Bijections for planar maps with boundaries

Éric Fusy (CNRS/LIX)
Joint work with Olivier Bernardi (Brandeis Univ.)
Planar maps

• **Planar map** = connected graph embedded on the **sphere**, considered up to continuous deformation

![Planar maps diagram]

• **Rooted map** = map with a marked corner

![Rooted map diagram]
Counting formulas for rooted maps

- **Beautiful counting formulas** discovered by Tutte

<table>
<thead>
<tr>
<th>Maps with n edges</th>
<th>Bipartite maps with n edges</th>
<th>2-connected maps with n edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2 \cdot 3^n \cdot (2n)!}{n!(n+2)!}$</td>
<td>$\frac{3 \cdot 2^{n-1} \cdot (2n)!}{n!(n+2)!}$</td>
<td>$\frac{4 \cdot (3n - 3)!}{(n-1)!(2n)!}$</td>
</tr>
</tbody>
</table>
Counting formulas for rooted maps

- Beautiful counting formulas discovered by Tutte

Maps with n edges

\[
\frac{2 \cdot 3^n \cdot (2n)!}{n!(n + 2)!}
\]

Bipartite maps with n edges

\[
\frac{3 \cdot 2^{n-1} \cdot (2n)!}{n!(n + 2)!}
\]

2-connected maps with n edges

\[
\frac{4 \cdot (3n - 3)!}{(n - 1)!(2n)!}
\]

- Tutte’s slicings formula (1962):

Let $B[n_1, n_2, \ldots, n_k]$ be the number of rooted bipartite maps with n_i faces of degree $2i$ for $i \in [1..k]$. Then

\[
B[n_1, \ldots, n_k] = 2 \frac{e!}{v!} \prod_{i=1}^{k} \frac{1}{n_i!} \left(\frac{2i - 1}{i - 1} \right)^{n_i}
\]

where $e = \#\text{edges} = \sum_i in_i$ and $v = \#\text{vertices} = e - k + 2$
Counting formulas for rooted maps

- **Beautiful counting formulas** discovered by Tutte

<table>
<thead>
<tr>
<th>Maps with n edges</th>
<th>Bipartite maps with n edges</th>
<th>2-connected maps with n edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2 \cdot 3^n \cdot (2n)!}{n!(n + 2)!}$</td>
<td>$\frac{3 \cdot 2^{n-1} \cdot (2n)!}{n!(n + 2)!}$</td>
<td>$\frac{4 \cdot (3n - 3)!}{(n - 1)!(2n)!}$</td>
</tr>
</tbody>
</table>

- **Tutte’s slicings formula (1962):**

Let $B[n_1, n_2, \ldots, n_k]$ be the number of rooted bipartite maps with n_i faces of degree $2i$ for $i \in [1..k]$. Then

$$B[n_1, \ldots, n_k] = \frac{2 e!}{v!} \prod_{i=1}^{k} \frac{1}{n_i!} \left(\frac{2i - 1}{i - 1}\right)^{n_i}$$

where $e = \#\text{edges} = \sum_i in_i$ and $v = \#\text{vertices} = e - k + 2$

Counting methods: recursive method, matrix integrals, bijections
The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]
Label vertices by distance from the marked vertex.

The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]
Construction of a labeled mobile

(i) Add a black vertex in each face

The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]
The BDG bijection for pointed bipartite maps

[Bouttier, Di Francesco, Guitter'04]

Construction of a labeled mobile

(i) Add a black vertex in each face

(ii) Each map-edge gives a mobile-edge using the local rule

\[
i-1 \\
i
\]
The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]

Conditions:
(i) \exists vertex of label 1
(ii) $j \leq i+1$

remove the map-edges and the marked vertex 0
The BDG bijection for pointed bipartite maps
[Bouttier, Di Francesco, Guitter’04]

![Diagram of the BDG bijection]

Local rule

(i) ∃ vertex of label 1
(ii) $j \leq i+1$

Conditions:

Theorem: The mapping is a **bijection**.

