La fonction à deux points et à trois points des quadrangulations et cartes

Éric Fusy (CNRS/LIX)
Travaux avec Jérémie Bouttier et Emmanuel Guitter

Séminaire Calin, LIPN, Mai 2014

Maps
Def. Planar map $=$ connected graph embedded on the sphere

Easier to draw in the plane (by choosing a face to be the outer face)

Maps as random discrete surfaces

Natural questions:

- Typical distance between (random) vertices in random maps the order of magnitude is $n^{1 / 4}\left(\neq n^{1 / 2}\right.$ in random trees)
random $\{-$ [Chassaing-Schaeffer'04] probabilistic
quadrang. $\{$ - [Bouttier Di Francesco Guitter'03] exact GF expressions
- How does a random map (rescaled by $n^{1 / 4}$) "look like" ?
convergence to the "Brownian map"
[Le Gall'13, Miermont'13]

Counting (rooted) maps

- Very simple counting formulas ([Tutte'60s]), for instance Let $q_{n}=\#\{$ rooted quadrangulations with n faces $\}$ $m_{n}=\#\{$ rooted maps with n edges $\}$

Then $m_{n}=q_{n}=\frac{2}{n+2} 3^{n} \frac{(2 n)!}{n!(n+1)!}$

Counting (rooted) maps

with a marked corner

- Very simple counting formulas ([Tutte'60s]), for instance

Let $q_{n}=\#\{$ rooted quadrangulations with n faces $\}$
$m_{n}=\#\{$ rooted maps with n edges $\}$

Then $m_{n}=q_{n}=\frac{2}{n+2} 3^{n} \frac{(2 n)!}{n!(n+1)!}$

- Proof of $m_{n}=q_{n}$ by easy local bijection:

Counting (rooted) maps

- Very simple counting formulas ([Tutte'60s]), for instance

Let $q_{n}=\#\{$ rooted quadrangulations with n faces $\}$
$m_{n}=\#\{$ rooted maps with n edges $\}$
Then $m_{n}=q_{n}=\frac{2}{n+2} 3^{n} \frac{(2 n)!}{n!(n+1)!}$

- Proof of $m_{n}=q_{n}$ by easy local bijection:

But this bijection does not preserve distance-parameters (only bounds)

The k-point function

- Let $\mathcal{M}=\cup_{n} \mathcal{M}[n]$ be a family of maps (quadrangulations, general, ...) where n is a size-parameter (\# faces for quad., \# edges for gen. maps)
- Let $\mathcal{M}^{(k)}=$ family of maps from \mathcal{M} with k marked vertices v_{1}, \ldots, v_{k}

The k-point function

- Let $\mathcal{M}=\cup_{n} \mathcal{M}[n]$ be a family of maps (quadrangulations, general, ...) where n is a size-parameter (\# faces for quad., \# edges for gen. maps)
- Let $\mathcal{M}^{(k)}=$ family of maps from \mathcal{M} with k marked vertices v_{1}, \ldots, v_{k}

Refinement by distances :

For $D=\left(d_{i, j}\right)_{1 \leq i<j \leq k}$ any $\binom{k}{2}$-tuple of positive integers
let $\mathcal{M}_{D}^{(k)}:=$ subfamily of $\mathcal{M}^{(k)}$ where $\operatorname{dist}\left(v_{i}, v_{j}\right)=d_{i j}$ for $1 \leq i<j \leq k$
The counting series $G_{D} \equiv G_{D}(g)$ of $\mathcal{M}_{D}^{(k)}$ with respect to the size is called the k-point function of \mathcal{M}

quadrangulation

general map

Exact expressions for the k-point function

- For the two-point functions:
- quadrangulations
[Bouttier Di Francesco Guitter'03]
- maps with prescribed (bounded) face-degrees
- general maps
[Ambjørn Budd'13]
- general hypermaps, general constellations
[Bouttier F Guitter'13]
- For the three-point functions
- quadrangulations
[Bouttier Guitter'08]
- general maps \& bipartite maps
[F Guitter'14]

Exact expressions for the k-point function Outline of the talk

- For the two-point functions:
(1)-quadrangulations
[Bouttier Di Francesco Guitter'03] uses Schaeffer's bijection
- maps with prescribed (bounded) face-degrees
(2) quadrangulations uses Miermont's bijection [Bouttier Guitter'08]
(3)-general maps
- general hypermaps, general constellations
based on clever observation on Miermont's bijection
- For the three-point functions
(4) General maps \& bipartite maps
[Bouttier Guitter'08]
[Ambjørn Budd'13]
[Bouttier F Guitter'13]

