An introduction to free probability 1. Free independence

Wojtek Młotkowski (Wrocław)

Villetaneuse, $\quad 04.03 .2014$

Classical probability:

(Ω, \mathcal{F}, P) - probability space.
Random variable: measurable function $X: \Omega \rightarrow \mathbb{R}$.
$L^{\infty}(\Omega)$: commutative unital algebra of bounded measurable (equivalence classes of) functions $X: \Omega \rightarrow \mathbb{C}$.
The unit: $\mathbf{1}(\omega)=1$ for all $\omega \in \Omega$.
Expectation: $E X:=\int_{\Omega} X(\omega) d P(\omega)$ is a state on $L^{\infty}(\Omega)$:
E is a linear function $L^{\infty}(\Omega) \rightarrow \mathbb{C}$ such that

1. $E 1=1$,
2. If $X(\omega) \geq 0$ for all $\omega \in \Omega$ then $E(X) \geq 0$.

Noncommutative probability:

Noncommutative probability space: (\mathcal{A}, ϕ)
\mathcal{A} is a unital, complex $*$-algebra
$\phi: \mathcal{A} \rightarrow \mathbb{C}$ is a linear map which satisfies

1. $\phi(\mathbf{1})=1$,
2. $\phi\left(x^{*} x\right) \geq 0$ for every $x \in \mathcal{A}$.
"random variables": elements of \mathcal{A},
"expectation": ϕ.

* is an involution on \mathcal{A} :

$$
\begin{gathered}
*: \mathcal{A} \rightarrow \mathcal{A} \\
(a+b)^{*}=a^{*}+b^{*} \\
(\alpha a)^{*}=\bar{\alpha} a^{*} \\
(a b)^{*}=b^{*} a^{*}
\end{gathered}
$$

for $\alpha \in \mathbb{C}, a, b \in \mathcal{A}$.

Distribution of a self-adjoint element $a=a^{*} \in \mathcal{A}$

is a probability measure μ on \mathbb{R} satisfying:

$$
\phi\left(a^{n}\right)=\int_{\mathbb{R}} t^{n} d \mu(t), \quad n=1,2, \ldots
$$

so that $\phi\left(a^{n}\right)$ are moments of μ.
Such measure exists, because the sequence $\phi\left(a^{n}\right)$ is positive definite: for a finite sequence of real numbers α_{i} we have

$$
\sum_{i, j} \phi\left(a^{i+j}\right) \alpha_{i} \alpha_{j}=\phi\left(\left(\sum_{i} \alpha_{i} a^{i}\right)^{2}\right) \geq 0
$$

Under some additional assumptions (for example that \mathcal{A} is a C^{*}-algebra) μ is also unique.

Independence

Let (\mathcal{A}, ϕ) be a (noncommutative) probability space and let $\left\{\mathcal{A}_{i}\right\}, i \in I$, be a family of subalgebras, with $\mathbf{1} \in \mathcal{A}_{i}$.
We say that the subalgebras \mathcal{A}_{i} are independent if

1. $a b=b a$ whenever $a \in \mathcal{A}_{i}, b \in \mathcal{A}_{j}, i, j \in I, i \neq j$,
2. $\phi\left(a_{1} a_{2} \ldots a_{n}\right)=\phi\left(a_{1}\right) \phi\left(a_{2}\right) \ldots \phi\left(a_{m}\right)$ whenever $a_{1} \in \mathcal{A}_{i_{1}}, a_{2} \in \mathcal{A}_{i_{2}}, \ldots, a_{m} \in \mathcal{A}_{i_{m}}$ and $i_{1}, i_{2}, \ldots, i_{m} \in I$ are distinct.

Let (Ω, \mathcal{F}, P) be the product probability space: $\Omega=\times_{i \in I} \Omega_{i}, \mathcal{F}=\times_{i \in I} \mathcal{F}_{i}$, $P=\times_{i \in I} P_{i}$. Then $\mathcal{A}:=L^{\infty}(\Omega)$ is the tensor product of $\mathcal{A}_{i}:=L^{\infty}\left(\Omega_{i}\right)$: More generally, we can start with a family $\left(\mathcal{A}_{i}, \phi_{i}\right), i \in I$, of noncommutative probability spaces, put $\mathcal{A}:=\bigotimes_{i \in I} \mathcal{A}_{i}$ and define the natural state on \mathcal{A} :

$$
\phi\left(a_{1} \otimes a_{2} \otimes \ldots \otimes a_{m}\right):=\phi_{i_{1}}\left(a_{1}\right) \phi_{i_{2}}\left(a_{2}\right) \ldots \phi_{i_{n}}\left(a_{m}\right)
$$

for $a_{1} \in \mathcal{A}_{i_{1}}, a_{2} \in \mathcal{A}_{i_{2}}, \ldots, a_{m} \in \mathcal{A}_{i_{m}}$ and for $i_{1}, i_{2}, \ldots, i_{m} \in I$ distinct. The family $\left\{\mathcal{A}_{i}\right\}, i \in I$, is independent in (\mathcal{A}, ϕ).

