Universal Asymptotics for Positive Catalytic Equations

Michael Drmota
joint work with Eva-Maria Hainzl, Marc Noy and Guan-Ru Yu
Institute of Discrete Mathematics and Geometry, TU Wien
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/

Journée MathStic "Combinatoire et Probabilités"
Univ. Paris Nord, Oct. 26, 2021.

One Functional Equation

Unrestricted paths

$$
\begin{gathered}
B(z)=1+2 z B(z) \\
B(z)=\frac{1}{1-2 z} \quad(\text { polar singularity }) \\
b_{n}=\left[z^{n}\right] B(z)=2^{n}
\end{gathered}
$$

One Functional Equation

Dyck paths

$$
B(z)=1+z^{2} B(z)^{2}
$$

$$
B(z)=\frac{1-\sqrt{1-4 z^{2}}}{2 z^{2}} \quad \text { (squareroot singularity) }
$$

$$
b_{2 n}=\left[z^{2 n}\right] B(z)=\frac{1}{n}\binom{2 n}{n} \sim \sqrt{\frac{8}{\pi}} n^{-3 / 2} 2^{n}
$$

One Functional Equation

Non-negative lattice paths

$f_{n, i} \ldots$ number of non-negative paths from $(0,0) \rightarrow(n, i)$

$$
\begin{gathered}
f_{i}(z)=\sum_{n \geq 0} f_{n, i} z^{i} \quad F(z, u)=\sum_{i \geq 0} f_{i}(z) u^{i}=\sum_{n, i \geq 0} f_{n, i} z^{n} u^{i} \\
f_{0}(z)=1+z f_{1}(z) \\
f_{i}(z)=z f_{i-1}(z)+z f_{i+1}(z) \quad(i \geq 1) \\
F(z, u)=1+z u F(z, u)+z \frac{F(z, u)-F(z, 0)}{u}
\end{gathered}
$$

u... "catalytic variable"

One Functional Equation

Non-negative lattice paths

$$
F(z, 0)=\frac{1-\sqrt{1-4 z^{2}}}{2 z^{2}} \quad \text { (squareroot singularity) }
$$

$$
f_{2 n, 0}=\left[z^{2 n}\right] F(z, 0)=\frac{1}{n}\binom{2 n}{n} \sim \sqrt{\frac{8}{\pi}} n^{-3 / 2} 2^{n}
$$

One Functional Equation

Planar Maps

$M_{n, k} \ldots$ number of planar maps with n edges and outer face valency k

$$
M(z, u)=\sum_{n, k} M_{n, k} z^{n} u^{k}
$$

One Functional Equation

Planar Maps

$$
M(z, u)=1+z u^{2} M(z, u)^{2}+u z \frac{u M(z, u)-M(z, 1)}{u-1}
$$

u ... "catalytic variable"

$$
M(z, 1)=-\frac{1}{54 z^{2}}\left(1-18 z-(1-12 z)^{3 / 2}\right) \quad(3 / 2 \text {-singularity })
$$

$$
M_{n}=\left[z^{n}\right] M(z, 1)=\frac{2(2 n)!}{(n+2)!n!} 3^{n} \sim \frac{2}{\sqrt{\pi}} \cdot n^{-5 / 2} 12^{n}
$$

One Functional Equation

One positive linear equation

Theorem 1. Polar singularity:
$Q_{0}(z), Q_{1}(z) \ldots$ polynomials with non-negative coefficients.

$$
B(z)=Q_{0}(z)+z Q_{1}(z) B(z)
$$

$$
\Longrightarrow \quad b_{n}=\left[z^{n}\right] B(z) \sim c_{j} \cdot z_{0}^{-n}, \quad n \equiv j \bmod m
$$

for $j \in\{0,1, \ldots, m-1\}$ and some $m \geq 1$.
$z_{0}>0$ is given by $z_{0} Q_{1}\left(z_{0}\right)=1$.

Remark. Proof is simple analysis of $B(z)=Q_{0}(z) /\left(1-z Q_{1}(z)\right)$.