Computing the two-point function of quadrangulations using the Schaeffer bijection

Well-labelled trees

Well-labelled tree $=$ plane tree where

- each vertex v has a label $\ell(v) \in \mathbb{Z}$
- each edge $e=\{u, v\}$ satisfies $|\ell(u)-\ell(v)| \leq 1$

Pointed quadrangulations, geodesic labelling Pointed quadrangulation $=$ quadrangulation with a marked vertex v_{0} Geodesic labelling with respect to $v_{0}: \ell(v)=\operatorname{dist}\left(v_{0}, v\right)$

Rk: two types of faces

confluent

The Schaeffer bijection [Schaeffer'99], also [Cori-Vauquelin'81]

Pointed quadrangulation \Rightarrow well-labelled tree with min-label $=1$ n faces n edges

Local rule in each face:

The 2-point function of quadrangulations (1)

 Denote by $G_{d} \equiv G_{d}(g)$ the two-point function of quadrangulations bijection $\Rightarrow G_{d}(g)=$ GF of well-labelled trees with min-label=1 and with a marked vertex of label d
$\mathbf{R k}: G_{d}=F_{d}-F_{d-1}=\Delta_{d} F_{d}$ where $F_{d} \equiv F_{d}(g)=$ GF of well-labelled trees with positive labels and with a marked vertex of label d

The 2-point function of quadrangulations (2)

$\Rightarrow \quad F_{i}=\log \frac{1}{1-g\left(R_{i-1}+R_{i}+R_{i+1}\right)}$
with $R_{i}=\overbrace{\Delta 0}^{\stackrel{\downarrow}{Q}}$
GF rooted well-labelled trees with positive labels and label i at the root

The 2-point function of quadrangulations (2)

$\Rightarrow \quad F_{i}=\log \frac{1}{1-g\left(R_{i-1}+R_{i}+R_{i+1}\right)}$
with $R_{i}=\overbrace{>0}^{\dot{\phi}}$
GF rooted well-labelled trees with positive labels and label i at the root
Equ. for $R_{i}: \longdiv { R _ { i } = \frac { 1 } { 1 - g (R _ { i - 1 } + R _ { i } + R _ { i + 1 }) } }$ (so $F_{i}=\log \left(R_{i}\right), G_{d}=\log \left(\frac{R_{d}}{R_{d-1}}\right)$)

The 2-point function of quadrangulations (2)

$$
\Rightarrow \quad F_{i}=\log \frac{1}{1-g\left(R_{i-1}+R_{i}+R_{i+1}\right)}
$$

GF rooted well-labelled trees with positive labels and label i at the root

Equ. for $R_{i}: \sqrt{R_{i}=\frac{1}{1-g\left(R_{i-1}+R_{i}+R_{i+1}\right)}}$ (so $F_{i}=\log \left(R_{i}\right), G_{d}=\log \left(\frac{R_{d}}{R_{d-1}}\right)$)

- Exact expression for R_{i} [BDG'03]

$$
R_{i}=R \frac{[i]_{x}[i+3]_{x}}{[i+1]_{x}[i+2]_{x}}
$$

with the notation $[i]_{x}=\frac{1-x^{i}}{1-x}$
with $R \equiv R(g)$ and $x \equiv x(g)$ given by $\left\{\begin{array}{l}R=1+3 g R^{2} \\ x=g R^{2}\left(1+x+x^{2}\right)\end{array}\right.$
$R(g)=\frac{1-S}{6 g} \quad x(g)=\frac{\sqrt{6}}{2} \frac{S^{1 / 2} \sqrt{1-(1+6 g) S}-S-24 g+1}{-1+S+6 g} \quad$ with $S=\sqrt{1-12 g}$

The 2-point function of quadrangulations (2)

$$
\Rightarrow \quad F_{i}=\log \frac{1}{1-g\left(R_{i-1}+R_{i}+R_{i+1}\right)}
$$

with $R_{i}=\overbrace{>0}^{\stackrel{\rightharpoonup}{Q}^{\circ}}$
GF rooted well-labelled trees with positive labels and label i at the root

Equ. for $R_{i}: \sqrt{R_{i}=\frac{1}{1-g\left(R_{i-1}+R_{i}+R_{i+1}\right)}}$ (so $F_{i}=\log \left(R_{i}\right), G_{d}=\log \left(\frac{R_{d}}{R_{d-1}}\right)$)

