La fonction à deux points et à trois points des quadrangulations et cartes

Éric Fusy (CNRS/LIX) Travaux avec Jérémie Bouttier et Emmanuel Guitter

Séminaire Calin, LIPN, Mai 2014

Maps

Def. Planar map = connected graph embedded on the sphere

Easier to draw in the plane (by choosing a face to be the outer face)

Maps as random discrete surfaces

Natural questions:

• Typical distance between (random) vertices in random maps the order of magnitude is $n^{1/4}$ ($\neq n^{1/2}$ in random trees)

random quadrang. {- [Chassaing-Schaeffer'04] probabilistic - [Bouttier Di Francesco Guitter'03] exact GF expressions

• How does a random map (rescaled by $n^{1/4}$) "look like" ?

convergence to the "Brownian map" [Le Gall'13, Miermont'13]

Counting (rooted) maps with a marked corner

• Very simple counting formulas ([Tutte'60s]), for instance Let $q_n = \#\{\text{rooted quadrangulations with } n \text{ faces}\}$ $m_n = \#\{\text{rooted maps with } n \text{ edges}\}$

Then
$$m_n = q_n = \frac{2}{n+2} 3^n \frac{(2n)!}{n!(n+1)!}$$

Counting (rooted) maps

with a marked corner

Very simple counting formulas ([Tutte'60s]), for instance
 Let q_n = #{rooted quadrangulations with n faces}
 m_n = #{rooted maps with n edges}

Then
$$m_n = q_n = \frac{2}{n+2} 3^n \frac{(2n)!}{n!(n+1)!}$$

• Proof of $m_n = q_n$ by easy local bijection:

Counting (rooted) maps with a marked corner

• Very simple counting formulas ([Tutte'60s]), for instance Let $q_n = \#\{\text{rooted quadrangulations with } n \text{ faces}\}$ $m_n = \#\{\text{rooted maps with } n \text{ edges}\}$

Then
$$m_n = q_n = \frac{2}{n+2} 3^n \frac{(2n)!}{n!(n+1)!}$$

• Proof of $m_n = q_n$ by easy local bijection:

But this bijection does not preserve distance-parameters (only bounds)

The *k*-point function

- Let $\mathcal{M} = \bigcup_n \mathcal{M}[n]$ be a family of maps (quadrangulations, general, ...) where n is a size-parameter (# faces for quad., # edges for gen. maps)
- Let $\mathcal{M}^{(k)}$ = family of maps from \mathcal{M} with k marked vertices v_1, \ldots, v_k

The *k*-point function

- Let $\mathcal{M} = \bigcup_n \mathcal{M}[n]$ be a family of maps (quadrangulations, general, ...) where n is a size-parameter (# faces for quad., # edges for gen. maps)
- Let $\mathcal{M}^{(k)}$ = family of maps from \mathcal{M} with k marked vertices v_1, \ldots, v_k

Refinement by distances :

For $D = (d_{i,j})_{1 \le i < j \le k}$ any $\binom{k}{2}$ -tuple of positive integers let $\mathcal{M}_D^{(k)} :=$ subfamily of $\mathcal{M}^{(k)}$ where $\operatorname{dist}(v_i, v_j) = d_{ij}$ for $1 \le i < j \le k$

The counting series $G_D \equiv G_D(g)$ of $\mathcal{M}_D^{(k)}$ with respect to the size is called the *k*-point function of \mathcal{M}

quadrangulation

general map

k = 3 $d_{12} = 2$

- $d_{13} = 2$
- $d_{23} = 3$

Exact expressions for the *k***-point function**

- For the two-point functions:
 - quadrangulations [Bouttier Di Francesco Guitter'03]
 - maps with prescribed (bounded) face-degrees [Bouttier Guitter'08]
 - general maps
 - general hypermaps, general constellations [Bouttier F Guitter'13]
- For the three-point functions
 - quadrangulations
 - general maps & bipartite maps

[Bouttier Guitter'08]

[Ambjørn Budd'13]

[F Guitter'14]

Exact expressions for the *k*-point function Outline of the talk

• For the two-point functions:

general maps

- quadrangulations [Bouttier Di Francesco Guitter'03] uses Schaeffer's bijection [Bouttier Guitter'08]
 - maps with prescribed (bounded) face-degrees

based on clever observation on Miermont's bijection

[Ambjørn Budd'13]

