Universal Asymptotics for Positive Catalytic Equations

Michael Drmota

joint work with Eva-Maria Hainzl, Marc Noy and Guan-Ru Yu

Institute of Discrete Mathematics and Geometry, TU Wien

michael.drmota@tuwien.ac.at

http://www.dmg.tuwien.ac.at/drmota/

Journée MathStic “Combinatoire et Probabilités”
One Functional Equation

Unrestricted paths

\[B(z) = 1 + 2zB(z) \]

\[B(z) = \frac{1}{1 - 2z} \quad \text{(polar singularity)} \]

\[b_n = [z^n]B(z) = 2^n \]
One Functional Equation

Dyck paths

\[B(z) = 1 + z^2 B(z)^2 \]

\[B(z) = \frac{1 - \sqrt{1 - 4z^2}}{2z^2} \] (square root singularity)

\[b_{2n} = [z^{2n}]B(z) = \frac{1}{n} \binom{2n}{n} \sim \sqrt{\frac{8}{\pi}} n^{-3/2} 2^n \]
One Functional Equation

Non-negative lattice paths

\[f_{n,i} \text{ ... number of non-negative paths from (0, 0) → (n, i)} \]

\[f_i(z) = \sum_{n \geq 0} f_{n,i} z^i \]

\[F(z, u) = \sum_{i \geq 0} f_i(z) u^i = \sum_{n,i \geq 0} f_{n,i} z^n u^i \]

\[f_0(z) = 1 + zf_1(z), \]
\[f_i(z) = zf_{i-1}(z) + zf_{i+1}(z) \quad (i \geq 1) \]

\[F(z, u) = 1 + zuF(z, u) + z \frac{F(z, u) - F(z, 0)}{u} \]

\[u \text{ ... “catalytic variable”} \]
Non-negative lattice paths

\[F(z, 0) = \frac{1 - \sqrt{1 - 4z^2}}{2z^2} \quad \text{(squareroot singularity)} \]

\[f_{2n,0} = [z^{2n}]F(z, 0) = \frac{1}{n} \binom{2n}{n} \sim \sqrt{\frac{8}{\pi}} n^{-3/2} 2^n \]
One Functional Equation

Planar Maps

\[M_{n,k} \quad \text{... number of planar maps with } n \text{ edges and outer face valency } k \]

\[M(z, u) = \sum_{n,k} M_{n,k} z^n u^k \]
One Functional Equation

Planar Maps

\[M(z, u) = 1 + zu^2M(z, u)^2 + uz \frac{uM(z, u) - M(z, 1)}{u - 1}. \]

u ... “catalytic variable”

\[M(z, 1) = -\frac{1}{54z^2} \left(1 - 18z - \left(1 - 12z \right)^{3/2} \right) \quad (3/2\text{-singularity}) \]

\[M_n = [z^n]M(z, 1) = \frac{2(2n)!}{(n + 2)!n!} 3^n \sim \frac{2}{\sqrt{\pi}} \cdot n^{-5/2} 12^n \]
One Functional Equation

One positive linear equation

Theorem 1. Polar singularity:

\[Q_0(z), \, Q_1(z) \ldots \text{polynomials with non-negative coefficients.} \]

\[B(z) = Q_0(z) + zQ_1(z)B(z) \]

\[\implies b_n = [z^n]B(z) \sim c_j \cdot z_0^{-n}, \quad n \equiv j \mod m \]

for \(j \in \{0, 1, \ldots, m - 1\} \) and some \(m \geq 1. \)

\(z_0 > 0 \) is given by \(z_0Q_1(z_0) = 1. \)

Remark. Proof is simple analysis of \(B(z) = Q_0(z)/(1 - zQ_1(z)). \)
One Functional Equation

One positive non-linear equation

Theorem 2. [Bender, Canfield, Meir+Moon, …] \textbf{Squareroot sing.:}

\[Q(z, y) \ldots \text{polynomial with non-negative coefficients} \text{ and } Q(0, 0) = 0 \text{ and } Q_{yy} \neq 0. \]

\[B(z) = Q(z, B(z)) \]

\[\implies b_n = [z^n]B(z) \sim c \cdot n^{-3/2}z_0^{-n}, \quad n \equiv j_0 \mod m, \]

and \[b_n = 0 \] for \(n \not\equiv j_0 \mod m, \) where \(m \geq 1. \)

\(z_0 > 0 \) satisfies \(b_0 = Q(z_0, b_0) \) and \(1 = Q_y(z_0, b_0) \) for some \(b_0 > 0. \)