- Exact expression for R_{i} [BDG'03]

$$
R_{i}=R \frac{[i]_{x}[i+3]_{x}}{[i+1]_{x}[i+2]_{x}}
$$

$$
\text { with the notation }[i]_{x}=\frac{1-x^{i}}{1-x}
$$

$$
\text { with } R \equiv R(g) \text { and } x \equiv x(g) \text { given by }\left\{\begin{array}{l}
R=1+3 g R^{2} \\
x=g R^{2}\left(1+x+x^{2}\right)
\end{array}\right.
$$

$R(g)=\frac{1-S}{6 g} \quad x(g)=\frac{\sqrt{6}}{2} \frac{S^{1 / 2} \sqrt{1-(1+6 g) S}-S-24 g+1}{-1+S+6 g} \quad$ with $S=\sqrt{1-12 g}$
Final 2-point function expression:

$$
G_{d}=\log \left(\frac{[d]_{x}^{2}[d+3]_{x}}{[d-1]_{x}[d+2]_{x}^{2}}\right)
$$

Asymptotic considerations

- Two-point function of (plane) trees:
$G_{d}(g)=\left(g R^{2}\right)^{d}$
with $R=1+g R^{2}=\frac{1-\sqrt{1-4 g}}{2 g}$

G_{d} is the d th power of a series having a square-root singularity
$\Rightarrow d / n^{1 / 2}$ converges in law (Rayleigh law, density $\alpha \exp \left(-\alpha^{2}\right)$)

Asymptotic considerations

- Two-point function of (plane) trees:

$$
G_{d}(g)=\left(g R^{2}\right)^{d}
$$

with $R=1+g R^{2}=\frac{1-\sqrt{1-4 g}}{2 g}$

G_{d} is the d th power of a series having a square-root singularity
$\Rightarrow d / n^{1 / 2}$ converges in law (Rayleigh law, density $\alpha \exp \left(-\alpha^{2}\right)$)

- Two-point function of quadrangulations:

$$
G_{d}(g) \sim_{d \rightarrow \infty} a_{1} x^{d}+a_{2} x^{2 d}+\cdots
$$

where $x=x(g)$ has a quartic singularity
$\Rightarrow d / n^{1 / 4}$ converges to an explicit law
[BDG'03]

Asymptotic considerations

- Two-point function of (plane) trees:

$$
G_{d}(g)=\left(g R^{2}\right)^{d}
$$

with $R=1+g R^{2}=\frac{1-\sqrt{1-4 g}}{2 g}$

$d=5$
G_{d} is the d th power of a series having a square-root singularity
$\Rightarrow d / n^{1 / 2}$ converges in law (Rayleigh law, density $\alpha \exp \left(-\alpha^{2}\right)$)

- Two-point function of quadrangulations:

$$
G_{d}(g) \sim_{d \rightarrow \infty} a_{1} x^{d}+a_{2} x^{2 d}+\cdots
$$

where $x=x(g)$ has a quartic singularity
$\Rightarrow d / n^{1 / 4}$ converges to an explicit law [BDG'03]
Convergence in the two cases "follows" from (proof by Hankel contour) [Banderier, Flajolet, Louchard, Schaeffer'03]: for $0<s<1$,

$$
x(g) \underset{g \rightarrow 1}{\sim} 1-(1-g)^{s} \Rightarrow\left[g^{n}\right] x^{\alpha n^{s}} \sim \frac{1}{2 \pi n} \int_{0}^{\infty} e^{-t} \operatorname{Im}\left(\exp \left(-\alpha t^{s} e^{i \pi s}\right)\right) \mathrm{d} t
$$

Computing the two-point and three-point function of quadrangulations using Miermont's bijection

Well-labelled maps

Well-labelled map = map where

- each vertex v has a label $\ell(v) \in \mathbb{Z}$
- each edge $e=\{u, v\}$ satisfies $|\ell(u)-\ell(v)| \leq 1$

a well-labelled map M with 3 faces

Rk: Well-labelled tree = well-labelled map with one face

Very-well-labelled quadrangulations

Very-well-labelled quadrangulation = quadrangulation where

- each vertex v has a label $\ell(v) \in \mathbb{Z}$
- each edge $e=\{u, v\}$ satisfies $|\ell(u)-\ell(v)|=1$

Rk: two types of faces

a very-well-labelled
quadrangulation Q with 3 local min
Def: local $\min =$ vertex with all neighbours of larger label
$\mathbf{R k}$: Geodesic labelling \Leftrightarrow there is just one local min, of label 0