- general hypermaps, general constellations

[Bouttier F Guitter'13]

[F Guitter'14]

• For the three-point functions

quadrangulations uses Miermont's bijection [Bouttier Guitter'08]

general maps & bipartite maps uses AB bijection

Computing the two-point function of quadrangulations using the Schaeffer bijection

Well-labelled trees

Well-labelled tree = plane tree where

- each vertex v has a label $\ell(v)\in\mathbb{Z}$
- each edge $e = \{u,v\}$ satisfies $|\ell(u) \ell(v)| \leq 1$

Pointed quadrangulations, geodesic labelling

Pointed quadrangulation = quadrangulation with a marked vertex v_0

Geodesic labelling with respect to v_0 : $\ell(v) = dist(v_0, v)$

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

 $\begin{array}{ll} \mbox{Pointed quadrangulation} \Rightarrow \mbox{well-labelled tree with min-label=1} \\ n \mbox{ faces} \end{array} \\ \begin{array}{ll} n \mbox{ edges} \end{array}$

Local rule in each face:

Denote by $G_d \equiv G_d(g)$ the two-point function of quadrangulations

bijection $\Rightarrow G_d(g) = GF$ of well-labelled trees with min-label=1 and with a marked vertex of label d

Rk: $G_d = F_d - F_{d-1} = \Delta_d F_d$

where $F_d \equiv F_d(g) = \mathsf{GF}$ of well-labelled trees with positive labels and with a marked vertex of label d

 $\Rightarrow \qquad F_i = \log \frac{1}{1 - g(R_{i-1} + R_i + R_{i+1})}$ with $R_i = \bigwedge^{i}$ GF rooted well-labelled trees with positive labels

and label i at the root

Equ. for
$$R_i: \left[R_i = \frac{1}{1 - g(R_{i-1} + R_i + R_{i+1})} \right] ($$
so $F_i = \log(R_i), G_d = \log(\frac{R_d}{R_{d-1}}))$

 $\Rightarrow \qquad F_i = \log \frac{1}{1 - g(R_{i-1} + R_i + R_{i+1})}$

with $R_i = \overbrace{>0}^{i}$ GF rooted well-labelled trees with positive labels and label *i* at the root

Equ. for $R_i: \left[R_i = \frac{1}{1 - g(R_{i-1} + R_i + R_{i+1})} \right]$ (so $F_i = \log(R_i)$, $G_d = \log(\frac{R_d}{R_{d-1}})$)

• Exact expression for R_i [BDG'03]

$$R_i = R \frac{[i]_x[i+3]_x}{[i+1]_x[i+2]_x} \quad \text{with the notation } [i]_x = \frac{1-x^i}{1-x}$$
with $R \equiv R(g)$ and $x \equiv x(g)$ given by
$$\begin{cases} R = 1 + 3gR^2 \\ x = gR^2(1+x+x^2) \end{cases}$$

$$R(g) = \frac{1-S}{6g} \qquad x(g) = \frac{\sqrt{6}}{2} \frac{S^{1/2} \sqrt{1 - (1 + 6g)S - S - 24g + 1}}{-1 + S + 6g} \quad \text{with } S = \sqrt{1 - 12g}$$

Equ. for $R_i: \left[R_i = \frac{1}{1 - g(R_{i-1} + R_i + R_{i+1})} \right]$ (so $F_i = \log(R_i)$, $G_d = \log(\frac{R_d}{R_{d-1}})$)

• Exact expression for R_i [BDG'03]

$$\begin{array}{|c|c|}\hline R_i = R \frac{[i]_x[i+3]_x}{[i+1]_x[i+2]_x} \end{array} & \text{with the notation } [i]_x = \frac{1-x^i}{1-x} \\ \text{with } R \equiv R(g) \text{ and } x \equiv x(g) \text{ given by } \begin{cases} R = 1+3gR^2 \\ x = gR^2(1+x+x^2) \end{cases} \end{cases}$$

 $R(g) = \frac{1-S}{6g} \qquad x(g) = \frac{\sqrt{6}}{2} \frac{S^{1/2} \sqrt{1 - (1+6g)S - S - 24g + 1}}{-1 + S + 6g} \quad \text{with } S = \sqrt{1 - 12g}$ Final 2-point function expression: $\left[G_d = \log\left(\frac{[d]_x^2[d+3]_x}{[d-1]_x[d+2]_x^2}\right) \right]$

