

Nikolaos Fountoulakis ${ }^{1}$ Konstantinos
Panagiotou ${ }^{1}$

3-connected cores of random 2-connected graphs

${ }^{1}$ Max-Planck-Institut für Informatik, Germany
Laboratoire d'Informatique de Paris-Nord, 16 November 2010

The structure of random graphs

Erdős and Rényi proved that around $p_{c r}=\frac{1}{n}$ a change in the structure of $G(n, p)$ occurs:

The structure of random graphs

Erdős and Rényi proved that around $p_{c r}=\frac{1}{n}$ a change in the structure of $G(n, p)$ occurs:
if $p<\frac{1-\varepsilon}{n}$, then all components of $G_{n, p}$ contain $O(\log n)$ vertices;
vertices, whereas every other component has $O(\log n)$ vertices.

The structure of random graphs

Erdős and Rényi proved that around $p_{c r}=\frac{1}{n}$ a change in the structure of $G(n, p)$ occurs:
if $p<\frac{1-\varepsilon}{n}$, then all components of $G_{n, p}$ contain $O(\log n)$ vertices;
if $p>\frac{1+\varepsilon}{n}$, then there exists a unique component with $\Theta(n)$ vertices, whereas every other component has $O(\log n)$ vertices.

Random planar graphs

Let \mathcal{P}_{n} be the set of labeled all planar graphs on n vertices and let P_{n} denote a graph taken at random from \mathcal{P}_{n} with probability $1 /\left|\mathcal{P}_{n}\right|$.

How many edges does P_{n} typically have?

Giménez and Noy (2009) showed that

where $\kappa \approx 2.21326$ and $\lambda \approx 0.43034$ are constants.

Random planar graphs

Let \mathcal{P}_{n} be the set of labeled all planar graphs on n vertices and let P_{n} denote a graph taken at random from \mathcal{P}_{n} with probability $1 /\left|\mathcal{P}_{n}\right|$.

How many edges does P_{n} typically have?
Giménez and Noy (2009) showed that

where $\kappa \approx 2.21326$ and $\lambda \approx 0.43034$ are constants.

Random planar graphs

Let \mathcal{P}_{n} be the set of labeled all planar graphs on n vertices and let P_{n} denote a graph taken at random from \mathcal{P}_{n} with probability $1 /\left|\mathcal{P}_{n}\right|$.

How many edges does P_{n} typically have?
Giménez and Noy (2009) showed that

$$
\frac{e\left(P_{n}\right)-\kappa n}{\sqrt{2 \pi \lambda n}} \xrightarrow{d} N(0,1),
$$

where $\kappa \approx 2.21326$ and $\lambda \approx 0.43034$ are constants.

Random planar graphs

What is the typical component structure of P_{n} ?
Giménez and Noy (2009) proved that the number of connected components of P_{n} is asymptotically distributed as

where $X \stackrel{\mathcal{L}}{=} \mathrm{Po}(\nu)$, and $\nu \approx 0.037439$.

Typical structure of a random pianar graph There is a unique giant component containing $n-O_{C}(1)$ vertices, whereas the remaining components are "small"

Random planar graphs

What is the typical component structure of P_{n} ?
Giménez and Noy (2009) proved that the number of connected components of P_{n} is asymptotically distributed as

$$
1+X
$$

where $X \stackrel{\mathcal{L}}{=} \operatorname{Po}(\nu)$, and $\nu \approx 0.037439$.
\square

Random planar graphs

What is the typical component structure of P_{n} ?
Giménez and Noy (2009) proved that the number of connected components of P_{n} is asymptotically distributed as

$$
1+X
$$

where $X \stackrel{\mathcal{L}}{=} \operatorname{Po}(\nu)$, and $\nu \approx 0.037439$.

Typical structure of a random planar graph

There is a unique giant component containing $n-O_{C}(1)$ vertices, whereas the remaining components are "small".

The structure of random connected graphs

A connected graph consists of its biconnected components: the maximal subgraphs of connectivity at least 2.

A connected graph

The structure of random connected graphs

A connected graph consists of its biconnected components: the maximal subgraphs of connectivity at least 2 .

A connected graph

The structure of random connected graphs

A connected graph consists of its biconnected components: the maximal subgraphs of connectivity at least 2.

A connected graph

The structure of random connected graphs

Assume that we sample a connected graph uniformly from the family of graphs whose biconnected components belong to the family \mathcal{B}.

Let $B(x)$ be the enumerating generating function of \mathcal{B} :

and let $\rho_{\mathcal{B}}$ be its radius of convergence.