- face of degree $2i$ ↔ black vertex of degree i
Reformulation with orientations

Distance-labeling

Geodesic orientation

Local rule

\[\delta = i - j \geq -1 \]

\[\delta + 1 \text{ buds} \]
Mobile conditions in the two formulations

Formulation with labels

gives a labeled mobile

with the conditions:
(i) \(\exists \) node of label 1
(ii) \(j \leq i + 1 \)

Formulation with orientations

gives a “blossoming” mobile

with the condition:
each black vertex has as many buds as neighbors
Definition of blossoming mobiles

- **Blossoming mobile** = bipartite tree (black/white vertices) where each corner at a black vertex carries \(i \geq 0 \) buds

\[
\text{excess} = \text{number of edges} - \text{number of buds}
\]

A blossoming mobile of excess \(-2\)
Definition of blossoming mobiles

- **Blossoming mobile** = bipartite tree (black/white vertices) where each corner at a black vertex carries \(i \geq 0 \) buds

\[
\text{excess} = \text{number of edges} - \text{number of buds}
\]

- A blossoming mobile is called **balanced** iff each black vertex has as many buds as neighbors

\[
\text{Rk: implies that the excess is } 0
\]
Summary of the reformulation

Theorem: The mapping is a bijection between pointed bipartite maps and balanced blossoming mobiles

Local rule:

Condition:
Each black vertex has as many buds as neighbors

\[
\text{face of degree } 2^i \quad \leftrightarrow \quad \text{black vertex of degree } 2^i
\]
Proof of Tutte’s slicing formula

+marked edge

(rooted mobile)
Proof of Tutte’s slicings formula

Let $B[n_1, n_2, \ldots, n_k]$ be the number of rooted bipartite maps with n_i faces of degree $2i$ for $i \in [1..k]$

- **Bijection** gives:

$$v \cdot B[n_1, \ldots, n_k] = 2 \cdot \text{coeff } t_1^{n_1} \cdots t_k^{n_k} \text{ in } R(t_1, t_2, \ldots)$$

where $R \equiv R(t_1, t_2, \ldots)$ is the GF of rooted mobiles given by the equation

$$R = 1 + \sum_{i \geq 1} \frac{(2i-1)}{(i-1)!} t_i R^i$$

- **Lagrange inversion formula** gives:

$$[t_1^{n_1} \cdots t_k^{n_k}] R = \frac{e!}{(v-1)!} \prod_{i=1}^{k} \frac{1}{n_i!} \left(\frac{2i-1}{i-1}\right)^{n_i}$$
• More generally, we obtain a blossoming mobile (of excess 0) if we start from a vertex-pointed orientation such that:
 - the marked vertex v_0 is a “source” (no incoming edge)
 - every vertex is accessible from v_0 by a directed path
 - there is no ccw cycle (with $v_0 \in$ outer face)
More generally, we **obtain a blossoming mobile** (of excess 0) if we start from a vertex-pointed orientation such that:

- the marked vertex v_0 is a **“source”** (no incoming edge)
- every vertex is **accessible** from v_0 by a directed path
- **there is no ccw cycle** (with $v_0 \in$ outer face)

Theorem: Let O_0 be this family of orientations, then the correspondence is a bijection with mobiles of excess 0.
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices. G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, and $|E_M|$ edges.
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices
G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices.
G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, and $|E_M|$ edges.

Euler relation:

$$|E_M| = |V_M| + |F_M| - 2$$

\Rightarrow G has one more vertex than edges.

hence G is a tree iff G is acyclic.

Assume G has a cycle:

v_0
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle:

e_1

v_0
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule.

Let G be the graph of red edges and their incident vertices. G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, and $|E_M|$ edges.

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges.

Hence G is a tree iff G is acyclic.

Assume G has a cycle:

\[v_0 \rightarrow e_1 \rightarrow \ldots \rightarrow v_0 \]
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges.