Asymptotic considerations

• Two-point function of (plane) trees:

$$\label{eq:Gd} \begin{bmatrix} G_d(g) = (gR^2)^d \end{bmatrix}$$
 with $R = 1 + gR^2 = \frac{1 - \sqrt{1 - 4g}}{2g}$

 G_d is the d th power of a series having a square-root singularity

 $\Rightarrow d/n^{1/2}$ converges in law (Rayleigh law, density $\alpha \exp(-\alpha^2)$)

Asymptotic considerations

• Two-point function of (plane) trees:

$$\label{eq:Gd} \begin{bmatrix} G_d(g) = (gR^2)^d \end{bmatrix}$$
 with $R=1+gR^2 = \frac{1-\sqrt{1-4g}}{2g}$

 G_d is the d th power of a series having a square-root singularity

 $\Rightarrow d/n^{1/2}$ converges in law (Rayleigh law, density $\alpha \exp(-\alpha^2)$)

• Two-point function of quadrangulations:

$$\left|G_d(g) \sim_{d \to \infty} a_1 x^d + a_2 x^{2d} + \cdots\right|$$

where x = x(g) has a quartic singularity

 $\Rightarrow d/n^{1/4}$ converges to an explicit law [BDG'03]

Asymptotic considerations

• Two-point function of (plane) trees:

$$\label{eq:Gd} \begin{bmatrix} G_d(g) = (gR^2)^d \end{bmatrix}$$
 with $R = 1 + gR^2 = \frac{1 - \sqrt{1 - 4g}}{2g}$

 G_d is the d th power of a series having a square-root singularity

 $\Rightarrow d/n^{1/2}$ converges in law (Rayleigh law, density $\alpha \exp(-\alpha^2)$)

• Two-point function of quadrangulations:

$$\left|G_d(g) \sim_{d \to \infty} a_1 x^d + a_2 x^{2d} + \cdots\right|$$

where x = x(g) has a quartic singularity

 $\Rightarrow d/n^{1/4}$ converges to an explicit law [BDG'03]

Convergence in the two cases "follows" from (proof by Hankel contour) [Banderier, Flajolet, Louchard, Schaeffer'03]: for 0 < s < 1,

$$x(g)_{g \to 1} \sim (1-g)^s \Rightarrow [g^n] x^{\alpha n^s} \sim \frac{1}{2\pi n} \int_0^\infty e^{-t} \operatorname{Im}(\exp(-\alpha t^s e^{i\pi s})) dt$$

Computing the two-point and three-point function of quadrangulations using Miermont's bijection

Well-labelled maps

Well-labelled map = map where

- each vertex v has a label $\ell(v)\in\mathbb{Z}$
- each edge $e = \{u,v\}$ satisfies $|\ell(u) \ell(v)| \leq 1$

a well-labelled map ${\cal M}$ with $3~{\rm faces}$

Rk: Well-labelled tree = well-labelled map with one face

Very-well-labelled quadrangulations

Very-well-labelled quadrangulation = quadrangulation where

- each vertex v has a label $\ell(v) \in \mathbb{Z}$
- each edge $e = \{u, v\}$ satisfies $|\ell(u) \ell(v)| = 1$

- **Def:** local min= vertex with all neighbours of larger label
- **Rk:** Geodesic labelling \Leftrightarrow there is just one local min, of label 0

The Miermont bijection [Miermont'07], [Ambjørn, Budd'13] Very-well labelled quadrangulation $Q \Rightarrow$ well-labelled map M n faces n edges

The Miermont bijection [Miermont'07], [Ambjørn, Budd'13] Very-well labelled quadrangulation $Q \Rightarrow$ well-labelled map Mn faces n edges

same label

implies

 \Rightarrow

(i)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local min of Q

·i

(follows from the local rules)

implies

 \Rightarrow

(i)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local min of Q

·i

(follows from the local rules)

implies

· *i*)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local min of Q

(i)

(follows from the local rules)

implies

·i)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local min of Q

(follows from the local rules)

(i)

implies

 $\Rightarrow \underbrace{i_{c}}_{i-1} \underbrace{i_{c}}_{i-2} \underbrace{i_{c}}_{i-3}$

·i)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local min of Q

(follows from the local rules)