One Functional Equation

One positive non-linear equation

Theorem 2. [Bender, Canfield, Meir+Moon, ...] Squareroot sing.:
$Q(z, y) \ldots$ polynomial with non-negative coefficients and $Q(0,0)=0$ and $Q_{y y} \neq 0$.

$$
\begin{array}{r}
B(z)=Q(z, B(z)) \\
\Longrightarrow \quad b_{n}=\left[z^{n}\right] B(z) \sim c \cdot n^{-3 / 2} z_{0}^{-n} ., \quad n \equiv j_{0} \bmod m,
\end{array}
$$

and $b_{n}=0$ for $n \not \equiv j_{0} \bmod m$, where $m \geq 1$.
$z_{0}>0$ satisfies $b_{0}=Q\left(z_{0}, b_{0}\right)$ and $1=Q_{y}\left(z_{0}, b_{0}\right)$ for some $b_{0}>0$.

Remark. Proof is based on the analysis of the singular point $\left(z_{0}, b_{0}\right)$ of the curve $b=Q(z, b)$ that leads to the squareroot singularty $B(z)=$ $g(z)-h(z) \sqrt{1-z / z_{0}}$.

One Functional Equation

One positive linear catalytic equation

Theorem 3. [D. + Noy +Yu$]$ Squareroot singularity:
$Q_{0}(z, u), Q_{1}(z, u), Q_{2}(z, u) \ldots$ polynomials with non-negative coefficients such that $Q_{1, u} \neq 0$ and $u \nmid Q_{2}$.

$$
M(z, u)=Q_{0}(z, u)+z M(z, u) Q_{1}(z, u)+z \frac{M(z, u)-M(z, 0)}{u} Q_{2}(z, u)
$$

$$
\Longrightarrow \quad M_{n}=\left[z^{n}\right] M(z, 0) \sim c \cdot n^{-3 / 2} z_{0}^{-n}, \quad n \equiv j_{0} \bmod m
$$

(for some constants $c, z_{0}>0$) and $M_{n}=0$ for $n \not \equiv j_{0}$ mod m, where $m \geq 1$.

One Functional Equation

One positive non-linear catalytic equation

Theorem 4. [D.+Noy+Yu] 3/2-Singularity:
$Q\left(y_{0}, y_{1}, z, u\right) \ldots$ polynomial with non-negative coefficients that is non-linear in y_{0}, y_{1} (and depends on y_{0}, y_{1}) and $Q_{0}(u)$ a non-negative polynomial in u.

$$
M(z, u)=Q_{0}(u)+z Q\left(M(z, u), \frac{M(z, u)-M(z, 0)}{u}, z, u\right)
$$

$$
\Longrightarrow \quad M_{n}=\left[z^{n}\right] M(z, 0) \sim c \cdot n^{-5 / 2} z_{0}^{-n} ., \quad n \equiv j_{0} \bmod m
$$

(for some constants $c, z_{0}>0$) and $M_{n}=0$ for $n \not \equiv j_{0}$ mod m, where $m \geq 1$.

System of Functional Equations

$Q_{1}, \ldots Q_{d} \ldots$ polynomials with non-negative coefficients.
$y_{1}=y_{1}(z), \ldots, y_{d}=y_{d}(z) \ldots$ solution of the system:

$$
\begin{aligned}
y_{1} & =Q_{1}\left(z, y_{1}, \ldots, y_{d}\right), \\
\quad & \vdots \\
y_{d} & =Q_{d}\left(z, y_{1}, \ldots, y_{d}\right)
\end{aligned}
$$

Recall that if $d=1$ then the single equation $y=Q(z, y)$ has either a polar singularity (if it is linear) or a squareroot singularity (if it is non-linear).

Question. What happends for $d>1$??

Systems of functional equations

Strongly connected dependency graph

Theorem 5 [D., Lalley, Woods]
$\mathbf{y}=\mathrm{Q}(z, \mathrm{y})$... non-negative (and well defined) polynomial system of $d \geq 1$ equations such that the dependency graph is strongly connected.

Then the situation is the same as for a single equation.