\textbf{Remark.} Proof is based on the analysis of the singular point \((z_0, b_0)\) of the curve \(b = Q(z, b) \) that leads to the squareroot singularity \(B(z) = g(z) - h(z)\sqrt{1 - z/z_0}. \)
One Functional Equation

One positive linear catalytic equation

Theorem 3. [D. + Noy + Yu] Squareroot singularity:

\(Q_0(z, u), Q_1(z, u), Q_2(z, u) \ldots \) polynomials with non-negative coefficients such that \(Q_1, u \neq 0 \) and \(u \not| Q_2 \).

\[
M(z, u) = Q_0(z, u) + z M(z, u) Q_1(z, u) + z \frac{M(z, u) - M(z, 0)}{u} Q_2(z, u)
\]

\[\Rightarrow \quad M_n = [z^n] M(z, 0) \sim c \cdot n^{-3/2} z_0^{-n}, \quad n \equiv j_0 \text{ mod } m,\]

(for some constants \(c, z_0 > 0 \)) and \(M_n = 0 \) for \(n \not\equiv j_0 \text{ mod } m \), where \(m \geq 1 \).
One Functional Equation

One positive non-linear catalytic equation

Theorem 4. [D.+Noy+Yu] 3/2-Singularity:

\[Q(y_0, y_1, z, u) \] ... polynomial with non-negative coefficients that is non-linear in \(y_0, y_1 \) (and depends on \(y_0, y_1 \)) and \(Q_0(u) \) a non-negative polynomial in \(u \).

\[
M(z, u) = Q_0(u) + zQ\left(M(z, u), \frac{M(z, u) - M(z, 0)}{u}, z, u\right)
\]

\[
\implies M_n = [z^n] M(z, 0) \sim c \cdot n^{-5/2} z_0^{-n}, \quad n \equiv j_0 \mod m,
\]

(for some constants \(c, z_0 > 0 \)) and \(M_n = 0 \) for \(n \not\equiv j_0 \mod m \), where \(m \geq 1 \).
System of Functional Equations

Q_1, \ldots, Q_d ... polynomials with non-negative coefficients.
y_1 = y_1(z), \ldots, y_d = y_d(z)$... solution of the system:

\[
y_1 = Q_1(z, y_1, \ldots, y_d), \\
\vdots \\
y_d = Q_d(z, y_1, \ldots, y_d).
\]

Recall that if $d = 1$ then the single equation $y = Q(z, y)$ has either a polar singularity (if it is linear) or a squareroot singularity (if it is non-linear).

Question. What happens for $d > 1$??
Systems of functional equations

Strongly connected dependency graph

Theorem 5 [D., Lalley, Woods]

\[y = Q(z, y) \] \[\quad \text{non-negative} \] (and well defined) polynomial system of \(d \geq 1 \) equations such that the dependency graph is strongly connected.

Then the situation is the same as for a single equation.

It the system is linear then we have a common polar singularity and

\[[z^n] y_1(z) \sim c_j \cdot z_0^{-n}, \quad n \equiv j \mod m \]

whereas if it is non-linear then we have a square root singularity and

\[[z^n] y_1(z) \sim c \cdot n^{-3/2} z_0^{-n}, \quad n \equiv j_0 \mod m. \]
Systems of functional equations

General dependency graph

Theorem 6 [Banderier+D.]

\[y = Q(z, y) \quad \text{... non-negative} \quad \text{(and well defined) polynomial system of equations.} \]

\[\implies [z^n] y_1(z) \sim c_j n^{\alpha_j} \rho_j^{-n} \quad (n \equiv j \mod m), \]

for \(j \in \{0, 1, \ldots, m - 1\} \) for some \(m \geq 1 \), where

\[\alpha_j \in \{-2^{-k} - 1 : k \geq 1\} \cup \{m2^{-k} - 1 : m \geq 1, k \geq 0\}. \]
Theorem 3: Kernel Method

\[M(z, u) = Q_0(z, u) + zM(z, u)Q_1(z, u) + z\frac{M(z, u) - M(z, 0)}{u}Q_2(z, u) \]

rewrites to

\[M(z, u) \left(1 - zQ_1(z, u) - \frac{z}{u}Q_2(z, u) \right) = Q_0(z, u) - \frac{z}{u}M(z, 0)Q_2(z, u). \]

If \(u = u(z) \) satisfies the kernel equation

\[1 - zQ_1(z, u(z)) - \frac{z}{u(z)}Q_2(z, u(z)) = 0 \]