(i)

implies

 $\Rightarrow \underbrace{i \atop i - 1}^{i - 4} \underbrace{i - 4 \atop i - 3}^{i - 4}$

(j)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local min of Q

(follows from the local rules)

(i)

implies

 $\Rightarrow \underbrace{i_{c}}_{(i-1)} \underbrace{i_{-1}}_{(i-2)} \underbrace{i_{-3}}_{(i-3)}$

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local min of Q

(follows from the local rules)

Let
$$n = \#$$
 faces of Q , $p = \#$ local min of Q , $f = \#$ "faces" of M

	#V	#E	#F	
Q	n+2	2n	n	
M	n+2-p	n	f = k - 1 + p	
			Euler's $k = \#$ coni	relation, with nected comp. of M

 (\hat{i})

implies

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local min of Q

(follows from the local rules)

Let
$$n=\#$$
 faces of Q , $p=\#$ local min of Q , $f=\#$ "faces" of M

(i)

	#V	#E	#F	
Q	n+2	2n	n	
M	n+2-p	n	f = k - 1 + p	
			Euler's	relation, with

Drawing above $\Rightarrow f \leq p$ Hence k = 1 (*M* connected) f = p, and there is exactly one local min of *Q* in each face of *M*

The case of two local min

The case of two local min

The case of two local min

Proof: $\forall v \in \Gamma$, a shortest path $v_1 \rightarrow v \rightarrow v_2$ has length $2\ell(v) - \ell(v_1) - \ell(v_2)$ (because of the existence of a label-decreasing path on each side)

A bi-pointed quadrangulation Q where $d_{12} = d$ has a unique very-well labelling $\ell(.)$ with two local min, at v_1, v_2 , and $\ell(v_1) = -s$, $\ell(v_2) = -t$.

$$\ell(.)$$
 is given by $|\ell(v) = \min(\operatorname{dist}(v_1, v) - s, \operatorname{dist}(v_2, v) - t)|$

A bi-pointed quadrangulation Q where $d_{12} = d$ has a unique very-well labelling $\ell(.)$ with two local min, at v_1, v_2 , and $\ell(v_1) = -s$, $\ell(v_2) = -t$.

 $\ell(.)$ is given by $|\ell(v) = \min(\operatorname{dist}(v_1, v) - s, \operatorname{dist}(v_2, v) - t)|$

A bi-pointed quadrangulation Q where $d_{12} = d$ has a unique very-well labelling $\ell(.)$ with two local min, at v_1, v_2 , and $\ell(v_1) = -s$, $\ell(v_2) = -t$.

 $\ell(.)$ is given by $|\ell(v) = \min(\operatorname{dist}(v_1, v) - s, \operatorname{dist}(v_2, v) - t)|$

A bi-pointed quadrangulation Q where $d_{12} = d$ has a unique very-well labelling $\ell(.)$ with two local min, at v_1, v_2 , and $\ell(v_1) = -s$, $\ell(v_2) = -t$.

 $\ell(.)$ is given by $\left|\ell(v) = \min(\operatorname{dist}(v_1, v) - s, \operatorname{dist}(v_2, v) - t)\right|$

The associated well-labelled map with two faces f_1, f_2 satisfies:

•
$$\min(f_1) = -s + 1$$
, $\min(f_2) = -t + 1$

• $\min_{\Gamma} = 0$ (by preceding slide)

A bi-pointed quadrangulation Q where $d_{12} = d$ has a unique very-well labelling $\ell(.)$ with two local min, at v_1, v_2 , and $\ell(v_1) = -s$, $\ell(v_2) = -t$.

 $\ell(.)$ is given by $\left|\ell(v) = \min(\operatorname{dist}(v_1, v) - s, \operatorname{dist}(v_2, v) - t)\right|$

The associated well-labelled map with two faces f_1, f_2 satisfies:

•
$$\min(f_1) = -s + 1$$
, $\min(f_2) = -t + 1$

• $\min_{\Gamma} = 0$ (by preceding slide)

Another way of computing the 2-point function We conclude that, for d = s + t ($s, t \ge 1$) $G_d(g)$ is the series of

Or ($\Delta := \text{discrete differentiation}$) $G_d = \Delta_s \Delta_t F_{s,t}$, where $F_{s,t}$ counts

Another way of computing the 2-point function

Then by the link between cyclic and sequential excursions:

A first covered case for the 3-point function

[Bouttier, Guitter'08] This solves the case of 3 "aligned" vertices

tri-pointed quadrangulations with $d_{12} = s + t$, $d_{13} = s$, $d_{23} = t$

i.e., v_3 is on a geodesic path from v_1 to v_2 at respective distances s, t from v_1, v_2

A first covered case for the 3-point function

[Bouttier, Guitter'08] This solves the case of 3 "aligned" vertices

Hence $G_{s+t,s,t}(g) = \Delta_s \Delta_t X_{s,t}$

tri-pointed quadrangulations with $d_{12} = s + t$, $d_{13} = s$, $d_{23} = t$

i.e., v_3 is on a geodesic path from v_1 to v_2 at respective distances s, t from v_1, v_2

where
$$X_{s,t} = \frac{[3]_x[s+1]_x[t+1]_x[s+t+3]_x}{[1]_x[s+3]_x[t+3]_x[s+t+1]_x}$$

The different cases for the 3-point function

[Bouttier, Guitter'08] $D = (d_{12}, d_{13}, d_{23})$ can be achieved only if

 $\begin{cases} d_{12} \leq d_{13} + d_{23} \\ d_{13} \leq d_{12} + d_{23} \\ d_{23} \leq d_{12} + d_{13} \end{cases}$

The different cases for the 3-point function [Bouttier, Guitter'08] $D = (d_{12}, d_{13}, d_{23})$ can be achieved only if

The different cases for the 3-point function [Bouttier, Guitter'08] $D = (d_{12}, d_{13}, d_{23})$ can be achieved only if

- 3 points are distinct \Rightarrow at most one of s, t, u is zero
- One of s, t, u (say u) is zero \Leftrightarrow aligned points (preceding slide)
- Generic case: s, t, u > 0 (non-aligned points)

- Endow Q with unique very-well labelling with 3 local min at v_1, v_2, v_3 and where $\ell(v_1) = -s$, $\ell(v_2) = -t$, $\ell(v_3) = -u$
- Apply the Miermont bijection \Rightarrow
- obtain a 3-face well-labelled map where
- $\min(f_1) = 1 s \qquad \min_{\Gamma_{12}} = 0 \\ \min(f_2) = 1 t \qquad \min_{\Gamma_{13}} = 0 \\ \min(f_3) = 1 u \qquad \min_{\Gamma_{23}} = 0$

- Endow Q with unique very-well labelling with 3 local min at v_1, v_2, v_3 and where $\ell(v_1) = -s$, $\ell(v_2) = -t$, $\ell(v_3) = -u$
- Apply the Miermont bijection \Rightarrow
- obtain a 3-face well-labelled map where
- $\min(f_1) = 1 s \qquad \min_{\Gamma_{12}} = 0 \\ \min(f_2) = 1 t \qquad \min_{\Gamma_{13}} = 0 \\ \min(f_3) = 1 u \qquad \min_{\Gamma_{23}} = 0$

- Endow Q with unique very-well labelling with 3 local min at v_1, v_2, v_3 and where $\ell(v_1) = -s$, $\ell(v_2) = -t$, $\ell(v_3) = -u$
- Apply the Miermont bijection \Rightarrow
- obtain a 3-face well-labelled map where
- $\min(f_1) = 1 s \qquad \min_{\Gamma_{12}} = 0 \\ \min(f_2) = 1 t \qquad \min_{\Gamma_{13}} = 0 \\ \min(f_3) = 1 u \qquad \min_{\Gamma_{23}} = 0$

 \Rightarrow expression of $G_{d_{12},d_{13},d_{23}}(g)$ as $\Delta_s \Delta_t \Delta_u F_{s,t,u}$, with $F_{s,t,u}(g)$ explicit

Computing the two-point function of general maps using the Ambjørn-Budd bijection

 \Rightarrow pointed maps n edges \leftrightarrow well-labelled trees min-label=1 and n edges (as for quadrang., but this time vertex of $M \neq v_0 \leftrightarrow$ non-local max of T)

 \Rightarrow pointed maps n edges \leftrightarrow well-labelled trees min-label=1 and n edges (as for quadrang., but this time vertex of $M \neq v_0 \leftrightarrow$ non-local max of T)