It the system is linear then we have a common polar singularity and

$$
\left[z^{n}\right] y_{1}(z) \sim c_{j} \cdot z_{0}^{-n}, \quad n \equiv j \bmod m
$$

whereas if it is non-linear then we have a squareroot singularity and

$$
\left[z^{n}\right] y_{1}(z) \sim c \cdot n^{-3 / 2} z_{0}^{-n} ., \quad n \equiv j_{0} \bmod m
$$

Systems of functional equations

General dependency graph

Theorem 6 [Banderier+D.]
$\mathbf{y}=\mathrm{Q}(z, \mathbf{y}) \ldots$ non-negative (and well defined) polynomial system of equations.

$$
\Longrightarrow \quad\left[z^{n}\right] y_{1}(z) \sim c_{j} n^{\alpha_{j}} \rho_{j}^{-n} \quad(n \equiv j \bmod m),
$$

for $j \in\{0,1, \ldots, m-1\}$ for some $m \geq 1$, where

$$
\alpha_{j} \in\left\{-2^{-k}-1: k \geq 1\right\} \cup\left\{m 2^{-k}-1: m \geq 1, k \geq 0\right\} .
$$

Theorem 3: Kernel Method

$$
M(z, u)=Q_{0}(z, u)+z M(z, u) Q_{1}(z, u)+z \frac{M(z, u)-M(z, 0)}{u} Q_{2}(z, u)
$$

rewrites to

$$
M(z, u) \sqrt[\left(1-z Q_{1}(z, u)-\frac{z}{u} Q_{2}(z, u)\right)]{ }=Q_{0}(z, u)-\frac{z}{u} M(z, 0) Q_{2}(z, u)
$$

If $u=u(z)$ satisfies the kernel equation

$$
1-z Q_{1}(z, u(z))-\frac{z}{u(z)} Q_{2}(z, u(z))=0
$$

Then the right hand side is also zero and we obtain

$$
M(z, 0)=\frac{Q_{0}(z, u(z))}{1-z Q_{1}(z, u(z))}
$$

Theorem 3: Kernel Method

The kernel equation

$$
1-z Q_{1}(z, u(z))-\frac{z}{u(z)} Q_{2}(z, u(z))=0
$$

rewrites to

$$
u(z)=z Q_{2}(z, u(z))+z u(z) Q_{1}(z, u(z))
$$

By Theorem 2 we, thus, obtain a squareroot singularity for $u(z)$ which implies a squareroot singularity for

$$
M(z, 0)=\frac{Q_{0}(z, u(z))}{1-z Q_{1}(z, u(z))}
$$

Theorem 4: Bousquet-Melou-Jehanne Method

Let $P\left(x_{0}, x_{1}, z, u\right)$ be an analytic function such that $(y(z)=M(z, 0))$

$$
P(M(z, u), y(z), z, u)=0
$$

By taking the derivative with respect to u we get

$$
P_{x_{0}}(M(z, u), y(z), z, u) M_{u}(z, u)+P_{u}(M(z, u), y(z), z, u)=0
$$

Key observation:

$$
\exists u(z): P_{x_{0}}(M(z, u(z)), y(z), z, u(z))=0 \Longrightarrow P_{u}(M(z, u(z)), y(z), z, u(z))=0
$$

Thus, with $f(z)=M(z, u(z))$ we get the system for $f(z), y(z), u(z)$

$$
\begin{aligned}
P(f(z), y(z), z, u(z)) & =0 \\
P_{x_{0}}(f(z), y(z), z, u(z)) & =0 \\
P_{u}(f(z), y(z), z, u(z)) & =0
\end{aligned}
$$

Theorem 4: Bousquet-Melou-Jehanne Method

Set (as given in our case)

$$
P\left(x_{0}, x_{1}, z, u\right)=Q_{0}(u)+z Q\left(x_{0},\left(x_{0}-x_{1}\right) / u, z, u\right)-x_{0}
$$

Then the system $P=0, P_{x_{0}}=0, P_{u}=0$ rewrites to

$$
\begin{aligned}
f(z) & =Q_{0}(u(z))+z Q(f(z), w(z), z, u(z)) \\
u(z) & =z u(z) Q_{y_{0}}(f(z), w(z), z, u(z))+z Q_{y_{1}}(f(z), w(z), z, u(z)) \\
w(z) & =Q_{0, u}(u(z))+z Q_{v}(f(z), w(z), z, u(z))+z w(z) Q_{y_{0}}(f(z), w(z), z, u(z))
\end{aligned}
$$

where

$$
w(z)=\frac{f(z)-y(z)}{u(z)}
$$

This is a positive strongly connected polynomial system.

