n}}(A)$ up to $\mathbf{n}=10$ for square lattice walks of length $\mathbf{n}$.

## $g$-exclusion statistics

## [Ouvry, Polychronakos 2019]

$$
H_{2}=\left(\begin{array}{cccccc}
0 & f_{1} & 0 & \cdots & 0 & 0 \\
g_{1} & 0 & f_{2} & \cdots & 0 & 0 \\
0 & g_{2} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & f_{q-1} \\
0 & 0 & 0 & \cdots & g_{q-1} & 0
\end{array}\right)
$$

$$
H_{g}=\left(\begin{array}{ccccccccc}
0 & f_{1} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & f_{2} & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
g_{1} & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & g_{2} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & f_{q-1} \\
0 & 0 & 0 & \cdots & g_{q-g+1} & 0 & 0 & \cdots & 0
\end{array}\right)
$$

$$
\operatorname{tr} H_{g}^{\mathrm{n}=g n}=g n \sum_{\substack{l_{1}, l_{2}, \ldots, l_{j} \\ g \text {-composition of } n}} c_{g}\left(l_{1}, l_{2}, \ldots, l_{j}\right) \sum_{k=1}^{q-j-g+2} s_{k}^{l_{1}} s_{k+1}^{l_{2}} \ldots s_{k+j-1}^{l_{j}}
$$

$g$-composition: no more than $g-2$ zeros in succession
Example: nine $g=3$-compositions of $n=3$ : (3), (2,1), (1,2), ( $1,1,1$ ), ( $2,0,1$ ), ( $1,0,2$ ), ( $1,0,1,1$ ), ( $1,1,0,1$ ), ( $1,0,1,0,1$ )

$$
c_{g}\left(l_{1}, l_{2}, \ldots, l_{j}\right)=\frac{1}{l_{1}} \prod_{i=2}^{j}\binom{l_{i-g+1}+\cdots+l_{i}-1}{l_{i}}
$$

Approach 2: compute directly $\operatorname{tr} H_{g}^{\mathrm{n}}$ and interpreter $c_{g}$ in combinatorics

$$
H_{g}=\left(\begin{array}{ccccccccc}
0 & f_{1} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & f_{2} & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
g_{1} & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & g_{2} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & f_{q-1} \\
0 & 0 & 0 & \cdots & g_{q-g+1} & 0 & 0 & \cdots & 0
\end{array}\right)
$$

$$
\begin{aligned}
& h_{i j} \text { : matrix elements of } H_{g} \\
& \operatorname{tr} H_{g}^{\mathbf{n}}=\sum_{k_{1}=1}^{q} \sum_{k_{2}=1}^{q} \cdots \sum_{k_{\mathbf{n}}=1}^{q} h_{k_{1} k_{2}} h_{k_{2} k_{3}} \cdots h_{k_{\mathbf{n}} k_{1}} \\
& k_{i+1}-k_{i}=\left\{\begin{array}{cc}
-(g-1) & \rightarrow \text { up step (going up } g-1 \text { floors) } \\
+1 & \rightarrow \text { down step (going down 1 floor) }
\end{array}\right. \\
& \text { Example: } g=3 \text { up step } \quad \text { and down step }
\end{aligned}
$$

$g$-composition $l_{1}, \ldots, l_{j} \rightarrow$ all possible periodic generalized Dyck paths with $l_{i}$ up steps starting from the $i$-th floor


Example: a periodic generalized Dyck path of length 15 for the $g=3$ composition $3,0,1,1$ starting from the third floor with an up step.