The structure of random connected graphs

Assume that we sample a connected graph uniformly from the family of graphs whose biconnected components belong to the family \mathcal{B}.
Let $B(x)$ be the enumerating generating function of \mathcal{B} :

The structure of random connected graphs

Assume that we sample a connected graph uniformly from the family of graphs whose biconnected components belong to the family \mathcal{B}.
Let $B(x)$ be the enumerating generating function of \mathcal{B} :

$$
B(x)=\sum_{n=1}^{\infty} \frac{\left|\mathcal{B}_{n}\right|}{n!} x^{n},
$$

and let $\rho_{\mathcal{B}}$ be its radius of convergence.

Random connected graphs

It turns out that what determines the structure of a random connected graph sampled from this family is

Random connected graphs

It turns out that what determines the structure of a random connected graph sampled from this family is

$$
\rho_{\mathcal{B}} B^{\prime \prime}\left(\rho_{\mathcal{B}}\right)
$$

Random connected graphs

Theorem [Panagiotou and Steger (2009)]

Let C_{n} be a random graph sampled uniformly from the family of connected graphs on n vertices with biconnected components in \mathcal{B}. With probability $1-o(1)$

- if $\rho_{\mathcal{B}} B^{\prime \prime}\left(\rho_{\mathcal{B}}\right)>1$, then all biconnected components have size $O(\log n)$;
- if $\rho_{\mathcal{B}} B^{\prime \prime}\left(\rho_{\mathcal{B}}\right)<1$, then there exists a unique biconnected component of order $\Theta(n)$, but every other component has $o(n)$ vertices.

Random biconnected graphs

Question

If C_{n} is a random graph on n vertices sampled from a certain class of biconnected graphs, what is the typical distribution of its 3 -connected buildings blocks?

What is a building block of a 2-connected graph?

Networks (Trakhtenbrot-Tutte)

Definition - Networks

A network is a graph with two distinguished vertices which we call poles, so that if we add an edge between them, then the resulting (multi)graph belongs to the certain class of biconnected graphs.

Networks (Trakhtenbrot-Tutte)

Definition - Networks

A network is a graph with two distinguished vertices which we call poles, so that if we add an edge between them, then the resulting (multi)graph belongs to the certain class of biconnected graphs.

Networks (Trakhtenbrot-Tutte)

Definition - Networks

A network is a graph with two distinguished vertices which we call poles, so that if we add an edge between them, then the resulting (multi)graph belongs to the certain class of biconnected graphs.

Network decomposition

A network is:

- an edge;
- a series network (type S);
- a parallel network (type P);
- a core network (type H).

Network decomposition

A network is:

- an edge;
- a series network (type S);
- a parallel network (type P);
- a core network (type H).

Network decomposition

A network is:

- an edge;
- a series network (type S);
- a parallel network (type P);
- a core network (type H).

Network decomposition

A network is:

- an edge;
- a series network (type S);
- a parallel network (type P);
- a core network (type H).

Network decomposition

A network is:

- an edge;
- a series network (type S);
- a parallel network (type P);
- a core network (type H).

Series networks

A series network is:

Series networks

A series network is:

Series networks

A series network is:

A series network

Parallel networks

A parallel network is:

Parallel networks

A parallel network is:

Parallel networks

A parallel network is:

The two types of parallel networks

Core networks

A core network is:

The underlying 3-connected graph is called a core.

Core networks

A core network is:

The underlying 3-connected graph is called a core.

Generating functions

Let

- $N(x, y)$ be the enumerating generating function of the class of networks;

Generating functions

Let

- $N(x, y)$ be the enumerating generating function of the class of networks;
- $T(x, y)$ be the e.g.f. of the class of 3-connected graphs from which we choose the cores.

Generating functions

These functions satisfy:

$$
\Phi(x, y, N(x, y))=0
$$

where

$$
\Phi(x, y, z)=T(x, z)-\log \left(\frac{1+z}{1+y}\right)+\frac{x z^{2}}{1+x z} .
$$

Random networks

Aim
 We study random networks on n vertices, where the cores are sampled from a given class of 3 -connected graphs.

Random networks

A certain correspondence between networks and the resulting class of biconnected graphs yields the following:

Rough equivalence

If a property holds a.a.s. for such a class of networks, then it also holds a.a.s. for the corresponding class of biconnected graphs.

Random networks

What determines the typical structure of a random network on n vertices is

$$
\text { the sign of } \Phi_{z}\left(\rho_{N}(1), 1, N\left(\rho_{N}(1), 1\right)\right) \text {, }
$$

where $\rho_{N}(1)$ is the radius of convergence of $N(x, 1)$.