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle:

\[
\begin{array}{c}
v_0 \\
e_1 \\
e_2
\end{array}
\]
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices

G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle:

v_0 e1 e2
Proof that it gives a tree

Start from an oriented map \(M \in \mathcal{O}_0 \) and apply the local rule

Let \(G \) be the graph of red edges and their incident vertices
\(G \) has \(|V_M| - 1 \) white vertices, \(|F_M| \) black vertices, and \(|E_M| \) edges

Euler relation: \(|E_M| = |V_M| + |F_M| - 2 \)
\[\Rightarrow G \text{ has one more vertices than edges} \]

hence \(G \) is a tree iff \(G \) is acyclic

Assume \(G \) has a cycle:

Assume \(G \) has a cycle:
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :
Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :
Proof that it gives a tree

Start from an oriented map $M \in \mathcal{O}_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices

G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, and $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle:

![Diagram of a graph with labeled vertices and edges]
Proof that it gives a tree

Start from an oriented map $M \in O_0$ and apply the local rule

Let G be the graph of red edges and their incident vertices G has $|V_M| - 1$, white vertices, $|F_M|$ black vertices, et $|E_M|$ edges

Euler relation: $|E_M| = |V_M| + |F_M| - 2$

$\Rightarrow G$ has one more vertices than edges

hence G is a tree iff G is acyclic

Assume G has a cycle :

⇒ contradiction
Extension for mobiles of negative excess

More generally the “source” can be a \(d\)-gon, for any \(d \geq 0\)

Example for \(d = 3\)

For \(d > 0\), we take the \(d\)-gonal source as the outer face
Extension for mobiles of negative excess

More generally the “source” can be a \(d\)-gon, for any \(d \geq 0\)

Example for \(d = 3\)

For \(d > 0\), we take the \(d\)-gonal source as the outer face

Let \(O_{-d}\) be the family of these orientations, still with the conditions
- the \(d\)-gonal **source** has no ingoing edge
- **accessibility** of every vertex from the source
- no ccw cycle
Theorem [Bernardi-F’10]: For $\delta \leq 0$, the correspondence Φ is a bijection between O_δ and mobiles of excess δ.

degrees of the inner faces \leftrightarrow degrees of the black vertices
indegrees of internal vertices \leftrightarrow degrees of white vertices

cf [Bernardi’07], [Bernardi-Chapuy’10]
Extension for mobiles of negative excess

- Inverse mapping (tree → cactus → closure operations)
Specializing the correspondence

The correspondence Φ is a bijection between the family $\mathcal{O} = \bigcup_{d \geq 0} \mathcal{O}_{-d}$ of oriented maps and mobiles of nonpositive excess

Idea: Let \mathcal{F} be the family of planar maps we consider

(e.g. bipartite maps, simple triangulations, etc.)

Prove that a map is in \mathcal{F} iff it admits a **canonical orientation** in \mathcal{O} specified by face-degrees and vertex-indegrees conditions

Specialize Φ to the corresponding subfamily $\mathcal{O}_\mathcal{F} \subseteq \mathcal{O}$

Gives a bijection between \mathcal{F} and a well characterized family of mobiles
Application to simple triangulations

For a triangulation T, a \textbf{3-orientation} of T is an orientation of the inner edges of T such that every inner vertex has \textbf{indegree 3}.

\[\text{Rk: If a triangulation } T \text{ admits a 3-orientation, then } T \text{ is simple}\]

Assume there is a 2-cycle C

If there are k vertices inside C then there are $3k - 1$ edges inside C

\Rightarrow total indegree is too large compared to the number of edges
Existence of a canonical 3-orientation

Theorem (Schnyder’89): Any simple triangulation admits a 3-orientation.

Theorem: Let T be a simple triangulation. Then T has a unique 3-orientation with no ccw cycle, the **minimal 3-orientation** (set of 3-orientations is a lattice, flip = reverse cw to ccw).

[Ossona de Mendez’94], [Brehm’03], [[Felsner’03]]
Bijection for simple triangulations

- From the lattice property **(taking the min)** we have:

 family \mathcal{T} of simple triangulations \leftrightarrow subfamily $\mathcal{O}_\mathcal{T}$ of \mathcal{O} where:
 - faces have degree 3
 - inner vertices have indegree 3

- From the bijection Φ specialized to \mathcal{F}, we have:
 $\mathcal{F} \leftrightarrow$ mobiles where all vertices have degree 3

[Bernardi, F’10], other bijection in [Poulalhon, Schaeffer’03]
Counting simple triangulations

Counting: The generating function of mobiles with vertices of degree 3 rooted on a white corner is $T(x) = U(x)^3$, where $U(x) = 1 + xU(x)^4$.