Rk: In that case, Φ^- gives a new bijection from pointed quadrangulations with n faces to pointed maps with n edges that preserves the distances to the pointed vertex (not the case with the easy local bijection)

Let $G_d(g)$ the 2-point function of general maps

AB bijection $\Rightarrow G_d(g)$ is the series of well-labelled trees with min-label 1 with a marked non local max of label d

Let $G_d(g)$ the 2-point function of general maps

AB bijection $\Rightarrow G_d(g)$ is the series of well-labelled trees with min-label 1 with a marked non local max of label d

 $G_d = F_d - F_{d-1}$, with $F_d(g) :=$ the series of well-labelled trees with positive labels and a marked non local max of label d

Let $G_d(g)$ the 2-point function of general maps

AB bijection $\Rightarrow G_d(g)$ is the series of well-labelled trees with min-label 1 with a marked non local max of label d

 $G_d = F_d - F_{d-1}$, with $F_d(g) :=$ the series of well-labelled trees with positive labels and a marked non local max of label d

$$F_i = \log \frac{1}{1 - g(R_{i-1} + R_i + R_{i+1})} - \log \frac{1}{1 - g(R_{i-1} + R_i)}$$
$$= \log(1 + gR_iR_{i+1})$$

$$\Rightarrow \boxed{G_d = \log\left(\frac{[d+1]_x^3[d+3]}{[d]_x[d+2]_x^3}\right)} \text{ for general maps}$$

Let $G_d(g)$ the 2-point function of general maps

AB bijection $\Rightarrow G_d(g)$ is the series of well-labelled trees with min-label 1 with a marked non local max of label d

 $G_d = F_d - F_{d-1}$, with $F_d(g) :=$ the series of well-labelled trees with positive labels and a marked non local max of label d

$$F_i = \log \frac{1}{1 - g(R_{i-1} + R_i + R_{i+1})} - \log \frac{1}{1 - g(R_{i-1} + R_i)}$$
$$= \log(1 + gR_iR_{i+1})$$

$$\Rightarrow \left[G_d = \log\left(\frac{[d+1]_x^3[d+3]}{[d]_x[d+2]_x^3} \right) \right] \text{ for general maps}$$

recall $G_d = \log\left(\frac{[d]_x^2[d+3]_x}{[d-1]_x[d+2]_x^2} \right) \text{ for quadrang. (same asymptotic laws)}$

The case of two local min

Let M a well-labelled map with two local min v_1, v_2 Let $M' = \Lambda(M)$, let f_1, f_2 the two faces of M'

Let Γ the (cycle) boundary of M', $i := \min_{\Gamma}$

Two cases:

A): no edge of labels i - i on Γ $dist_M(v_1, v_2) = 2i - \ell(v_1) - \ell(v_2)$

$$i - \ell(v_1)$$

 $i - \ell(v_2)$
 v_1
 $i + 1$
 v_2
 v_2

B): \exists an edge of labels i - i on Γ dist_M(v_1, v_2) = $2i - \ell(v_1) - \ell(v_2) - 1$

B) Write d as s + t - 1 with $s, t \ge 1$. Endow M with unique well-labelling where v_1, v_2 are unique local min and $\ell(v_1) = -s$, $\ell(v_2) = -t$

2 other ways to compute the 2-point function

Case A: $d_{12} + d_{13} + d_{23}$ even

parametrize as: $d_{12} = s + t$ with s, t, u > 0 $d_{13} = s + u$ $d_{23} = t + u$

endow tri-pointed map with unique "(-s, -t, -u)-well-labelling" and apply the AB bijection Λ

$$\begin{split} \min(f_1) = 1 - s & \min_{\Gamma_{12}} = 0 \\ \min(f_2) = 1 - t & \min_{\Gamma_{13}} = 0 \\ \min(f_3) = 1 - u & \min_{\Gamma_{23}} = 0 \\ & \text{and no edge } 0 - 0 \text{ on } \Gamma \end{split}$$

Case A: $d_{12} + d_{13} + d_{23}$ even

parametrize as: $d_{12} = s + t$ with s, t, u > 0 $d_{13} = s + u$ $d_{23} = t + u$

endow tri-pointed map with unique " $(-s,-t,-u)\mbox{-well-labelling}"$ and apply the AB bijection Λ