The Miermont bijection [Miermont’07], [Ambjørn, Budd'13] Very-well labelled quadrangulation $Q \Rightarrow$ well-labelled map M n faces n edges

local $\min v$

non-local min
vertex

The Miermont bijection [Miermont’07], [Ambjørn, Budd'13] Very-well labelled quadrangulation $Q \Rightarrow$ well-labelled map M n faces n edges

recover the Schaeffer bijection (case of one local min, of label 0)
local $\min v$

non-local min

Proof of the stated properties

(follows from the local rules)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local \min of Q

Proof of the stated properties

(follows from the local rules)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local \min of Q

Proof of the stated properties

(follows from the local rules)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local \min of Q

Proof of the stated properties

(follows from the local rules)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local \min of Q

Proof of the stated properties

(follows from the local rules)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local \min of Q

Proof of the stated properties

(follows from the local rules)
\Rightarrow

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local \min of Q

Proof of the stated properties

(follows from the local rules)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local \min of Q

Let $n=\#$ faces of $Q, p=\#$ local \min of $Q, f=\#$ "faces" of M

	$\# V$	$\# E$	$\# F$
Q	$n+2$	$2 n$	n
M	$n+2-p$	n	$f=k-1+p$

Euler's relation, with
$k=\#$ connected comp. of M

Proof of the stated properties

(follows from the local rules)

From each corner c in a "face" of M starts a label-decreasing path of Q that stays in the face and ends at a local \min of Q

Let $n=\#$ faces of $Q, p=\#$ local \min of $Q, f=\#$ "faces" of M

	$\# V$	$\# E$	$\# F$
Q	$n+2$	$2 n$	n
M	$n+2-p$	n	$f=k-1+p$

Euler's relation, with
Drawing above $\Rightarrow f \leq p$
$k=\#$ connected comp. of M
Hence $k=1$ (M connected) $f=p$, and there is exactly one local min of Q in each face of M
Γ the boundary, here $\min _{\Gamma}=1$

Γ the boundary, here $\min _{\Gamma}=1$

The case of two local min
Γ the boundary, here $\min _{\Gamma}=1$

Proof: $\forall v \in \Gamma$, a shortest path $v_{1} \rightarrow v \rightarrow v_{2}$ has length $2 \ell(v)-\ell\left(v_{1}\right)-\ell\left(v_{2}\right)$ (because of the existence of a label-decreasing path on each side)

A bi-pointed quadrangulation Q where $d_{12}=d$ has a unique very-well labelling $\ell($.$) with two local min, at v_{1}, v_{2}$, and $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t$.

$$
\ell(.) \text { is given by } \ell(v)=\min \left(\operatorname{dist}\left(v_{1}, v\right)-s, \operatorname{dist}\left(v_{2}, v\right)-t\right)
$$

A bi-pointed quadrangulation Q where $d_{12}=d$ has a unique very-well labelling $\ell($.$) with two local min, at v_{1}, v_{2}$, and $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t$.

$$
\ell(.) \text { is given by } \ell(v)=\min \left(\operatorname{dist}\left(v_{1}, v\right)-s, \operatorname{dist}\left(v_{2}, v\right)-t\right)
$$

A bi-pointed quadrangulation Q where $d_{12}=d$ has a unique very-well labelling $\ell\left(\right.$.) with two local min, at v_{1}, v_{2}, and $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t$.

$$
\ell(.) \text { is given by } \ell(v)=\min \left(\operatorname{dist}\left(v_{1}, v\right)-s, \operatorname{dist}\left(v_{2}, v\right)-t\right)
$$

A bi-pointed quadrangulation Q where $d_{12}=d$ has a unique very-well labelling $\ell\left(\right.$.) with two local min, at v_{1}, v_{2}, and $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t$.

$$
\ell(.) \text { is given by } \ell(v)=\min \left(\operatorname{dist}\left(v_{1}, v\right)-s, \operatorname{dist}\left(v_{2}, v\right)-t\right)
$$

The associated well-labelled map with two faces f_{1}, f_{2} satisfies:

- $\min \left(f_{1}\right)=-s+1, \min \left(f_{2}\right)=-t+1$
- $\min _{\Gamma}=0$ (by preceding slide)

A bi-pointed quadrangulation Q where $d_{12}=d$ has a unique very-well labelling $\ell\left(\right.$.) with two local min, at v_{1}, v_{2}, and $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t$.

$$
\ell(.) \text { is given by } \ell(v)=\min \left(\operatorname{dist}\left(v_{1}, v\right)-s, \operatorname{dist}\left(v_{2}, v\right)-t\right)
$$

The associated well-labelled map with two faces f_{1}, f_{2} satisfies:

- $\min \left(f_{1}\right)=-s+1, \min \left(f_{2}\right)=-t+1$
- $\min _{\Gamma}=0$ (by preceding slide)

Another way of computing the 2-point function

We conclude that, for $d=s+t(s, t \geq 1) G_{d}(g)$ is the series of

$\operatorname{Or}(\Delta:=$ discrete differentiation $) G_{d}=\Delta_{s} \Delta_{t} F_{s, t}$, where $F_{s, t}$ counts

Another way of computing the 2-point function

Then by the link between cyclic and sequential excursions:

Equation for $X_{s, t}: X_{s, t}=1+g R_{s} R_{t} X_{s, t}\left(1+g R_{s+1} R_{t+1} X_{s+1, t+1}\right)$ solution (guessing/checking): $X_{s, t}=\frac{[3]_{x}[s+1]_{x}[t+1]_{x}[s+t+3]_{x}}{[1]_{x}[s+3]_{x}[t+3]_{x}[s+t+1]_{x}}$
\Rightarrow recover $G_{d}=\log \left(\frac{[s+t]_{x}^{2}[s+t+3]_{x}}{[s+t-1]_{x}[s+t+2]_{x}^{2}}\right)$

A first covered case for the 3-point function
[Bouttier, Guitter'08] This solves the case of 3 "aligned" vertices

tri-pointed quadrangulations with $d_{12}=s+t, d_{13}=s, d_{23}=t$
i.e., v_{3} is on a geodesic path from v_{1} to v_{2} at respective distances s, t from v_{1}, v_{2}

A first covered case for the 3-point function
[Bouttier, Guitter'08] This solves the case of 3 "aligned" vertices

tri-pointed quadrangulations with $d_{12}=s+t, d_{13}=s, d_{23}=t$
i.e., v_{3} is on a geodesic path from v_{1} to v_{2} at respective distances s, t from v_{1}, v_{2}

Hence $G_{s+t, s, t}(g)=\Delta_{s} \Delta_{t} X_{s, t} \quad$ where $X_{s, t}=\frac{[3]_{x}[s+1]_{x}[t+1]_{x}[s+t+3]_{x}}{[1]_{x}[s+3]_{x}[t+3]_{x}[s+t+1]_{x}}$

The different cases for the 3-point function

 [Bouttier, Guitter'08] $D=\left(d_{12}, d_{13}, d_{23}\right)$ can be achieved only if$$
\left\{\begin{array}{l}
d_{12} \leq d_{13}+d_{23} \\
d_{13} \leq d_{12}+d_{23} \\
d_{23} \leq d_{12}+d_{13}
\end{array}\right.
$$

The different cases for the 3-point function
[Bouttier, Guitter'08] $D=\left(d_{12}, d_{13}, d_{23}\right)$ can be achieved only if

$$
\left\{\begin{array}{l}
d_{12} \leq d_{13}+d_{23} \\
d_{13} \leq d_{12}+d_{23} \\
d_{23} \leq d_{12}+d_{13}
\end{array} \quad \text { parametrize } \quad \begin{array}{c}
d_{12}=s+t \\
d_{13}=s+u \\
d_{23}=t+u \\
\text { with } s, t, u \geq 0
\end{array}\right.
$$

The different cases for the 3-point function

 [Bouttier, Guitter'08] $D=\left(d_{12}, d_{13}, d_{23}\right)$ can be achieved only if$$
\left\{\begin{array}{c}
d_{12} \leq d_{13}+d_{23} \\
d_{13} \leq d_{12}+d_{23} \\
d_{23} \leq d_{12}+d_{13}
\end{array} \text { parametrize } \begin{array}{c}
d_{12}=s+t \\
d_{13}=s+u \\
d_{23}=t+u \\
\text { with } s, t, u \geq 0
\end{array}\right.
$$

- 3 points are distinct \Rightarrow at most one of s, t, u is zero
- One of $s, t, u($ say $u)$ is zero \Leftrightarrow aligned points (preceding slide)
- Generic case: $s, t, u>0$ (non-aligned points)

$$
d_{12}=s+t
$$

[Bouttier, Guitter'08] write D as $d_{13}=s+u$

Endow Q with unique very-well labelling with 3 local \min at v_{1}, v_{2}, v_{3} and where $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t, \ell\left(v_{3}\right)=-u$

Apply the Miermont bijection \Rightarrow obtain a 3-face well-labelled map where $\begin{array}{ll}\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\ \min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\ \min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0\end{array}$

$$
d_{12}=s+t
$$

[Bouttier, Guitter'08] write D as $d_{13}=s+u$

$$
d_{23}=t+u
$$

$$
\text { with } s, t, u>0
$$

Endow Q with unique very-well labelling with 3 local \min at v_{1}, v_{2}, v_{3} and where $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t, \ell\left(v_{3}\right)=-u$