W. F. A. von Dyck German mathematician

## Approach 2: compute directly $\operatorname{tr} H_{g}^{\mathrm{n}}$ and interpreter $c_{g}$ in combinatorics

$g$-composition $l_{1}, \ldots, l_{j} \rightarrow$ all possible periodic generalized Dyck paths with $l_{i}$ up steps starting from the $i$-th floor

Example: $g=3$-compositions of $n=2$ : (2), (1,1), (1,0,1)


1

1

$$
c_{g}\left(l_{1}, l_{2}, \ldots, l_{j}\right)=\frac{1}{l_{1}} \prod_{i=2}^{j}\binom{l_{i-g+1}+\cdots+l_{i}-1}{l_{i}}
$$

- $l_{i} c_{g}$ is the number of such generalized Dyck paths starting from the $\boldsymbol{i}$-th floor with an up step
- $\left(l_{1}+l_{2}+\cdots+l_{j}\right) c_{g}=n c_{g}$ is the total number of such generalized Dyck paths starting with an up step
- $g n c_{g}$ is the total number of such generalized Dyck paths

$$
\operatorname{tr} H_{g}^{\mathrm{n}=g n}=g n \sum_{\substack{l_{1}, l_{2}, \ldots, l_{j} \\ g \text {-composition of } n}} c_{g}\left(l_{1}, l_{2}, \ldots, l_{j}\right) \sum_{\text {with } s_{k}=g_{k} f_{k} f_{k+1} \cdots f_{k+g-2}}^{q-j-g+2} s_{k}^{l_{1}} s_{k+1}^{l_{2}} \cdots s_{k+j-1}^{l_{j}}
$$

Closed random walks on various lattices

square

$$
g=2
$$


chiral* triangular

$$
g=3
$$

[Ouvry, Polychronakos 2019]

honeycomb
mixture of $g=1$ and $g=2$
[LG, Ouvry, Polychronakos 2022]

* Only three out of six directions at each step are allowed.

Honeycomb lattice walks

Hamiltonian $\quad H=U+V+W$
honeycomb algebra $U^{2}=V^{2}=W^{2}=I, \quad(U V W)^{2}=\mathrm{Q}$

$$
\Rightarrow U=\left(\begin{array}{cc}
0 & u \\
u^{-1} & 0
\end{array}\right), \quad V=\left(\begin{array}{cc}
0 & v \\
v^{-1} & 0
\end{array}\right), \quad W=\left(\begin{array}{cc}
0 & \mathrm{Q}^{1 / 2} v u^{-1} \\
\mathrm{Q}^{-1 / 2} u v^{-1} & 0
\end{array}\right)
$$

$$
H=\left(\begin{array}{cc}
0 & u+v+\mathrm{Q}^{1 / 2} v u^{-1} \\
u^{-1}+v^{-1}+\mathrm{Q}^{-1 / 2} u v^{-1} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & A \\
A^{\dagger} & 0
\end{array}\right), \quad H_{1,2}=A A^{\dagger}
$$

$$
\operatorname{det}(I-z H)=\operatorname{det}\left(I-z^{2} H_{1,2}\right)=\sum_{n=0}^{q}(-1)^{n} Z_{n} z^{2 n}
$$

$\operatorname{det}(I-z H)$
$Z_{n}$
$b_{n}$
$\operatorname{tr} H^{\mathrm{n}}$

Honeycomb lattice walks: (1,2)-exclusion

$$
H_{1,2}=\left(\begin{array}{cccccc}
\tilde{s}_{1} & f_{1} & 0 & \cdots & 0 & 0 \\
g_{1} & \tilde{s}_{2} & f_{2} & \cdots & 0 & 0 \\
0 & g_{2} & \tilde{s}_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \tilde{s}_{q-1} & f_{q-1} \\
0 & 0 & 0 & \cdots & g_{q-1} & \tilde{s}_{q}
\end{array}\right) \quad \operatorname{det}\left(I-z H_{1,2}\right)=\sum_{n=0}^{q}(-1)^{n} Z_{n} z^{n}
$$