However the tensor product of algebras is very commutative: elements form distinct \mathcal{A}_{i} do commute.

Unital free product

Let $\left(\mathcal{A}_{i}, \phi_{i}\right), i \in I$, noncommutative probability spaces. Put $\mathcal{A}_{i}^{0}:=\operatorname{Ker} \phi_{i}$. Then the unital free product $\mathcal{A}=*_{i \in I} \mathcal{A}_{i}$ can be represented as

$$
\mathcal{A}:=\mathbb{C} \mathbf{1} \oplus \bigoplus_{\substack{m \geq 1 \\ i_{1}, \ldots, i_{m} \in I \\ i_{1} \neq i_{2} \neq \ldots \neq i_{m}}} \mathcal{A}_{i_{1}}^{0} \otimes \mathcal{A}_{i_{2}}^{0} \otimes \ldots \otimes \mathcal{A}_{i_{m}}^{0}=\mathbb{C} \mathbf{1} \oplus \mathcal{A}^{0}
$$

The notation " $i_{1} \neq i_{2} \neq \ldots \neq i_{m}$ " means that

$$
i_{1} \neq i_{2}, \quad i_{2} \neq i_{3}, \ldots, i_{m-1} \neq i_{m}
$$

\mathcal{A} is the unique unital algebra containing all \mathcal{A}_{i} as subalgebras, such that for given unital homomorphisms $h_{i}: \mathcal{A}_{i} \rightarrow \mathcal{B}$, there is a unique homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ such that $\left.h\right|_{\mathcal{A}_{i}}=h_{i}$ for all $i \in I$ (coproduct).

Multiplication: if

$$
\begin{equation*}
\mathbf{a}=a_{1} \otimes a_{2} \otimes \ldots \otimes a_{m}, \quad \mathbf{b}=b_{1} \otimes b_{2} \otimes \ldots \otimes b_{n}, \tag{2}
\end{equation*}
$$

with $m, n \geq 1, a_{1} \in \mathcal{A}_{i_{1}}^{0}, \ldots, a_{m} \in \mathcal{A}_{i_{m}}^{0}$ and $b_{1} \in \mathcal{A}_{j_{1}}^{0}, \ldots, b_{n} \in \mathcal{A}_{j_{n}}^{0}$ then the product is defined by:

$$
\mathbf{a} \cdot \mathbf{b}:= \begin{cases}a_{1} \otimes \ldots \otimes a_{m} \otimes b_{1} \otimes \ldots \otimes b_{n} & \text { if } i_{m} \neq j_{1}, \\ a_{1} \otimes \ldots \otimes a_{m-1} \otimes c \otimes b_{2} \otimes \ldots \otimes b_{n} & \text { if } i_{m}=j_{1}:=i,\end{cases}
$$

where $\alpha:=\phi_{i}\left(a_{m} b_{1}\right), c:=a_{m} b_{1}-\phi_{i}\left(a_{m} b_{1}\right) \mathbf{1}$, so that $a_{m} b_{1}=c+\alpha \mathbf{1}$, $c \in \mathcal{A}_{i}^{0}$.

For the expression

$$
\left(a_{1} \otimes \ldots \otimes a_{m-1}\right) \cdot\left(b_{2} \otimes \ldots \otimes b_{n}\right)
$$

we proceed inductively. By definition, for a as in (2) we have

$$
\mathbf{a}=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{m}
$$

What is natural state on \mathcal{A} ?

The one satisfying: $\phi(\mathbf{1})=1$ and $\phi(\mathbf{a})=0$ for \mathbf{a} as in (2), with $m \geq 1$,
so that in (1) \mathcal{A}^{0}, the second summand, is the kernel of ϕ.
This justifies the following definition
Definition: Let (\mathcal{A}, ϕ) be a probability space.
A family $\left\{\mathcal{A}_{i}\right\}_{i \in I}$ of unital (i.e. $\mathbf{1} \in \mathcal{A}_{i}$) subalgebras is called free if

$$
\phi\left(a_{1} a_{2} \ldots a_{m}\right)=0
$$

whenever $m \geq 1, a_{1} \in \mathcal{A}_{i_{1}}, \ldots, a_{m} \in \mathcal{A}_{i_{m}}, i_{1}, \ldots, i_{m} \in I, i_{1} \neq i_{2} \neq \ldots \neq i_{m}$ and $\phi\left(a_{1}\right)=\ldots=\phi\left(a_{m}\right)=0$.

Hence in the construction (1) the algebras \mathcal{A}_{i} are free in (\mathcal{A}, ϕ).

Now about positivity of ϕ.

