Algebraic equations for diagonals of bivariate rational functions

Alin Bostan ${ }^{1} \quad$ Louis Dumont ${ }^{1} \quad$ Bruno Salvy ${ }^{2}$

${ }^{1}$ INRIA, SpecFun
${ }^{2}$ INRIA, AriC
May 11, 2015

Introduction

Motivations

In combinatorics:
Lattice walks

generating power series:

$$
W(x, y)=\sum_{n, m \geq 0} w_{n, m} x^{n} y^{m}
$$

$w_{n, m}$: number of walks that end at (n, m)
$w_{n, n}$: number of walks that end on the diagonal at (n, n)

Diagonals also appear in statistical physics, number theory,...

Diagonals

$\operatorname{diag}(F)$ is algebraic: $(1-4 x) \operatorname{diag}(F)^{2}-1=0$.
Theorem (Furstenberg, 1967)

- Diagonals of bivariate rational functions are algebraic
- Any algebraic univariate power series can be expressed as the diagonal of a bivariate rational function

Hierarchy of univariate power series

Definition

A series $F(x)=\sum_{n \geq 0} u_{n} x^{n}$ is D-finite when

$$
\sum_{i=0}^{r} p_{i}(x) \frac{d^{i}}{d x^{i}} F(x)=0, \quad p_{i} \in \mathbb{Q}[x]
$$

D - Finite

Abel (≈ 1830): Alg \subset D-Finite BoChLeSaSc (2007): Alg \subset D-Finite efficiently
Furstenberg (1967): Diag = Alg

Aim of the talk

We have seen three data structures for a diagonal:
(1) the rational function defining the diagonal;
(2) a polynomial equation satisfied by the diagonal;
(3) a differential equation satisfied by the diagonal.

We will:

- study the algorithmic change from the rational data structure to the algebraic one;
- show that the differential equation is a better data structure for the problem of expanding the diagonal series.

Today's guest star example

- $d \in \mathbb{N}$
- Step set $\mathfrak{S}=\{(1, i), 0 \leq i \leq d\} \cup\{(i, 1), 0 \leq i \leq d\}$
- $w_{n, m}$: number of walks with steps in \mathfrak{S} that end at (n, m)

Proposition

$$
W(x, y)=\sum_{n, m \geq 0} w_{n, m} x^{n} y^{m}=\frac{1}{1-\sum_{(i, j) \in \mathfrak{S}} x^{i} y^{j}}
$$

Problem

Let N be a non-negative integer. Compute the expansion of $\operatorname{diag} W(x)$ at order N :

$$
\operatorname{diag} W(x)=\sum_{n=0}^{N} w_{n, n} x^{n}+O\left(x^{N+1}\right)
$$

Two classical methods

Common strategy:
(1) Compute the power series expansion of $W(x, y)$
(2) Keep the diagonal, throw away the rest

Two classical methods

- Linear recurrence with constant coefficients:

$$
w_{n, m}=\sum_{(i, j) \in \mathfrak{S}} w_{n-i, m-j}
$$

Resulting complexity: $\mathcal{O}\left(d N^{2}\right)$ arithmetical operations

- Newton iteration

Resulting complexity: $\tilde{\mathcal{O}}\left(N^{2}\right)$ arith. ops.

A linear complexity algorithm

Strategy:
(1) Compute a polynomial that cancels the diagonal
(2) Deduce a differential equation that cancels the diagonal
(3) Deduce a linear recurrence with polynomial coefficients for $w_{n, n}$
(3) Compute enough initial conditions using one of the elementary methods.
(5) Compute the desired amount of terms using the recurrence

Resulting complexity: $\mathcal{O}(N)$
Complexity of the pre-processing: ???

Algebraic equations for diagonals

Theorem (Polya (1921), Furstenberg (1967))

The diagonal of a bivariate rational function is algebraic.

- $G(x, y)=\frac{1}{y} F(x / y, y) \rightarrow \operatorname{diag}(F)=\left[y^{-1}\right] G(x, y)$
- $y_{1}(x), \ldots, y_{r}(x)$: distinct poles of $G(x, y) \in \mathbb{Q}(x)(y)$
- $\alpha_{1}(x), \ldots, \alpha_{r}(x)$: residues of G at the $y_{i}^{\prime} s$

$$
\operatorname{diag} F(x)=\sum_{\lim _{x \rightarrow 0} y_{i}(x)=0} \alpha_{i}(x)
$$

The y_{i} 's whose limit is 0 at 0 are called the small branches of G.