e.g. $q=5$

$$
\begin{aligned}
Z_{4}= & \tilde{s}_{4} \tilde{s}_{3} \tilde{s}_{2} \tilde{s}_{1}+\tilde{s}_{5} \tilde{s}_{3} \tilde{s}_{2} \tilde{s}_{1}+\tilde{s}_{5} \tilde{s}_{4} \tilde{s}_{2} \tilde{s}_{1}+\tilde{s}_{5} \tilde{s}_{4} \tilde{s}_{3} \tilde{s}_{1}+\tilde{s}_{5} \tilde{s}_{4} \tilde{s}_{3} \tilde{s}_{2}+\tilde{s}_{4} \tilde{s}_{3}\left(-s_{1}\right)+\tilde{s}_{5} \tilde{s}_{3}\left(-s_{1}\right) & \text { mixture of } g=1 \\
& +\tilde{s}_{5} \tilde{s}_{4}\left(-s_{1}\right)+\tilde{s}_{4} \tilde{s}_{1}\left(-s_{2}\right)+\tilde{s}_{5} \tilde{s}_{1}\left(-s_{2}\right)+\tilde{s}_{5} \tilde{s}_{4}\left(-s_{2}\right)+\tilde{s}_{2} \tilde{s}_{1}\left(-s_{3}\right)+\tilde{s}_{5} \tilde{s}_{1}\left(-s_{3}\right)+\tilde{s}_{5} \tilde{s}_{2}\left(-s_{3}\right) & \text { (fermion) and } g=2 \\
& +\tilde{s}_{2} \tilde{s}_{1}\left(-s_{4}\right)+\tilde{s}_{3} \tilde{s}_{1}\left(-s_{4}\right)+\tilde{s}_{3} \tilde{s}_{2}\left(-s_{4}\right)+\left(-s_{3}\right)\left(-s_{1}\right)+\left(-s_{4}\right)\left(-s_{1}\right)+\left(-s_{4}\right)\left(-s_{2}\right) & \text { exclusion }
\end{aligned}
$$


$Z_{4}$ for $q=5$ : all possible occupancies of 5 levels by 4 particles with either fermions or two-fermion bound states

Honeycomb lattice walks: (1,2)-exclusion

$$
\begin{aligned}
& \operatorname{det}(I-z H) \Longrightarrow Z_{n} \leadsto b_{n} \longmapsto \operatorname{tr} H^{\mathbf{n}} \\
& \operatorname{tr} H_{1,2}^{\mathbf{n}}=\mathbf{n} \sum_{\substack{\tilde{l}_{1}, \ldots, \tilde{l}_{j+1} ; l_{1}, \ldots, l_{j} \\
(1,2)-\text { composition of } \mathbf{n}}} c_{1,2}\left(\tilde{l}_{1}, \ldots, \tilde{l}_{j+1} ; l_{1}, \ldots, l_{j}\right) \sum_{k=1}^{q-j} \tilde{s}_{k} \tilde{l}_{1} s_{k}^{l_{1}} \tilde{s}_{k+1}^{\tilde{l}_{2}} s_{k+1}^{l_{2}} \ldots \\
& \text { combinatorial factor } \\
& c_{1,2}\left(\tilde{l}_{1}, \ldots, \tilde{l}_{j+1} ; l_{1}, \ldots, l_{j}\right)=\frac{\left(\tilde{l}_{1}+l_{1}-1\right)!}{\tilde{l}_{1}!l_{1}!} \prod_{k=2}^{j+1}\binom{l_{k-1}+\tilde{l}_{k}+l_{k}-1}{l_{k-1}-1, \tilde{l}_{k}, l_{k}} \\
& \mathbf{n}=\left(\tilde{l}_{1}+\cdots+\tilde{l}_{j+1}\right)+2\left(l_{1}+\cdots+l_{j}\right), \tilde{l}_{i} \geq 0, l_{i}>0
\end{aligned}
$$

combinatorial interpretation $\quad-b_{4}=\frac{1}{4} \sum_{k=1}^{q} \tilde{s}_{k}^{4}+\sum_{k=1}^{q-1} \tilde{s}_{k}^{2} s_{k}+\sum_{k=1}^{q-1} \tilde{s}_{k} s_{k} \tilde{s}_{k+1}+\sum_{k=1}^{q-1} s_{k} \tilde{s}_{k+1}^{2}+\frac{1}{2} \sum_{k=1}^{q-1} s_{k}^{2}+\sum_{k=1}^{q-2} s_{k} s_{k+1}$
from cluster coefficients

$$
k+2
$$


$\because!$

e.g. (1,2)-composition of 4:
$(2,0 ; 1)$
$(1,1 ; 1)$
$(0,2 ; 1)$
$(0,0 ; 2)(0,0,0 ; 1,1)$