 $\begin{array}{ll} \min(f_1) = 1 - s & \min_{\Gamma_{12}} = 0 \\ \min(f_2) = 1 - t & \min_{\Gamma_{13}} = 0 \\ \min(f_3) = 1 - u & \min_{\Gamma_{23}} = 0 \\ \end{array}$ and no edge 0-0 on Γ

Case A: $d_{12} + d_{13} + d_{23}$ even

parametrize as: $d_{12} = s + t$ with s, t, u > 0 $d_{13} = s + u$ $d_{23} = t + u$

endow tri-pointed map with unique "(-s, -t, -u)-well-labelling" and apply the AB bijection Λ

 $\begin{array}{ll} \min(f_1) = 1 - s & \min_{\Gamma_{12}} = 0 \\ \min(f_2) = 1 - t & \min_{\Gamma_{13}} = 0 \\ \min(f_3) = 1 - u & \min_{\Gamma_{23}} = 0 \\ \end{array}$ and no edge 0-0 on Γ

 \Rightarrow expression of $G_{d_{12},d_{13},d_{23}}(g)$ as $\Delta_s \Delta_t \Delta_u F_{s,t,u}^{\text{even}}$, with $F_{s,t,u}^{\text{even}}(g)$ explicit

Case B: $d_{12} + d_{13} + d_{23}$ odd (did not exist for quadrang.)

parametrize as:
$$d_{12} = s + t - 1$$
 with $s, t, u > 0$
 $d_{13} = s + u - 1$
 $d_{23} = t + u - 1$

endow tri-pointed map with unique ''(-s,-t,-u)-well-labelling'' and apply the AB bijection Λ

3-point function: generic (non-aligned) case

Case B: $d_{12} + d_{13} + d_{23}$ odd (did not exist for quadrang.)

parametrize as:
$$d_{12} = s + t - 1$$
 with $s, t, u > 0$
 $d_{13} = s + u - 1$
 $d_{23} = t + u - 1$

endow tri-pointed map with unique ''(-s,-t,-u)-well-labelling'' and apply the AB bijection Λ

 $\begin{array}{ll} \min(f_1) = 1 - s & \min_{\Gamma_{12}} = 0\\ \min(f_2) = 1 - t & \min_{\Gamma_{13}} = 0\\ \min(f_3) = 1 - u & \min_{\Gamma_{23}} = 0\\ \end{array}$ and there is an edge 0-0 on each of $\Gamma_{12}, \Gamma_{13}, \Gamma_{23}$

3-point function: generic (non-aligned) case

Case B: $d_{12} + d_{13} + d_{23}$ odd (did not exist for quadrang.)

parametrize as:
$$d_{12} = s + t - 1$$
 with $s, t, u > 0$
 $d_{13} = s + u - 1$
 $d_{23} = t + u - 1$

endow tri-pointed map with unique ''(-s,-t,-u)-well-labelling'' and apply the AB bijection Λ

 $\min(f_1) = 1 - s \quad \min_{\Gamma_{12}} = 0 \\ \min(f_2) = 1 - t \quad \min_{\Gamma_{13}} = 0 \\ \min(f_3) = 1 - u \quad \min_{\Gamma_{23}} = 0 \\ \text{and there is an edge } 0 - 0 \\ \text{on each of } \Gamma_{12}, \Gamma_{13}, \Gamma_{23}$

 \Rightarrow expression of $G_{d_{12},d_{13},d_{23}}(g)$ as $\Delta_s \Delta_t \Delta_u F_{s,t,u}^{\text{odd}}$, with $F_{s,t,u}^{\text{odd}}(g)$ explicit

Conclusion and remarks

- There are exact expressions for the 2-point and 3-point functions of quadrangulations and general maps (bijections + GF calculations)
- Asymptotically the limit laws (rescaling by $n^{1/4}$) are the same for the random quad. Q_n of size n as for the random map M_n of size n
 - **Rk:** also follows from [Bettinelli, Jacob, Miermont'13] $(Q_n, \operatorname{dist}/n^{1/4})$ and $(M_n, \operatorname{dist}/n^{1/4})$ are close as metric spaces, when coupling (M_n, Q_n) by the AB bijection
- We can also obtain similar expressions for bipartite maps (associated well-labelled maps are restricted to have no edge i i)
- The GF expressions $G_D(g)$ for maps/bipartite maps can be extended to expressions $G_D(g,z)$ where z marks the number of faces