Consequently, the number of (rooted) simple triangulations with $2n$ faces is $\frac{1}{n(2n - 1)} \binom{4n - 2}{n - 1}$.
Extension to any girth and face-degrees

\(\text{girth} = \text{length shortest cycle} \)

Rk: \(\text{girth} \leq \text{minimal face-degree} \)

Our approach works in any girth \(d \), with control on the face-degrees

Other approach using slice decompositions [Bouttier, Guitter’15]
Maps with boundaries

- Sphere with k holes = sphere where k disks have been removed

- Map with k boundaries = graph embedded on the sphere with k holes
 the boundaries are occupied by cycles of edges

A quadrangulations with 2 boundaries
of lengths 8 and 6, and 5 internal vertices
Maps with boundaries

- Sphere with k holes = sphere where k disks have been removed

![Sphere with 3 holes](image)

- Map with k boundaries = graph embedded on the sphere with k holes
 the boundaries are occupied by cycles of edges

![Map with 2 boundaries](image)

A quadrangulations with 2 boundaries of lengths 8 and 6, and 5 internal vertices

(also = planar map with k distinguished faces whose contours are vertex-disjoint simple cycles)
Counting triangulations with boundaries

- **Formula**: \(t_n^{(k)} = \frac{2^{n+1}(2k-3)!}{(k-2)!^2} \frac{(3n+2k-3)!}{n!(2n+2k-2)!} \)

- **Formula**: \(s_n^{(k)} = \frac{2(2k-3)!}{(k-1)!(k-3)!} \frac{(4n+2k-5)!}{n!(3n+2k-3)!} \)

- **Formula**: \(a_n^{(k_1,...,k_b)} = \frac{4^{n-1}(2k + 3n - 5)!!}{(n - b + 1)!(2k + n - 1)!!} \prod_{j=1}^{b} k_j \binom{2k_j}{k_j} \)

Notations:
- **Counting triangulations**
- **Boundaries**
- **Internal vertices**
- **Without loops and multiple edges**, formula only for \(b = 1 \)
- **With loops and multiple edges**, nice factorized formula

References:
- [Mullin’65] (recursive method)
- [Brown’64] (recursive method)
- Bijective proofs in [Poulalhon, Schaeffer’06]
- Bijective proofs in [Bernardi, F’10]
- Bijective proof in [Bernardi, F’15]
Orientations for maps with boundaries

For maps with boundaries we consider orientations such that every inner boundary is a \textit{cw cycle} and the outer cycle is a boundary. These are called \textit{boundary-orientations}

To apply the mobile construction we still require the orientations to satisfy:

- the outer \(d \)-gon is a \textit{source} (no ingoing edge)
- every vertex can be \textit{reached} by a directed path starting from the source
- there is no \textit{ccw cycle}
Orientations for maps with boundaries

For maps with boundaries we consider orientations such that every inner boundary is a **cw cycle** and the outer cycle is a boundary. These are called **boundary-orientations**.

To apply the mobile construction we still require the orientations to satisfy:

- the outer d-gon is a **source** (no ingoing edge)
- every vertex can be **reached** by a directed path starting from the source
- there is no ccw cycle

indegree of a boundary B: total number of edges toward B

B_1 has indegree 4
B_2 has indegree 2
Extension of the bijection Φ to this setting
Extension of the bijection Φ to this setting

\Downarrow contraction of boundaries
Extension of the bijection Φ to this setting

- **Vertex** \circ of indegree k
- **Internal boundary**
- **Internal face** of degree p
- **Degré** r
- **Entrantes** b

\downarrow **Contraction of boundaries**

- **Vertex** \circ of degree k
- **Legs** r
- **Neighbours** b

- **Vertex** \bullet of degree p
Orientations for simple triangulations with boundaries
Orientations for simple triangulations with boundaries

Triangulate each inner boundary of length > 3
Orientations for simple triangulations with boundaries

Triangulate each inner boundary of length > 3
and compute the minimal 3-orientation
Orientations for simple triangulations with boundaries

delete the added edges inside boundaries
and reorient the inner boundaries as cw cycles
Orientations for simple triangulations with boundaries