Honeycomb lattice walks: (1,2)-exclusion

$$
\operatorname{tr} H_{1,2}^{\mathbf{n}}=\mathbf{n} \sum_{\substack{\tilde{l}_{1}, \ldots, \tilde{l}_{j+1} ; l_{1}, \ldots, l_{j} \\(1,2)-\text { composition of } \mathbf{n}}} c_{1,2}\left(\tilde{l}_{1}, \ldots, \tilde{l}_{j+1} ; l_{1}, \ldots, l_{j}\right) \sum_{k=1}^{q-j} \tilde{s}_{k}^{\tilde{l}_{1}} s_{k}^{l_{1}} \tilde{s}_{k+1}^{\tilde{l}_{2}} s_{k+1}^{l_{2}} \ldots
$$

$$
s_{k}=4 \sin ^{2}(k \pi p / q), \quad \tilde{s}_{k}=1+s_{k}
$$

$$
C_{\mathbf{n}}(A)=n \sum_{\substack{l_{1}, l_{2}, \ldots, l_{j} \\
\text { composition of } n^{\prime}=0,1,2, \ldots, n \\
\text { c<min}\left(n^{\prime} n-n^{\prime}+1\right)}} c_{n}\left(l_{1}, l_{2}, \ldots, l_{j}\right) \sum_{k_{3}=-l_{3}}^{l_{3}} \sum_{k_{4}=-l_{4}}^{l_{4}} \ldots \sum_{k_{j}=-l_{j}}^{l_{j}}\left(\begin{array}{c}
2 l_{1} \\
\left.l_{1}+A+\sum_{i=3}^{j}(i-2) k_{i}\right)\binom{2 l_{2}}{l_{2}-A-\sum_{i=3}^{j}(i-1) k_{i}} \prod_{i=3}^{j}\binom{2 l_{i}}{l_{i}+k_{i}} .
\end{array}\right.
$$

$j \leq \min \left(n^{\prime}, n-n^{\prime}+1\right)$
$c_{n}\left(l_{1}, l_{2}, \ldots, l_{j}\right)=\frac{1}{l_{1} l_{2} \ldots l_{j}} \sum_{m_{1}=0}^{\min \left(l_{1}, l_{2}\right)} \sum_{m_{2}=0}^{\min \left(l_{2}, l_{3}\right)} \cdots \sum_{m_{j-1}=0}^{\min \left(l_{j-1}, l_{j}\right)}\left(\prod_{i=1}^{j-1} m_{i}\binom{l_{i}}{m_{i}}\binom{l_{i+1}}{m_{i}}\right)\binom{n+\sum_{i=1}^{j} l_{i}-\sum_{i=1}^{j-1} m_{i}-1}{2 \sum_{i=1}^{j} l_{i}-1}$
(1,2)-exclusion and Motzkin path

$$
H_{1,2}=\left(\begin{array}{cccccc}
\tilde{s}_{1} & f_{1} & 0 & \cdots & 0 & 0 \\
g_{1} & \tilde{s}_{2} & f_{2} & \cdots & 0 & 0 \\
0 & g_{2} & \tilde{s}_{3} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \tilde{s}_{q-1} & f_{q-1} \\
0 & 0 & 0 & \cdots & g_{q-1} & \tilde{s}_{q}
\end{array}\right) \quad \operatorname{tr} H_{1,2}^{\mathbf{n}}=\sum_{k_{1}=1}^{q} \sum_{k_{2}=1}^{q} \cdots \sum_{k_{\mathbf{n}}=1}^{q} h_{k_{1} k_{2}} h_{k_{2} k_{3}} \cdots h_{k_{\mathbf{n}} k_{1}} \quad k_{i}=\left\{\begin{array}{cll}
-1 & \rightarrow \text { up step (going up 1 floor) } \\
+1 & \rightarrow \text { down step (going down 1 floor) } \\
0 & \rightarrow \text { horizontal step }
\end{array} \square\right.
$$