Random networks

Theorem [F. and Panagiotou]

Let N_{n} be a random network on n vertices. If
$\Phi_{z}\left(\rho_{N}(1), 1, N\left(\rho_{N}(1), 1\right)\right)>0$, then
all cores of N_{n} have $O_{C}(\log n)$ vertices.
If $\Phi_{z}\left(\rho_{N}(1), 1, N\left(\rho_{N}(1), 1\right)\right)<0$, then for some $\gamma_{C}>0$
there is a unique core with $\gamma_{C} n+o_{p}(n)$ vertices, but every other core has $o_{p}(n)$ vertices.

Random networks

We have calculated

- asymptotic counts for the number of small cores;
- the order of the "giant" core;
- asymptotic distribution for the number of edges of N_{n} as $n \rightarrow \infty$.

Random networks

We have calculated

- asymptotic counts for the number of small cores;
- the order of the "giant" core;
- asymptotic distribution for the number of edges of N_{n} as $n \rightarrow \infty$.

Random networks

We have calculated

- asymptotic counts for the number of small cores;
- the order of the "giant" core;
- asymptotic distribution for the number of edges of N_{n} as $n \rightarrow \infty$.

Random networks

We have calculated

- asymptotic counts for the number of small cores;
- the order of the "giant" core;
- asymptotic distribution for the number of edges of N_{n} as $n \rightarrow \infty$.

Example - Biconnected Random Planar Graphs

If we sample the cores from the class of 3-connected planar graphs, the resulting network corresponds to random biconnected planar graphs;

- It turns out that this class of networks falls into the second "category":

Example - Biconnected Random Planar Graphs

If we sample the cores from the class of 3 -connected planar graphs, the resulting network corresponds to random biconnected planar graphs;

- It turns out that this class of networks falls into the second "category":

Theorem

A random biconnected planar graph on n vertices has a unique core of order $c_{p} n+o(n)$, where $c_{p}=0.765 \ldots$, whereas every other core has $O\left(n^{2 / 3}\right)$ vertices, with probability $1-o(1)$.

This was also shown recently by Giménez, Noy and Rué, with the use of analytic methods.

Example - Biconnected Random Planar Graphs

For every $4 \leq \ell=O\left(\left(\frac{n}{\log n}\right)^{2 / 5}\right)$ the number of cores with ℓ
vertices is for any $\varepsilon>0$

$$
c_{\ell} n(1 \pm \varepsilon)
$$

with probability $1-o(1)$, where c_{ℓ} is determined by the generating function of the class of 3-connected planar graphs.

Proof techniques

- We analyse the output of Boltzmann samplers which are randomised algorithms that generate networks;
- In our case, these are a collection of randomized algorithms that call each other recursively, reflecting the recursive construction of a network.

Proof techniques

- We analyse the output of Boltzmann samplers which are randomised algorithms that generate networks;
- In our case, these are a collection of randomized algorithms that call each other recursively, reflecting the recursive construction of a network.

Proof techniques

Example: Boltzmann sampler for Networks

$$
\begin{array}{rll}
\Gamma N(x, y): & & \Gamma N \leftarrow e \\
& \text { w.p. } \frac{y}{N(x, y)} ; \\
& \Gamma N \leftarrow \Gamma S(x, y) & \text { w.p. } \frac{S(x, y)}{N(x, y)} ; \\
& \Gamma N \leftarrow \Gamma P(x, y) & \text { w.p. } \frac{P(x, y)}{N(x, y)} ; \\
& \Gamma N \leftarrow \Gamma H(x, y) & \text { w.p. } \frac{H(x, y)}{N(x, y)} ;
\end{array}
$$

Proof techniques

Example: Boltzmann sampler for Core Networks

$$
\Gamma H(x, y): \quad T \leftarrow \Gamma T(x, N(x, y))
$$

for each edge e of T

$$
\gamma_{e} \leftarrow \Gamma N(x, y)
$$

replace every e in T by γ_{e}
Return T, relabeling randomly its vertices.

Proof techniques

- We are able to show the concentration of the number of calls of each routine;

Proof techniques

- We are able to show the concentration of the number of calls of each routine;
- Let
- $A_{\text {Net }}$ be the number of calls of the network routine;
- $A_{\text {ser }}$ be the number of calls of the series networks routine;
- $A_{\text {Par }}$ be the number of calls of the parallel networks routine;
- V_{T} and E_{T} denote the total number of vertices and edges in cores.

Proof techniques

- We are able to show the concentration of the number of calls of each routine;
- Let
- $A_{\text {Net }}$ be the number of calls of the network routine;
- $A_{\text {ser }}$ be the number of calls of the series networks routine;
- $A_{\text {Par }}$ be the number of calls of the parallel networks routine;
- $V_{\mathcal{T}}$ and $E_{\mathcal{T}}$ denote the total number of vertices and edges in cores.