Apply the Miermont bijection \Rightarrow obtain a 3-face well-labelled map where $\begin{array}{ll}\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\ \min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\ \min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0\end{array}$

$$
d_{12}=s+t
$$

[Bouttier, Guitter'08] write D as $d_{13}=s+u$

$$
d_{23}=t+u
$$

$$
\text { with } s, t, u>0
$$

Endow Q with unique very-well labelling with 3 local \min at v_{1}, v_{2}, v_{3} and where $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t, \ell\left(v_{3}\right)=-u$

Apply the Miermont bijection \Rightarrow obtain a 3-face well-labelled map where $\begin{array}{ll}\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\ \min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\ \min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0\end{array}$

\Rightarrow expression of $G_{d_{12}, d_{13}, d_{23}}(g)$ as $\Delta_{s} \Delta_{t} \Delta_{u} F_{s, t, u}$, with $F_{s, t, u}(g)$ explicit

Computing the two-point function of general maps using the Ambjørn-Budd bijection

The Ambjørn-Budd bijection Λ [Ambjørn-Budd'13]
Recall the Miermont bijection Φ (reformulated by Ambjørn-Budd)

Q
(i) local min of Q face f of W

The Ambjørn-Budd bijection Λ [Ambjørn-Budd'13]
Recall the Miermont bijection Φ (reformulated by Ambjørn-Budd)

Q
(i) local min of Q face f of W

$$
\min (f)=i+1
$$

(i) local max of Q local max of W

The Ambjørn-Budd bijection Λ [Ambjørn-Budd'13]
Recall the Miermont bijection Φ (reformulated by Ambjørn-Budd)

The Ambjørn-Budd bijection Λ [Ambjørn-Budd'13]
Recall the Miermont bijection Φ (reformulated by Ambjørn-Budd)

The Ambjørn-Budd bijection Λ [Ambjørn-Budd'13]
Recall the Miermont bijection Φ (reformulated by Ambjørn-Budd)

Rk: pointed maps+geodesic labelling \leftrightarrow well-labelled maps with one local min, of label 0

\Rightarrow pointed maps n edges \leftrightarrow well-labelled trees min-label $=1$ and n edges (as for quadrang., but this time vertex of $M \neq v_{0} \leftrightarrow$ non-local max of T)

The bijection Λ applied to pointed maps

Rk: pointed maps+geodesic labelling \leftrightarrow well-labelled maps with one local min, of label 0

\Rightarrow pointed maps n edges \leftrightarrow well-labelled trees min-label $=1$ and n edges (as for quadrang., but this time vertex of $M \neq v_{0} \leftrightarrow$ non-local max of T)
Rk: In that case, Φ^{-}gives a new bijection from pointed quadrangulations with n faces to pointed maps with n edges that preserves the distances to the pointed vertex (not the case with the easy local bijection)

The two-point function of general maps

Let $G_{d}(g)$ the 2-point function of general maps

AB bijection $\Rightarrow G_{d}(g)$ is the series of well-labelled trees with min-label 1 with a marked non local max of label d

The two-point function of general maps

Let $G_{d}(g)$ the 2-point function of general maps

AB bijection $\Rightarrow G_{d}(g)$ is the series of well-labelled trees with min-label 1 with a marked non local max of label d
$G_{d}=F_{d}-F_{d-1}$, with $F_{d}(g):=$ the series of well-labelled trees with positive labels and a marked non local max of label d

The two-point function of general maps

Let $G_{d}(g)$ the 2-point function of general maps

$$
d=2
$$

AB bijection $\Rightarrow G_{d}(g)$ is the series of well-labelled trees with min-label 1 with a marked non local max of label d
$G_{d}=F_{d}-F_{d-1}$, with $F_{d}(g):=$ the series of well-labelled trees with positive labels and a marked non local max of label d

$$
\begin{aligned}
F_{i} & =\log \frac{1}{1-g\left(R_{i-1}+R_{i}+R_{i+1}\right)}-\log \frac{1}{1-g\left(R_{i-1}+R_{i}\right)} \\
& =\log \left(1+g R_{i} R_{i+1}\right)
\end{aligned}
$$

$\Rightarrow G_{d}=\log \left(\frac{[d+1]_{x}^{3}[d+3]}{[d]_{x}[d+2]_{x}^{3}}\right)$ for general maps