$$
\text { length } \mathbf{n}=4
$$

$$
\left(\tilde{l}_{1}, \tilde{l}_{2}, \ldots, \tilde{l}_{j+1} ; l_{1}, l_{2}, \ldots, l_{j}\right) \quad c_{1,2}
$$


T. S. Motzkin Israeli-American mathematician

$$
c_{1,2}\left(\tilde{l}_{1}, \ldots, \tilde{l}_{j+1} ; l_{1}, \ldots, l_{j}\right)=\frac{\left(\tilde{l}_{1}+l_{1}-1\right)!}{\tilde{l}_{1}!l_{1}!} \prod_{k=2}^{j+1}\binom{l_{k-1}+\tilde{l}_{k}+l_{k}-1}{l_{k-1}-1, \tilde{l}_{k}, l_{k}}
$$

$$
\text { - } l_{i} c_{1,2} \text { is the number of such Motzkin paths starting from }
$$ the $\boldsymbol{i}$-th floor with an up step

- $\left(l_{1}+l_{2}+\cdots+l_{j}\right) c_{1,2}$ is the total number of such Motzkin paths starting with an up step
- $\mathbf{n} c_{1,2}$ is the total number of such Motzkin paths


## $(1, g)$-exclusion

$$
\operatorname{tr} H_{1, g}^{\mathrm{n}}=\mathbf{n} \sum_{\substack{\tilde{L}_{1}, \ldots, \tilde{j}_{j+g-1,-1}, l_{1}, \ldots, l_{j} \\(1, g) \text { composition of } \mathbf{n}}} c_{1,2}\left(\tilde{l}_{1}, \ldots, \tilde{l}_{j+g-1} ; l_{1}, \ldots, l_{j}\right) \sum_{k=1}^{q-j-g+2} \tilde{s}_{k}^{\tilde{l}_{1}} s_{k}^{l_{1}, \tilde{s}_{2}} \tilde{s}_{k+1}^{l_{2}} l_{k+1} \ldots
$$

We define the sequence of integers $\tilde{l}_{1}, \tilde{l}_{2}, \ldots, \tilde{l}_{j+g-1} ; l_{1}, l_{2}, \ldots, l_{j}, j \geq 1$, as a $1, g$-composition of $\mathbf{n}$ if they satisfy the conditions

$$
\begin{gathered}
\mathbf{n}=\left(\tilde{l}_{1}+\tilde{l}_{2}+\cdots+\tilde{l}_{j+g-1}\right)+g\left(l_{1}+l_{2}+\cdots+l_{j}\right) \\
\tilde{l}_{i} \geq 0 ; l_{i} \geq 0, l_{1}, l_{j}>0, \text { at most } g-2 \text { successive vanishing } l_{i}
\end{gathered}
$$

That is, the $l_{j}$ 's are the usual $g$-compositions of integers $1,2, \ldots,\lfloor\mathbf{n} / g\rfloor$ and the $\tilde{l}_{i}$ 's are additional nonnegative integers (we also include the trivial composition $\tilde{l}_{1}=\mathbf{n}$.) For example, there are seven $(1,3)$ compositions of 5