Theorem 4: Bousquet-Melou-Jehanne Method

Thus, by Theorem 5 the solution functions $f(z), u(z), w(z)$ have a squareroot singularity at some common singularity z_{0} :

$$
\begin{aligned}
& f(z)=g_{1}(z)-h_{1}(z) \sqrt{1-\frac{z}{z_{0}}} \\
& u(z)=g_{2}(z)-h_{2}(z) \sqrt{1-\frac{z}{z_{0}}} \\
& w(z)=g_{3}(z)-h_{3}(z) \sqrt{1-\frac{z}{z_{0}}}
\end{aligned}
$$

$\Longrightarrow y(z)=f(z)-u(z) w(z)$ has also a squareroot singularity at z_{0}
$y(z)=g_{4}(z)-h_{4}(z) \sqrt{1-\frac{z}{z_{0}}}=a_{0}+a_{1} \sqrt{1-\frac{z}{z_{0}}}+a_{2}\left(1-\frac{z}{z_{0}}\right)+a_{3}\left(1-\frac{z}{z_{0}}\right)^{3 / 2}+$.
but maybe there are cancellations of coefficients a_{j} (and actually this happens!!!): we have $a_{1}=0$ and $a_{3}>0$.

Bousquet-Melou-Jehanne Method - General Case

$1^{\text {st }}$ difference

$$
M(z, u)=Q_{0}(u)+z Q\left(M(z, u), \frac{M(z, u)-M(z, 0)}{u}, z, u\right)
$$

Higher differences

$$
M(z, u)=Q_{0}(u)+z Q\left(M(z, u), \Delta^{(1)}(z, u), \ldots, \Delta^{(d)}(z, u), z, u\right)
$$

where

$$
\Delta^{(j)}(z, u)=\frac{M(z, u)-M(z, 0)-M_{u}(z, 0) u-\cdots-M_{u^{j-1}}(z, 0) u^{j-1}}{u^{j}}
$$

Theorem (Bousquet-Melou-Jehanne). Such an equation has always an algebraic solution.

Kernel Method for the Linear Case ($d=2$)

$$
\begin{aligned}
M(z, u) & =Q_{0}(z, u)+z M(z, u) Q_{1}(z, u)+z \frac{M(z, u)-M(z, 0)}{u} Q_{2}(z, u) \\
& +z \frac{M(z, u)-M(z, 0)-M_{u}(z, 0) u}{u^{2}} Q_{3}(z, u)
\end{aligned}
$$

rewrites to

$$
\begin{aligned}
& M(z, u) \sqrt[\left(1-z Q_{1}(z, u)-\frac{z}{u} Q_{2}(z, u)-\frac{z}{u^{2}} Q_{3}(z, u)\right)]{ } \\
& =Q_{0}(z, u)-M(z, 0)\left(\frac{z}{u} Q_{2}(z, u)+\frac{z}{u^{2}} Q_{3}(z, u)\right)-M_{u}(z, 0) \frac{z}{u} Q_{3}(z, u)
\end{aligned}
$$

Here two functions $u=u_{1}(z)$ and $u=u_{2}(z)$ satisfy the kernel equation

$$
1-z Q_{1}(z, u(z))-\frac{z}{u(z)} Q_{2}(z, u(z))-\frac{z}{u(z)^{2}} Q_{3}(z, u(z))=0
$$

The right hand side is then zero for $u=u_{1}(z)$ and $u=u_{2}(z)$ which is a linear system for $M(z, 0)$ and $M_{u}(z, 0)$