Proof techniques

- We are able to show the concentration of the number of calls of each routine;
- Let
- $A_{\text {Net }}$ be the number of calls of the network routine;
- $A_{\text {ser }}$ be the number of calls of the series networks routine;
- $A_{\text {Par }}$ be the number of calls of the parallel networks routine;
- $V_{\mathcal{T}}$ and $E_{\mathcal{T}}$ denote the total number of vertices and edges in cores.

Proof techniques

- We are able to show the concentration of the number of calls of each routine;
- Let
- $A_{\text {Net }}$ be the number of calls of the network routine;
- $A_{\text {ser }}$ be the number of calls of the series networks routine;
- A_{Par} be the number of calls of the parallel networks routine;
- $V_{\mathcal{T}}$ and $E_{\mathcal{T}}$ denote the total number of vertices and edges in cores

Proof techniques

- We are able to show the concentration of the number of calls of each routine;
- Let
- $A_{\text {Net }}$ be the number of calls of the network routine;
- $A_{\text {ser }}$ be the number of calls of the series networks routine;
- $A_{\text {Par }}$ be the number of calls of the parallel networks routine;
- $V_{\mathcal{T}}$ and $E_{\mathcal{T}}$ denote the total number of vertices and edges in cores.

Proof Techniques

We show that for each $Z \in\left\{A_{\text {Net }}, A_{\text {Ser }}, A_{\mathrm{Par}}, V_{\mathcal{T}}, E_{\mathcal{T}}\right\}$ we have

$$
\mathbb{P}(|Z-z n|<\varepsilon n)>1-e^{-C \varepsilon^{2} n},
$$

where $z \in\left\{a_{\text {Net }}, a_{\text {Ser }}, a_{\text {Par }}, v_{\mathcal{T}}, e_{\mathcal{T}}\right\}$ and the vector $a:=\left[a_{\text {Net }}, a_{\mathrm{Ser}}, a_{\mathrm{Par}}, v_{\mathcal{T}}, e_{\mathcal{T}}\right]^{T}$ is the solution of the system $M a=r$, where

$$
M=\left[\begin{array}{ccccc}
\frac{1}{N(x, y)} & \frac{\rho_{N} N(x, y)}{S(x, y)} & \frac{N(x, y)-1}{2 P(x, y)} & 0 & 0 \tag{1}\\
0 & 1 & 0 & 1 & 0 \\
\frac{S(x, y)}{N(x, y)} & -1 & \frac{S(x, y) N(x, y)}{P(x, y)} & 0 & 0 \\
\frac{P(x, y)}{N(x, y)} & \frac{\rho_{N} P(x, y) N(x, y)}{S(x, y)} & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right], r=\left[\begin{array}{c}
\mu \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

and $\mu=-\frac{\rho_{N}^{\prime}(1)}{\rho_{N}(1)}$.

- In particular, if A_{H} is the number of calls of the Core Networks routine, then

$$
A_{H}=\alpha_{H} n+o_{p}(n),
$$

where

$$
\alpha_{H}=2 \mu H(x, y) .
$$

- In particular, if A_{H} is the number of calls of the Core Networks routine, then

$$
A_{H}=\alpha_{H} n+o_{p}(n),
$$

where

$$
\alpha_{H}=2 \mu H(x, y) .
$$

Proof techniques

- We treat $\Gamma H(x, y)$ as a deterministic algorithm that reads its inputs from a list

$$
\left(T_{1}, T_{2}, \ldots\right)
$$

where the $\left\{T_{i}\right\}_{i \geq 1}$ are independent samples from the class of cores, distributed according to the Boltzmann distribution.

- If $C_{k}(n)$ is the number of cores of size k in a network with n vertices, we are able to bound it by looking inside
\square
and use Chernoff bounds.

Proof techniques

- We treat $\Gamma H(x, y)$ as a deterministic algorithm that reads its inputs from a list

$$
\left(T_{1}, T_{2}, \ldots\right)
$$

where the $\left\{T_{i}\right\}_{i \geq 1}$ are independent samples from the class of cores, distributed according to the Boltzmann distribution.

- If $C_{k}(n)$ is the number of cores of size k in a network with n vertices, we are able to bound it by looking inside

$$
\left(T_{1}, \ldots, T_{\left\lceil\alpha_{H} n+\varepsilon n\right\rceil}\right)
$$

and use Chernoff bounds.

Outlook

- Use these results for algorithmic applications;
- determine the asymptotic distribution of the order and the size of the giant core;
- higher connectivities???

Outlook

- Use these results for algorithmic applications;
- determine the asymptotic distribution of the order and the size of the giant core;
- higher connectivities???

Outlook

- Use these results for algorithmic applications;
- determine the asymptotic distribution of the order and the size of the giant core;
- higher connectivities???

Thank you!