Example

$$
d=0, \text { steps }(1,0) \text { and }(0,1)
$$

$$
F(x, y)=\frac{1}{1-x-y} \longrightarrow G(x, y)=\frac{1}{y-x-y^{2}}
$$

roots of the denominator of G :

$$
x_{1}=\frac{1-\sqrt{1-4 x}}{2}, \quad x_{2}=\frac{1+\sqrt{1-4 x}}{2}
$$

residue at x_{1} :

$$
\operatorname{diag}(F)=\frac{1}{1-2 x_{1}}=\frac{1}{\sqrt{1-4 x}}
$$

Algebraic equations for diagonals

reminder: the α_{i} 's are the residues of $G(x, y)=\frac{1}{y} F(x / y, y)$

We divide the problem of finding an algebraic equation for the diagonal into three subproblems:
(1) compute the polynomial $R=\prod_{i=1}^{r}\left(y-\alpha_{i}(x)\right) \in \mathbb{Q}(x)[y]$
(2) compute the number c of small branches of G
(3) R being known, compute the polynomial $\Sigma_{c} R$ defined by

$$
\Sigma_{c} R=\prod_{i_{1}<\ldots<i_{c}}\left(y-\left(\alpha_{i_{1}}+\ldots+\alpha_{i_{c}}\right)\right) \in \mathbb{Q}(x)[y]
$$

First step: polynomial cancelling the residues of G

Write $G(x, y)=P(x, y) / Q(x, y)$.
(1) If y_{i} is a simple pole, then $\alpha_{i}=\frac{P\left(x, y_{i}\right)}{Q_{y}\left(x, y_{i}\right)}$. α_{i} is cancelled by the Rothstein-Trager resultant:

$$
\operatorname{Res}_{z}\left(Q_{y}(x, y) z-P(x, y), Q(x, y)\right)
$$

(2) if y_{i} is a multiple pole: Bronstein resultants

Third step: Polynomial cancelling the sums of residues Main tool: Newton sums

Definition

Let $R=a \prod_{i=1}^{r}\left(x-\alpha_{i}\right) \in \mathbb{Q}[x]$ be a polynomial. On définit la série génératrice des sommes de Newton de R par:

$$
\mathcal{N}(R)=\sum_{n \geq 0}\left(\alpha_{1}^{n}+\ldots+\alpha_{r}^{n}\right) x^{n}
$$

si $R=a_{0}+a_{1} x+\ldots+a_{r} x^{r}$, on note $\operatorname{rec}(R)=a_{0} x^{r}+a_{1} x^{r-1}+\ldots+a_{r}$.

Proposition

Let $R \in \mathbb{Q}[x]$ be a polynomial of degree r. Then

- $\mathcal{N}(R)=\operatorname{rec}\left(R^{\prime}\right) / \operatorname{rec}(R)$
- $\operatorname{rec}(R)=\exp \left(\int \frac{r-\mathcal{N}(R)}{x}\right)$

Size of the polynomial, complexity of the pre-processing

Theorem (Bostan, D., Salvy (2014))

Let $A / B \in \mathbb{Q}(x, y)$ be a rational function that is not singular at 0 , and such that B has bidegree $\left(d_{x}, d_{y}\right)$. There exists $a(x) \in \mathbb{Q}(x)$ such that, with the same notations as above and $\Phi=a \Sigma_{c} R$,

- $\Phi \in \mathbb{Q}[x, y]$
- $\Phi(x, \operatorname{diag} F(x))=0$
- Φ has degree at most $\binom{d_{x}+d_{y}}{d_{x}}$ in y
- "generically", Φ is irreducible over $\mathbb{Q}(x)$
- "generically", Φ is computed in quasi-optimal time

In particular, the pre-processing of the algebraic equation for the diagonal has a complexity that is exponential in the size of the input rational function.

A linear complexity algorithm with polynomial time pre-processing

Strategy:
(1) Directly compute the minimal differential equation for $\operatorname{diag} W$
(2) Deduce a linear recurrence with polynomial coefficients for $w_{n, n}$
(3) Compute enough initial conditions using one of the elementary methods.
(9) Compute the desired amount of terms using the recurrence

Resulting complexity: $\mathcal{O}(N)$ Pre-processing of polynomial cost in d.

Diagonals satisfy small differential equations

Theorem (Bostan, Chen, Chyzak, Li (2010))
Let $A / B \in \mathbb{Q}(x, y)$ be a rational function such that B has bidegree (d_{x}, d_{y}) and

- the degrees in x and y of A are less than those of B
- A is prime to B
- B is primitive with respect to y

Then there exists a differential operator $L\left(x, \partial_{x}\right)$ such that

- $L\left(x, \partial_{x}\right) \cdot \operatorname{diag}(A / B)=0$
- L has order at most d_{y} and degree $\mathcal{O}\left(d_{x} d_{y}^{2}\right)$