Kernel Method for the Linear Case $(d=2)$

The kernel equation for $u=u_{1}(z)$ and $u=u_{2}(z)$

$$
1-z Q_{1}(z, u(z))-\frac{z}{u(z)} Q_{2}\left(z, u_{1,2}(z)\right)-\frac{z}{u(z)^{2}} Q_{3}(z, u(z))=0
$$

rewrites to

$$
u(z)^{2}=u(z)^{2} z Q_{1}(z, u(z))+z u(z) Q_{2}\left(z, u_{1,2}(z)\right)+z Q_{3}(z, u(z))
$$

or to

$$
u_{1}(z)=\sqrt{z u_{1}(z)^{2} Q_{1}\left(z, u_{1}(z)\right)+z u_{1}(z) Q_{2}\left(z, u_{1}(z)\right)+Q_{3}\left(z, u_{1}(z)\right)}
$$

$$
u_{2}(z)=-\sqrt{z u_{2}(z)^{2} Q_{1}\left(z, u_{2}(z)\right)+z u_{2}(z) Q_{2}\left(z, u_{2}(z)\right)+Q_{3}\left(z, u_{2}(z)\right)}
$$

We lose the property that $u_{1}(z)$ and $u_{2}(z)$ have just non-negative coefficients and it is not clear that there is a squareroot singularity.

Bousquet-Melou-Jehanne Method for the Nonlinear Case

Let $P\left(x_{0}, x_{1}, x_{2}, z, u\right)$ be an analytic function such that

$$
P\left(M(z, u), y_{0}(z), y_{1}(z), z, u\right)=0 .
$$

By taking the derivative with respect to u we get

$$
P_{x_{0}}\left(M(z, u), y_{0}(z), y_{1}(z), z, u\right) \cdot M_{u}(z, u)+P_{u}\left(M(z, u), y_{0}(z), y_{1}(z), z, u\right)=0 .
$$

Key obervation:
$P_{x_{0}}\left(M(z, u(z)), y_{0}(z), y_{1}(z), z, u(z)\right)=0 \Longrightarrow P_{u}\left(M(z, u(z)), y_{0}(z), y_{1}(z), z, u(z)\right.$
We need two functions $u_{1}(z)$ and $u_{2}(z)$. Setting $f_{j}(z)=M\left(z, u_{j}(z)\right)$ we get the system for $f_{1}(z), f_{2}(z), y_{0}(z), y_{1}(z), u_{1}(z), u_{2}(z)$

$$
\begin{aligned}
P\left(f_{1}(z), y_{0}(z), y_{1}(z), z, u_{1}(z)\right)=0, & P\left(f_{2}(z), y_{0}(z), y_{1}(z), z, u_{2}(z)\right)=0 \\
P_{x_{0}}\left(f_{1}(z), y_{0}(z), y_{1}(z), z, u_{1}(z)\right)=0, & P_{x_{0}}\left(f_{2}(z), y_{0}(z), y_{1}(z), z, u_{2}(z)\right)=0 \\
P_{u}\left(f_{1}(z), y_{0}(z), y_{1}(z), z, u_{1}(z)\right)=0, & P_{u}\left(f_{2}(z), y_{0}(z), y_{1}(z), z, u_{2}(z)\right)=0
\end{aligned}
$$

Bousquet-Melou-Jehanne Method for the Nonlinear Case

Set (as given in our case)

$$
P\left(x_{0}, x_{1}, x_{2}, z, u\right)=Q_{0}(u)+z Q\left(x_{0},\left(x_{0}-x_{1}\right) / u,\left(x_{0}-x_{1}-u x_{2}\right) / u^{2}, z, u\right)-x_{0}
$$