Then the right hand side is also zero and we obtain

\[M(z, 0) = \frac{Q_0(z, u(z))}{1 - zQ_1(z, u(z))} \]
Theorem 3: Kernel Method

The kernel equation

\[1 - zQ_1(z, u(z)) - \frac{z}{u(z)}Q_2(z, u(z)) = 0 \]

rewrites to

\[u(z) = zQ_2(z, u(z)) + zu(z)Q_1(z, u(z)) \]

By Theorem 2 we, thus, obtain a square root singularity for \(u(z) \) which implies a square root singularity for

\[M(z, 0) = \frac{Q_0(z, u(z))}{1 - zQ_1(z, u(z))}. \]
Theorem 4: Bousquet-Melou–Jehanne Method

Let $P(x_0, x_1, z, u)$ be an analytic function such that $(y(z) = M(z, 0))$

$$P(M(z, u), y(z), z, u) = 0.$$

By taking the derivative with respect to u we get

$$P_{x_0}(M(z, u), y(z), z, u) M_u(z, u) + P_u(M(z, u), y(z), z, u) = 0.$$

Key observation:

$$\exists u(z) : P_{x_0}(M(z, u(z)), y(z), z, u(z)) = 0 \implies P_u(M(z, u(z)), y(z), z, u(z)) = 0$$

Thus, with $f(z) = M(z, u(z))$ we get the system for $f(z), y(z), u(z)$

$$P(f(z), y(z), z, u(z)) = 0$$

$$P_{x_0}(f(z), y(z), z, u(z)) = 0$$

$$P_u(f(z), y(z), z, u(z)) = 0.$$
Theorem 4: Bousquet-Melou–Jehanne Method

Set (as given in our case)

\[P(x_0, x_1, z, u) = Q_0(u) + zQ(x_0, (x_0 - x_1)/u, z, u) - x_0. \]

Then the system \(P = 0, \ P_{x_0} = 0, \ P_u = 0 \) rewrites to

\[
\begin{align*}
 f(z) &= Q_0(u(z)) + zQ(f(z), w(z), z, u(z)), \\
 u(z) &= uz(z)Qy_0(f(z), w(z), z, u(z)) + zQy_1(f(z), w(z), z, u(z)), \\
 w(z) &= Q_{0,u}(u(z)) + zQv(f(z), w(z), z, u(z)) + zw(z)Qy_0(f(z), w(z), z, u(z)),
\end{align*}
\]

where

\[w(z) = \frac{f(z) - y(z)}{u(z)}. \]

This is a positive strongly connected polynomial system.
Thus, by Theorem 5 the solution functions $f(z), u(z), w(z)$ have a \textbf{squareroot singularity} at some common singularity z_0:

\[
\begin{align*}
 f(z) &= g_1(z) - h_1(z) \sqrt{1 - \frac{z}{z_0}}, \\
 u(z) &= g_2(z) - h_2(z) \sqrt{1 - \frac{z}{z_0}}, \\
 w(z) &= g_3(z) - h_3(z) \sqrt{1 - \frac{z}{z_0}}.
\end{align*}
\]

\[\implies y(z) = f(z) - u(z)w(z) \text{ has also a squareroot singularity at } z_0\]

\[
y(z) = g_4(z) - h_4(z) \sqrt{1 - \frac{z}{z_0}} = a_0 + a_1 \sqrt{1 - \frac{z}{z_0}} + a_2 \left(1 - \frac{z}{z_0}\right) + a_3 \left(1 - \frac{z}{z_0}\right)^{3/2} + \cdots
\]

but maybe there are \textbf{cancellations of coefficients} a_j (and actually this happens!!!): we have $a_1 = 0$ and $a_3 > 0$.
Bousquet-Melou–Jehanne Method – General Case

1st difference

\[M(z, u) = Q_0(u) + zQ \left(M(z, u), \frac{M(z, u) - M(z, 0)}{u}, z, u \right) \]

Higher differences

\[M(z, u) = Q_0(u) + zQ \left(M(z, u), \Delta^{(1)}(z, u), \ldots, \Delta^{(d)}(z, u), z, u \right) \]

where

\[\Delta^{(j)}(z, u) = \frac{M(z, u) - M(z, 0) - M_u(z, 0)u - \cdots - M_{uj-1}(z, 0)u^{j-1}}{u^j} \]