Assume that all ϕ_{i} admit GNS representation, i.e.

$$
\phi_{i}(a)=\left\langle\pi_{i}(a) \xi_{i}, \xi_{i}\right\rangle, \quad a \in \mathcal{A}_{i}
$$

where

$$
\pi_{i}: \mathcal{A}_{i} \rightarrow \mathcal{B}\left(\mathcal{H}_{i}\right)
$$

is a $*$-representation of \mathcal{A}_{i} on a Hilbert space \mathcal{H}_{i}, ξ_{i} is a unit vector in \mathcal{H}_{i}.
Now we are going to construct the GNS representation for ϕ, which will prove positivity of ϕ. Define $\mathcal{H}_{i}^{0}:=\xi_{i}^{\perp}$, the orthocomplement of ξ_{i} in \mathcal{H}_{i}, so that $\mathcal{H}_{i}=\mathbb{C} \xi_{i} \oplus \mathcal{H}_{i}$. Put

$$
\mathcal{H}:=\mathbb{C} \xi_{0} \oplus \bigoplus_{\substack{m \geq 1 \\ i_{1}, \ldots, i_{i} \in 1 \\ i_{1} \neq i_{2} \neq \ldots \neq i_{m}}} \mathcal{H}_{i_{1}}^{0} \otimes \mathcal{H}_{i_{2}}^{0} \otimes \ldots \otimes \mathcal{H}_{i_{m}}^{0}
$$

Now for every $i \in I$ we define a representation σ_{i} of \mathcal{A}_{i} acting on \mathcal{H}.

Namely, we decompose \mathcal{H} as

$$
\mathcal{H}=\left(\mathbb{C} \xi_{0} \oplus \mathcal{H}_{i}^{0}\right) \otimes \mathcal{H}(i)
$$

(we identify ξ_{0} with ξ_{i}) where

$$
\mathcal{H}(i)=\mathbb{C} \xi_{0} \oplus \bigoplus_{\substack{m \geq 1 \\ i_{1}, \ldots, i_{i} \in 1 \\ i \neq 1 \\ i_{1} \neq \ldots \ldots i_{m}}} \mathcal{H}_{i_{1}}^{0} \otimes \mathcal{H}_{i_{2}}^{0} \otimes \ldots \otimes \mathcal{H}_{i_{m}}^{0}
$$

Then we put

$$
\sigma_{i}(a):=\pi_{i}(a) \otimes \operatorname{Id}_{\mathcal{H}(i)}
$$

In this way we have constructed a $*$-representation σ_{i} of \mathcal{A}_{i} acting on \mathcal{H}.

By the coproduct property we extend to a $*$-representation π of whole $\mathcal{A}=*_{i \in I} \mathcal{A}_{i}$. We are going to show, that for every $\mathbf{c} \in \mathcal{A}$

$$
\left\langle\pi(\mathbf{c}) \xi_{0}, \xi_{0}\right\rangle=\phi(\mathbf{c})
$$

Namely: for $\mathbf{a}=a_{1} a_{2} \ldots a_{m}$, with $m \geq 1, a_{1} \in \mathcal{A}_{i_{1}}^{0}, \ldots, a_{m} \in \mathcal{A}_{i_{m}}^{0}$, $i_{1}, \ldots, i_{m} \in l$ and $i_{1} \neq i_{2} \neq \ldots \neq i_{m}$, we have

$$
\pi(\mathbf{a})=\sigma_{i_{1}}\left(a_{1}\right) \sigma_{i_{2}}\left(a_{2}\right) \ldots \sigma_{i_{m}}\left(a_{m}\right)
$$

Moreover, since $\phi_{i_{k}}\left(a_{k}\right)=0$ we have

$$
\sigma_{i_{k}}\left(a_{k}\right) \xi_{0}=\pi_{i_{k}}\left(a_{k}\right) \xi_{0} \in \mathcal{H}_{i_{k}}^{0}
$$

By induction it is easy to check, that

$$
\begin{gathered}
\pi(\mathbf{a}) \xi_{0}=\pi_{i_{1}}\left(a_{1}\right) \xi_{0} \otimes \pi_{i_{2}}\left(a_{2}\right) \xi_{0} \otimes \ldots \otimes \pi_{i_{m}}\left(a_{m}\right) \xi_{0} \\
\pi(\mathbf{a}) \xi_{0} \in \mathcal{H}_{i_{1}}^{0} \otimes \mathcal{H}_{i_{2}}^{0} \otimes \ldots \otimes \mathcal{H}_{i_{m}}^{0}
\end{gathered}
$$

which means that $\phi(\mathbf{a})=0$

Books:

1. A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge University Press, 2006.
2. D. V. Voiculescu, K. J. Dykema, A. Nica, Free random variables, CRM, Montréal, 1992.
3. Fumio Hiai, Denes Petz, The Semicircle Law, Free Random Variables and Entropy Mathematical Surveys and Monographs, 2000.

Lecture notes:

1. Philippe Biane, Free probability for probabilists, arXiv 1998.
2. Philippe Biane, Free probability and combinatorics, Proceedings of the ICM, Beijing 2002, vol. 2, 765-774.
3. Vladislav Kargin, Lecture Notes on Free Probability, arXiv 2013.
4. Jonathan Novak, Michael LaCroix, Three lectures on free probability, arXiv 2013
5. Roland Speicher, Free Calculus, arXiv 2001,
6. Roland Speicher, Free Probability Theory, arXiv 2009, Chapter 22 in Handbook on Random Matrix Theory, Oxford University Press.