Then the above system rewrites to

$$
\begin{aligned}
& f_{1,2}(z)=Q_{0}\left(u_{1,2}(z)\right)+ \\
&+z Q\left(f_{1,2}(z), \frac{f_{1,2}(z)-M(z, 0)}{u_{1,2}(z)}, \frac{f_{1,2}(z)-M(z, 0)-u_{1,2}(z) M_{u}(z, 0)}{u_{1,2}(z)^{2}}, z, u_{1,2}(z)\right), \\
& u_{1,2}(z)^{2}=z u_{1,2}(z)^{2} Q_{y_{0}}(\cdots)+z u_{1,2}(z) Q_{y_{1}}(\cdots)+z Q_{y_{2}}(\cdots) \\
& Q_{0, u}\left(u_{1,2}(z)\right)=\frac{f_{1,2}(z)-M(z, 0)}{u_{1,2}(z)}\left(1-z Q_{y_{0}}(\cdots)\right. \\
&+z \frac{f_{1,2}(z)-M(z, 0)-u_{1,2}(z) M_{u}(z, 0)}{u_{1,2}(z)^{3}} Q_{y_{2}}(\cdots)
\end{aligned}
$$

This cannot be rewritten into a positive strongly connected polynomial system.

Second Differences: The Linear Case

Theorem 3'. [D.+Hainzl] Squareroot singularity:
$Q_{0}(z, u), Q_{1}(z, u), Q_{2}(z, u), Q_{3}(z, u) \ldots$ polynomials with non-negative coefficients (+ some technical conditions).

$$
\begin{aligned}
M(z, u) & =Q_{0}(z, u)+z M(z, u) Q_{1}(z, u)+z \frac{M(z, u)-M(z, 0)}{u} Q_{2}(z, u) \\
& +z \frac{M(z, u)-M(z, 0)-M_{u}(z, u) u}{u^{2}} Q_{3}(z, u) \\
& \Longrightarrow M_{n}=\left[z^{n}\right] M(z, 0) \sim c \cdot n^{-3 / 2} z_{0}^{-n} . \quad n \equiv j_{0} \bmod m
\end{aligned}
$$

(for some constants $c, z_{0}>0$) and $M_{n}=0$ for $n \not \equiv j_{0}$ mod m, where $m \geq 1$.

Second Differences: The Non-linear Case

Theorem 4'. [D.+Hainzl] 3/2-Singularity:
$Q\left(y_{0}, y_{1}, y_{2}, z, u\right) \ldots$ polynomial with non-negative coefficients that is non-linear in $y_{0}, y_{1}, y_{2}(+$ some technical conditions).

$$
\begin{aligned}
& M(z, u)=Q_{0}(u) \\
& +z Q\left(M(z, u), \frac{M(z, u)-M(z, 0)}{u}, \frac{M(z, u)-M(z, 0)-M_{u}(z, 0) u}{u^{2}}, z, u\right) \\
& \quad \Longrightarrow \quad M_{n}=\left[z^{n}\right] M(z, 0) \sim c \cdot n^{-5 / 2} z_{0}^{-n} ., \quad n \equiv j_{0} \bmod m,
\end{aligned}
$$

(for some constants $c, z_{0}>0$) and $M_{n}=0$ for $n \not \equiv j_{0}$ mod m, where $m \geq 1$.

Applications

One-dimensional non-negative lattice path with steps ± 1 and ± 2

$$
\begin{aligned}
& E_{0}(z)=1+z\left(E_{1}(z)+E_{2}(z)\right) \\
& E_{1}(z)=z\left(E_{0}(z)+E_{1}(z)+E_{2}(z)\right) \\
& E_{k}(z)=z\left(E_{k-2}(z)+E_{k-1}(z)+E_{k+1}(z)+E_{k+2}(z)\right) \quad(k \geq 2)
\end{aligned}
$$

which gives for $E(z, u)=\sum_{k \geq 0} E_{k}(z) u^{k}$

$$
\begin{aligned}
E(z, u) & =1+z\left(u+u^{2}\right) E(z, u)+z \frac{E(z, u)-E(z, 0)}{u} \\
& +z \frac{E(z, u)-E(z, 0)-u E_{v}(u, 0)}{u^{2}}
\end{aligned}
$$

Applications

3-Constellations in Eulerian Maps

$$
\begin{aligned}
M(z, u) & =1+z u M(z, u)^{3}+z u(2 M(z, u)+M(z, 1)) \frac{M(z, u)-M(z, 1)}{u-1} \\
& +z u \frac{M(z, u)-M(z, 1)-M_{u}(z, 1)(u-1)}{(u-1)^{2}}
\end{aligned}
$$