The two-point function of general maps

Let $G_{d}(g)$ the 2-point function of general maps

$$
d=2
$$

AB bijection $\Rightarrow G_{d}(g)$ is the series of well-labelled trees with min-label 1 with a marked non local max of label d
$G_{d}=F_{d}-F_{d-1}$, with $F_{d}(g):=$ the series of well-labelled trees with positive labels and a marked non local max of label d

$$
\begin{aligned}
F_{i} & =\log \frac{1}{1-g\left(R_{i}-1+R_{i}+R_{i+1}\right)}-\log \frac{1}{1-g\left(R_{i-1}+R_{i}\right)} \\
& =\log \left(1+g R_{i} R_{i+1}\right)
\end{aligned}
$$

$\Rightarrow G_{d}=\log \left(\frac{[d+1]_{[}^{3}[d+3]}{[d]_{x}[d+2]_{x}^{x}}\right)$ for general maps
recall $G_{d}=\log \left(\frac{[d]_{x}^{2}[d+3]_{x}}{[d-1]_{x}[d+2]_{x}^{2}}\right)$ for quadrang. (same asymptotic laws)

The case of two local min

Let M a well-labelled map with two local $\min v_{1}, v_{2}$
Let $M^{\prime}=\Lambda(M)$, let f_{1}, f_{2} the two faces of M^{\prime}
Let Γ the (cycle) boundary of $M^{\prime}, i:=\min _{\Gamma}$

Two cases:

A): no edge of labels $i-i$ on Γ

$$
\operatorname{dist}_{M}\left(v_{1}, v_{2}\right)=2 i-\ell\left(v_{1}\right)-\ell\left(v_{2}\right)
$$

B): \exists an edge of labels $i-i$ on Γ

$$
\operatorname{dist}_{M}\left(v_{1}, v_{2}\right)=2 i-\ell\left(v_{1}\right)-\ell\left(v_{2}\right)-1
$$

2 other ways to compute the 2-point function

[F, Guitter'14] For $d \geq 1$, let M a bi-pointed map with $d_{12}=d$
A) Write d as $s+t$ with $s, t \geq 1$. Endow M with unique well-labelling where v_{1}, v_{2} are unique local min and $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t$

B) Write d as $s+t-1$ with $s, t \geq 1$. Endow M with unique well-labelling where v_{1}, v_{2} are unique local min and $\ell\left(v_{1}\right)=-s, \ell\left(v_{2}\right)=-t$

2 other ways to compute the 2-point function

 Case (A): $\quad G_{s+t}(g)=\Delta_{s} \Delta_{t} \log \left(N_{s, t}\right) \quad \min \left(f_{1}\right) \geq 1-s$$$
X_{s, t}=\frac{N_{s, t}}{1-g R_{s} R_{t} N_{s, t}}
$$

counts
\Rightarrow exact expression for $N_{s, t}$
recover $G_{s+t}=\log \left(\frac{[s+t]_{x}^{2}[s+t+3]_{x}}{[s+t-1]_{x}[s+t+2]_{x}^{2}}\right)$
Re: $\Delta_{s} \Delta_{t} N_{s, t}$ gives GF of tri-pointed maps with aligned points: $d_{12}, d_{13}, d_{23}=(s+t, s, t)$

Case (B): $G_{s+t-1}(g)=\Delta_{s} \Delta_{t} \underbrace{\log \left(\frac{1}{1-g R_{s} R_{t} N_{s, t}}\right)}_{\text {counts }}$
recover $G_{s+t-1}=\log \left(\frac{[s+t-1]_{x}^{2}[s+t+2]_{x}}{[s+t-2]_{x}[s+t+1]_{x}^{2}}\right)$

3-point function: generic (non-aligned) case

Case A: $d_{12}+d_{13}+d_{23}$ even

parametrize as: $\quad d_{12}=s+t \quad$ with $s, t, u>0$

$$
\begin{aligned}
& d_{13}=s+u \\
& d_{23}=t+u
\end{aligned}
$$

endow tri-pointed map with unique " $(-s,-t,-u)$-well-labelling" and apply the AB bijection Λ

$$
\begin{array}{ll}
\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\
\min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\
\min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0
\end{array}
$$

and no edge $0-0$ on Γ

3-point function: generic (non-aligned) case

Case A: $d_{12}+d_{13}+d_{23}$ even

parametrize as: $\quad d_{12}=s+t \quad$ with $s, t, u>0$

$$
\begin{aligned}
& d_{13}=s+u \\
& d_{23}=t+u
\end{aligned}
$$

endow tri-pointed map with unique " $(-s,-t,-u)$-well-labelling" and apply the AB bijection Λ