Each inner boundary of length i has indegree $i + 3$
Each internal vertex has indegree 3

Such a boundary-orientation is called a **pseudo-3-orientation**
Orientations for simple triangulations with boundaries

Each inner boundary of length i has indegree $i + 3$
Each internal vertex has indegree 3

Such a boundary-orientation is called a pseudo-3-orientation

Take the **minimal** such orientation (no ccw cycle)
Orientations for simple triangulations with boundaries

Each inner boundary of length i has indegree $i + 3$
Each internal vertex has indegree 3

Such a boundary-orientation is called a pseudo-3-orientation

Take the **minimal** such orientation (no ccw cycle)
Mobiles for simple triangulations with boundaries

Apply the bijection Φ to the minimal pseudo-3-orientation

white vertices have
$\#\text{neighbours} - \#\text{legs} = 3$

black vertices have degree 3
Obstacles for the existence of pseudo-3-orientations

Not all 2-cycles are forbidden!

- **Contractible 2-cycle**
 - 5 edges inside
 - Total indegree 6 inside
 - Forbidden

- **Non-contractible 2-cycle not touching any boundary from the inside**
 - 9 non-boundary edges inside
 - Total indegree 10 inside
 - Forbidden

- **Non-contractible 2-cycle touching a boundary from the inside**
 - 8 non-boundary edges inside
 - Total indegree 6 inside
 - Not forbidden
Pseudo-girth parameter

For a map with boundaries that is planarly embedded

pseudo-girth = length of a shortest curve of the form

(curve that is the outer border of a region consisting of non-boundary faces)

\[R_k: \quad \text{girth} \leq \text{pseudo-girth} \leq \text{contractible girth} \]
Pseudo-girth parameter

For a map with boundaries that is planarly embedded

\[\text{pseudo-girth} = \text{length of a shortest curve of the form} \]

\(\text{curve that is the outer border of a region consisting of non-boundary faces} \)

\[\text{Rk: } \text{girth} \leq \text{pseudo-girth} \leq \text{contractible girth} \]

The map is called **pseudo-simple** if the pseudo-girth is \(\geq 3 \)
Results for pseudo-simple triangulations with boundaries

A triangulation with boundaries
(outer face being a triangular boundary-face)
is pseudo simple iff admits a pseudo 3–orientation

bijection with explicit mobiles

- internal face (degree 3) ↔ black vertex of degree 3
- inner boundary of length i ↔ white vertex with i legs and $i + 3$ neighbours

Counting formula:
Let $N[n; a, k_1, \ldots, k_r]$ be the number of pseudo-simple triangulations where:
- the outer boundary has length a
- the inner boundaries B_1, \ldots, B_r have lengths k_1, \ldots, k_r
- there are n internal vertices
- in every boundary, a vertex is distinguished

\[
N[n; a, k_1, \ldots, k_r] = \frac{2(2a - 3)!}{(a - 3)!(a - 1)!} \frac{(4n + 4r + 2L - 5)!}{(n - 1)!(3m + 4r + 2L - 3)!} \prod_{i=1}^{r} \binom{2i + 2}{i}
\]

where $L = a + \sum_{i=1}^{r} k_i$ (total boundary length)
Results in any given pseudo-girth

We have a bijection in each pseudo-girth $d \geq 1$
for maps with boundaries, with inner face degrees in $\{d, d + 1, d + 2\}$
Results in any given pseudo-girth

We have a bijection in each pseudo-girth $d \geq 1$ for maps with boundaries, with inner face degrees in $\{d, d + 1, d + 2\}$

Pseudo-girth-constraint is void for

$\begin{align*}
&d = 1 \text{ (recover Krikun’s formula)} \\
&d = 2 \text{ bipartite case (new formula for quadrangulations with boundaries)}
\end{align*}$
Factorized counting formulas

- Let $m \geq 0$ and ℓ_1, \ldots, ℓ_r positive integers
- Let $T[m; \ell_1, \ldots, \ell_r]$ (resp. $Q[m; \ell_1, \ldots, \ell_r]$) be the set of triangulations (resp. quadrangulations) with r boundaries B_1, \ldots, B_r s.t.
 - there are m internal vertices
 - every boundary B_i has length ℓ_i and a marked corner