Remark. There are many equations of this type in the context of map enumeration (even more generally with higher differences)

Higher Differences

Conjecture

Consider a catalytic equation with higher differences:

$$
M(z, u)=Q_{0}(u)+z Q\left(M(z, u), \Delta^{(1)}(z, u), \ldots, \Delta^{(d)}(z, u), z, u\right)
$$

where Q_{0} and Q have non-negative coefficients (+ some technical conditions)

- If Q is linear in $y_{0}, y_{1}, \ldots, y_{d}$ then $M(z, 0)$ has a squareroot singuIarity
- If Q is non-linear in $y_{0}, y_{1}, \ldots, y_{d}$ then $M(z, 0)$ has a 3/2-singularity

Theorem 3': Proof Ideas for the Linear Case

Set

$$
R(z, u)=z u^{2} Q_{1}(z, u)+z u Q_{2}(z, u)+Q_{3}(z, u)
$$

Then the kernel equation for $u=u_{1,2}(z)$ reads as

$$
u^{2}=R(z, u)
$$

Ansatz

$$
u_{1}(z)=g(z)+\sqrt{h(z)} \quad u_{2}(z)=g(z)-\sqrt{h(z)}
$$

Proof Ideas for the Linear Case

$$
\begin{aligned}
& u^{2}=(g \pm \sqrt{h})^{2}=\boxed{g^{2}+h \pm \sqrt{h} 2 g} \\
& R(z, g \pm \sqrt{h})=\sum_{k} R_{k}(z)(g \pm \sqrt{h})^{k} \\
&=\sum_{k} R_{k}(z) \sum_{j=0}^{k}\binom{k}{j} g^{k-j}(\pm 1)^{j} h^{j / 2} \\
&=\sum_{k, \ell} R_{k}(z)\binom{k}{2 \ell} g^{k-2 \ell} h^{\ell} \pm \sqrt{h} \sum_{k, \ell} R_{k}(z)\binom{k}{2 \ell+1} g^{k-2 \ell-1} h^{\ell} \\
&=R^{+}(z, g, h) \pm \sqrt{h} \cdot R^{-}(z, g, h) \\
& u^{2}=R(z, u) \quad \Longrightarrow \quad g^{2}+h=R^{+}(z, g, h), \quad 2 g=R^{-}(z, g, h)
\end{aligned}
$$

Proof Ideas for the Linear Case

The kernel equation

$$
u^{2}=R(z, u)
$$

rewrites to

$$
g^{2}+h=R^{+}(z, g, h), \quad 2 g=R^{-}(z, g, h)
$$

or to

$$
h=R^{+}(z, g, h)-g^{2}, \quad g=\frac{1}{2} R^{-}(z, g, h)
$$

This is not a positive system!

Proof Ideas for the Linear Case

Lemma

The functions $g(z), h(z)$ have the following properties:

- they have non-negative coefficients
- they have a common squareroot singularity z_{0}
- the function $u_{2}(z)=g(z)-\sqrt{h(z)}$ is regular at z_{0}

Corollary. The functions $M(z, 0), M_{u}(z, 0)$ have a squareroot singularity at z_{0}, too.

Additional Parameters

Number of vertices in planar maps

$M(z, x, u) \ldots$ generating function of rooted planar maps, where the variable z corresponds to the number of edges, x to the number of vertices and u to the root face valency.

$$
M(z, x, v)=x+z u^{2} M(z, x, u)^{2}+z u \frac{M(z, x, 1)-u M(z, x, u)}{1-u}
$$

$X_{n} \ldots$ number of vertices in a random planar map with n edges

Central Limit Theorem

X_{n} satisfies a central limit theorem with $\mathbb{E}\left[X_{n}\right]=\frac{1}{2} n+O(1)$ and $\operatorname{Var}\left[X_{n}\right]=\frac{5}{32} n+O(1)$.