- $j=0:(5) ; j=1:(2,0,0 ; 1),(1,1,0 ; 1),(1,0,1 ; 1),(0,2,0 ; 1),(0,1,1 ; 1),(0,0,2 ; 1)$
and five $(1,4)$ compositions of 5
- $j=0:(5) ; j=1:(1,0,0,0 ; 1),(0,1,0,0 ; 1),(0,0,1,0 ; 1),(0,0,0,1 ; 1)$

$$
c_{1, g}\left(\tilde{l}_{1}, \tilde{l}_{2}, \ldots, \tilde{l}_{j+g-1} ; l_{1}, l_{2}, \ldots, l_{j}\right)=\frac{\left(\tilde{l}_{1}+l_{1}-1\right)!}{\tilde{l}_{1}!l_{1}!} \prod_{k=2}^{j+g-1}\binom{\tilde{l}_{k}+\sum_{i=k-g+1}^{k} l_{i}-1}{\sum_{i=k-g+1}^{k-1} l_{i}-1, \tilde{l}_{k}, l_{k}}
$$

## (1,g)-exclusion

The number of $(1, g)$-compositions of a given integer $\mathbf{n}$ is

$$
N_{1, g}(\mathbf{n})=1+\sum_{k=0}^{\lfloor\mathbf{n} / g\rfloor-1} \sum_{m=0}^{(g-1) k}\binom{k}{m}_{g}\binom{\mathbf{n}+m-g k-1}{m+g-1},
$$

where the $g$-nomial coefficient is defined as

$$
\binom{k}{m}_{g}=\left[x^{m}\right]\left(1+x+x^{2}+\cdots+x^{g-1}\right)^{k}=\sum_{j=0}^{\lfloor m / g\rfloor}(-1)^{j}\binom{k}{j}\binom{k+m-g j-1}{k-1} .
$$

Equivalently, the generating function of the $N_{1, g}(\mathbf{n})$ 's is

$$
\sum_{\mathbf{n}=0}^{\infty} x^{n} N_{1, g}(\mathbf{n})=\frac{(1-x)^{g-2}\left(1+x^{g-1}-x^{g}\right)-x^{g-1}}{(1-x)^{g-1}\left(1+x^{g-1}-x^{g}\right)-x^{g-1}}
$$

## Take-home message

algebraic area enumeration of lattice random walks

quantum exclusion statistics
Future plans


- Higher dimensional walks?

3D cubic lattice walks: mixture of $g=1, g=1$, and $g=2$ exclusion [LG 2023] arbitrary dimension (ongoing work)

## Cubic lattice walks: (1,1,2)-exclusion with constraints [LG 2023]

algebraic area of 3D walks: sum of algebraic areas obtained from the walk's projection onto the


Hamiltonian $H=U+V+W+U^{-1}+V^{-1}+W^{-1}$
algebra $V U=\mathrm{Q} U V, W V=\mathrm{Q} V W, U W=\mathrm{Q} W U$
representation $U=u \otimes I, \quad V=v \otimes I, W=\left(v^{-1} u^{-1}\right) \otimes u$
$\operatorname{tr} H^{\mathbf{n}}$ can be mapped onto the cluster coefficients of three types of particles that obey exclusion statistics with $g=1, g=1$, and $g=2$,
Cubic lattice walk and its projections respectively, subject to the constraint that the numbers of $g=1$ (fermions) exclusion particles of two types are equal.

## Take-home message

algebraic area enumeration of lattice random walks


$$
g=2
$$



$$
g=3
$$

mixture of $g=1$ and $g=2$
quantum exclusion statistics $\qquad$ combinatorics of
Dyck/Motzkin paths


## Future plans

- Higher dimensional walks?

3D cubic lattice walks: mixture of $g=1, g=1$, and $g=2$ exclusion [LG 2023] arbitrary dimension (ongoing work)

- Connection to exactly solvable models?
e.g. open Ising spin-1/2 chain: free-fermionic spectrum $\pm \epsilon_{1} \pm \epsilon_{2} \pm \cdots$ with $\epsilon_{k}$ obtained from $g=2$ exclusion matrix $H_{2}$ [Baxter 1989], closed chain (in preparation), $\mathrm{SU}(N)$ or mixed spin chain (ongoing work)
- Other applications? Polymer physics, particle physics, quantum information, etc.

Thank You! One more thing: seek a postdoc position starting from Jan. 2024 : )