Triangulations : Krikun’s formula (2007)

$$|T[m; a_1, \ldots, a_r]| = \frac{4^k(e - 2)!!}{m!(2b + k)!!} \prod_{i=1}^{r} a_i \binom{2a_i}{a_i}$$

with $b = \sum_i a_i$, $k = r + m - 2$, and $e = 2b + 3k$

Quadrangulations : [Bernardi, F’15]

$$|Q[m; 2a_1, \ldots, 2a_r]| = \frac{3^k(e - 1)!!}{m!(3b + k)!!} \prod_{i=1}^{r} 2a_i \binom{3a_i}{a_i}$$

with $b = \sum_i a_i$, $k = r + m - 2$, and $e = 2b + 3k$
Solution of the dimer model on quadrangulations

Map with dimers = pair \((M, X)\) where \(M\) is a map and \(X\) is a subset of edges giving a partial-matching.
Solution of the dimer model on quadrangulations

Map with dimers = pair \((M, X)\) where \(M\) is a map and \(X\) is a subset of edges giving a partial-matching

- Dimer model on (rooted) quadrangulations

Generating function: \(F(t, w) = \sum \text{t}^{\text{#faces}} \text{w}^{\text{#dimers}}\) configurations

\(\text{map with 2 dimers}\)
Solution of the dimer model on quadrangulations

Map with dimers = pair \((M, X)\) where \(M\) is a map and \(X\) is a subset of edges giving a partial-matching

- Dimer model on (rooted) quadrangulations

 Generating function :
 \[F(t, w) = \sum \text{ configurations } t^{\# \text{ faces}} w^{\# \text{ dimers}} \]

 \[F(t, w) = R - 1 - t R^3 - 6 w t^2 R^6 \]

 où \(R = 1 + 3t R^2 + 9w t^2 R^5 \)
Solution of the dimer model on quadrangulations

Map with dimers = pair \((M, X)\) where \(M\) is a map and \(X\) is a subset of edges giving a partial-matching

- Dimer model on (rooted) quadrangulations

Generating function: \[F(t, w) = \sum_{\text{configurations}} t^{\# \text{faces}} w^{\# \text{dimers}} \]

- Dimer model on (rooted) quadrangulations

Asymptotics: for \(w \in \mathbb{R}\) fixed, \([t^n] F \sim c_w \gamma_w^n n^{-5/2}\) except at critical weight \(w_0 = -3/125\) where \([t^n] F \sim c_0 \gamma_0^n n^{-7/3}\)

\[F(t, w) = R - 1 - t R^3 - 6 w t^2 R^6 \]

\[\text{où } R = 1 + 3 t R^2 + 9 w t^2 R^5 \]
Solution of the dimer model on quadrangulations

Map with dimers = pair \((M, X)\) where \(M\) is a map and \(X\) is a subset of edges giving a partial-matching

- Dimer model on (rooted) quadrangulations

Generating function: \(F(t, w) = \sum t^\#\text{faces} \, w^\#\text{dimers} \) configurations

- Dimer model on (rooted) quadrangulations

Asymptotics: for \(w \in \mathbb{R}\) fixed, \([t^n]F \sim c_w \, \gamma w^n \, n^{-5/2}\)

except at critical weight \(w_0 = -3/125\) where \([t^n]F \sim c_0 \, \gamma 0^n \, n^{-7/3}\)

- Solution of the dual model in [Bouttier, Di Francesco, Guitter’03]

Generating function: \(F(t, w) = R - 1 - t R^3 - 6wt^2 R^6\)

\(\text{où } R = 1 + 3tR^2 + 9wt^2 R^5\)

- Solution of the dual model in [Bouttier, Di Francesco, Guitter’03]

\(F(t, w) = R - 1 - t R^3 - 15wt^2 R^4\)

\(\text{où } R = 1 + 3tR^2 + 30wt^2 R^3\)

critical weight \(w_0 = -1/10\)

where typical distance \(\approx n^{1/6}\)

weight \(t^7 w^3\)

weight \(3t^2 w\) per hexagonal face

bijection