Additional Parameters

Theorem 7

Suppose that $M(z, x, u)$ and $M_{1}(z, x)$ are the solutions of the catalytic equation

$$
P\left(M(z, x, u), M_{1}(z, x), z, x, u\right)=0
$$

where the function $P\left(x_{0}, x_{1}, z, x, u\right)$ is analytic and $M_{1}(z, 1)$ has a singularity at $z=z_{0}$ of the form

$$
M_{1}(z, 1)=y_{0}+y_{2}\left(1-\frac{z}{z_{0}}\right)+y_{3}\left(1-\frac{z}{z_{0}}\right)^{3 / 2}+\cdots
$$

with $y_{3} \neq 0$ (+ some technical conditions)
Then $M_{1}(z, x)$ has a local singular representation of the form

$$
M_{1}(z, x)=a_{0}(x)+a_{2}(x)\left(1-\frac{z}{\rho(x)}\right)+a_{3}(x)\left(1-\frac{z}{\rho(x)}\right)^{3 / 2}+\cdots
$$

Corollary. Hwang's Quasi-Power-Theorem leads then to a Central Limit Theorem

Additional Parameters

Vertices of degree k in planar maps

$M(z, x, u) \ldots$ generating function for rooted planar maps, where z corresponds to the number of edges, x to the number of non-root faces of degree k, and u to the root-face degree

$$
\begin{aligned}
& M(z, x, u)\left(1-z(x-1) u^{-k+2}\right) \\
& =1+z u^{2} M(z, x, u)+z u \frac{u M(z, x, u)-M(z, x, 1)}{u-1} \\
& \quad-z(x-1) u^{-k+2} G(z, x, M(z, x, 1), u),
\end{aligned}
$$

where $G(z, x, y, u)$ is a polynomial of degree $k-2$ in u with coefficients that are analytic functions in (z, x, y) for $|z| \leq 1 / 10,|x-1| \leq 2^{1-k}$, and $|y| \leq 2$.

Additional Parameters

Pure k-gons in planar maps

We say that a face is a pure k-gon $(k \geq 2)$ if it is incident exactly to k different edges and k different vertices.
$P(z, x, u) \ldots$ generating function for rooted planar maps, where z corresponds to the number of edges, x to the number of non-root faces that are pure k-gons, and u to the root-face degree.

$$
\begin{aligned}
P(z, x, u)= & 1+z u^{2} P(z, x, u)+z u \frac{u P(z, x, u)-P(z, x, 1)}{u-1} \\
& -z(x-1) u^{-k+2} \widetilde{G}(z, x, P(z, x, 1), u)
\end{aligned}
$$

where $\tilde{G}(z, x, y, u)$ is a polynomial of degree $k-2$ in u with coefficients that are analytic functions in (z, x, y) for $|z| \leq 1 / 10,|x-1| \leq 2^{1-k}$, and $|y| \leq 2$.

Additional Parameters

Vertices of degree k in simple planar maps
$S(z, x, u) \ldots$ generating function for simple rooted planar maps, where z corresponds to the number of edges, x to the number of non-root vertices of degree k, and u to the root-face degree.

$$
\begin{aligned}
S(z, x, u)= & 1+z u^{2} S(z, x, u)+z u \frac{u S(z, x, u)-S(z, x, 1)}{u-1} \\
& -z u S(z, x, u) S(z, x, 1)-(S(z, x, u)-1)(S(z, x, 1)-1) \\
+ & (x-1)\left(z u^{-k+2} S(z, x, u) G_{1}(z, x, S(z, x, 1), u)\right. \\
& \quad-z u S(z, x, u) G_{2}(z, x, S(z, x, 1)) \\
& \left.-(S(z, x, u)-1) G_{3}(z, x, S(z, x, 1))\right)
\end{aligned}
$$

where $G_{1}(z, x, y, u)$ is a polynomial of degree $k-2$ in u with coefficients that are analytic functions in (z, x, y) for $|z| \leq 2 / 25,|x-1| \leq 2^{-k-5}$, and $|y-1| \leq 2 / 5$. Similarly properties hold for the functions $G_{2}(z, x, y)$ and $G_{3}(z, x, y)$.

Thank You!