$$
\begin{array}{ll}
\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\
\min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\
\min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0
\end{array}
$$

and no edge 0-0 on Γ

3-point function: generic (non-aligned) case

Case A: $d_{12}+d_{13}+d_{23}$ even
parametrize as: $\quad d_{12}=s+t \quad$ with $s, t, u>0$

$$
\begin{aligned}
& d_{13}=s+u \\
& d_{23}=t+u
\end{aligned}
$$

endow tri-pointed map with unique " $(-s,-t,-u)$-well-labelling" and apply the AB bijection Λ

$$
\begin{array}{ll}
\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\
\min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\
\min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0
\end{array}
$$

and no edge 0-0 on Γ

\Rightarrow expression of $G_{d_{12}, d_{13}, d_{23}}(g)$ as $\Delta_{s} \Delta_{t} \Delta_{u} F_{s, t, u}^{\text {even }}$, with $F_{s, t, u}^{\text {even }}(g)$ explicit

3-point function: generic (non-aligned) case
Case B: $d_{12}+d_{13}+d_{23}$ odd (did not exist for quadrang.)
parametrize as: $\quad d_{12}=s+t-1 \quad$ with $s, t, u>0$

$$
\begin{aligned}
d_{13} & =s+u-1 \\
d_{23} & =t+u-1
\end{aligned}
$$

endow tri-pointed map with unique " $(-s,-t,-u)$-well-labelling" and apply the AB bijection Λ

$$
\begin{array}{cc}
\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\
\min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\
\min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0 \\
\text { and there is an edge 0-0 } \\
\text { on each of } \Gamma_{12}, \Gamma_{13}, \Gamma_{23}
\end{array}
$$

3-point function: generic (non-aligned) case
Case B: $d_{12}+d_{13}+d_{23}$ odd (did not exist for quadrang.)
parametrize as: $\quad d_{12}=s+t-1 \quad$ with $s, t, u>0$

$$
\begin{aligned}
d_{13} & =s+u-1 \\
d_{23} & =t+u-1
\end{aligned}
$$

endow tri-pointed map with unique " $(-s,-t,-u)$-well-labelling" and apply the AB bijection Λ

$$
\begin{array}{cc}
\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\
\min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\
\min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0 \\
\text { and there is an edge 0-0 } \\
\text { on each of } \Gamma_{12}, \Gamma_{13}, \Gamma_{23}
\end{array}
$$

3-point function: generic (non-aligned) case
Case B: $d_{12}+d_{13}+d_{23}$ odd (did not exist for quadrang.)
parametrize as: $\quad d_{12}=s+t-1 \quad$ with $s, t, u>0$

$$
\begin{aligned}
& d_{13}=s+u-1 \\
& d_{23}=t+u-1
\end{aligned}
$$

endow tri-pointed map with unique " $(-s,-t,-u)$-well-labelling" and apply the AB bijection Λ

$$
\begin{array}{cc}
\min \left(f_{1}\right)=1-s & \min _{\Gamma_{12}}=0 \\
\min \left(f_{2}\right)=1-t & \min _{\Gamma_{13}}=0 \\
\min \left(f_{3}\right)=1-u & \min _{\Gamma_{23}}=0 \\
\text { and there is an edge 0-0 } \\
\text { on each of } \Gamma_{12}, \Gamma_{13}, \Gamma_{23}
\end{array}
$$

\Rightarrow expression of $G_{d_{12}, d_{13}, d_{23}}(g)$ as $\Delta_{s} \Delta_{t} \Delta_{u} F_{s, t, u}^{\text {odd }}$, with $F_{s, t, u}^{\text {odd }}(g)$ explicit

Examples

Case A:

Case B:

Conclusion and remarks

- There are exact expressions for the 2-point and 3-point functions of quadrangulations and general maps (bijections + GF calculations)
- Asymptotically the limit laws (rescaling by $n^{1 / 4}$) are the same for the random quad. Q_{n} of size n as for the random map M_{n} of size n

Rk: also follows from [Bettinelli, Jacob, Miermont'13] (Q_{n}, dist $/ n^{1 / 4}$) and (M_{n}, dist $/ n^{1 / 4}$) are close as metric spaces, when coupling $\left(M_{n}, Q_{n}\right)$ by the AB bijection

- We can also obtain similar expressions for bipartite maps (associated well-labelled maps are restricted to have no edge $i-i$)
- The GF expressions $G_{D}(g)$ for maps/bipartite maps can be extended to expressions $G_{D}(g, z)$ where z marks the number of faces