Theorem (Bousquet-Melou–Jehanne). Such an equation has always an algebraic solution.
Kernel Method for the Linear Case ($d = 2$)

\[M(z, u) = Q_0(z, u) + zM(z, u)Q_1(z, u) + z\frac{M(z, u) - M(z, 0)}{u}Q_2(z, u) \]
\[+ z\frac{M(z, u) - M(z, 0) - Mu(z, 0)u}{u^2}Q_3(z, u) \]

rewrites to

\[M(z, u) \left(1 - zQ_1(z, u) - zQ_2(z, u) - z\frac{z}{u}Q_3(z, u) \right) \]
\[= Q_0(z, u) - M(z, 0) \left(\frac{z}{u}Q_2(z, u) + \frac{z}{u^2}Q_3(z, u) \right) - Mu(z, 0)\frac{z}{u}Q_3(z, u) \]

Here two functions $u = u_1(z)$ and $u = u_2(z)$ satisfy the kernel equation

\[1 - zQ_1(z, u(z)) - z\frac{z}{u(z)}Q_2(z, u(z)) - z\frac{z}{u(z)^2}Q_3(z, u(z)) = 0 \]

The right hand side is then zero for $u = u_1(z)$ and $u = u_2(z)$ which is a linear system for $M(z, 0)$ and $Mu(z, 0)$.
Kernel Method for the Linear Case ($d = 2$)

The kernel equation for $u = u_1(z)$ and $u = u_2(z)$

$$1 - zQ_1(z, u(z)) - \frac{z}{u(z)}Q_2(z, u_1, 2(z)) - \frac{z}{u(z)^2}Q_3(z, u(z)) = 0$$

rewrites to

$$u(z)^2 = u(z)^2 zQ_1(z, u(z)) + z u(z) Q_2(z, u_1, 2(z)) + z Q_3(z, u(z))$$

or to

$$u_1(z) = \sqrt{zu_1(z)^2 Q_1(z, u_1(z)) + z u_1(z) Q_2(z, u_1(z)) + Q_3(z, u_1(z))}$$

$$u_2(z) = -\sqrt{zu_2(z)^2 Q_1(z, u_2(z)) + z u_2(z) Q_2(z, u_2(z)) + Q_3(z, u_2(z))}$$

We lose the property that $u_1(z)$ and $u_2(z)$ have just non-negative coefficients and it is not clear that there is a squareroot singularity.
Bousquet-Melou–Jehanne Method for the Non-linear Case

Let $P(x_0, x_1, x_2, z, u)$ be an analytic function such that

$$P(M(z, u), y_0(z), y_1(z), z, u) = 0.$$

By taking the derivative with respect to u we get

$$P_{x_0}(M(z, u), y_0(z), y_1(z), z, u) \cdot M_u(z, u) + P_u(M(z, u), y_0(z), y_1(z), z, u) = 0.$$

Key observation:

$$P_{x_0}(M(z, u(z)), y_0(z), y_1(z), z, u(z)) = 0 \implies P_u(M(z, u(z)), y_0(z), y_1(z), z, u(z)) = 0.$$

We need **two functions** $u_1(z)$ and $u_2(z)$. Setting $f_j(z) = M(z, u_j(z))$ we get the system for $f_1(z), f_2(z), y_0(z), y_1(z), u_1(z), u_2(z)$

\[P(f_1(z), y_0(z), y_1(z), z, u_1(z)) = 0, \quad P(f_2(z), y_0(z), y_1(z), z, u_2(z)) = 0 \]
\[P_{x_0}(f_1(z), y_0(z), y_1(z), z, u_1(z)) = 0, \quad P_{x_0}(f_2(z), y_0(z), y_1(z), z, u_2(z)) = 0 \]
\[P_u(f_1(z), y_0(z), y_1(z), z, u_1(z)) = 0, \quad P_u(f_2(z), y_0(z), y_1(z), z, u_2(z)) = 0 \]
Bousquet-Melou–Jehanne Method for the Nonlinear Case

Set (as given in our case)

\[P(x_0, x_1, x_2, z, u) = Q_0(u) + zQ(x_0, (x_0 - x_1)/u, (x_0 - x_1 - ux_2)/u^2, z, u) - x_0. \]

Then the above system rewrites to

\[
\begin{align*}
 f_{1,2}(z) &= Q_0(u_{1,2}(z)) + + zQ(f_{1,2}(z), \frac{f_{1,2}(z) - M(z, 0)}{u_{1,2}(z)}, \frac{f_{1,2}(z) - M(z, 0) - u_{1,2}(z)M_u(z, 0)}{u_{1,2}(z)^2}, z, u_{1,2}(z)), \\
 u_{1,2}(z)^2 &= zu_{1,2}(z)^2Q_{y_0}(\cdots) + zu_{1,2}(z)Q_{y_1}(\cdots) + zQ_{y_2}(\cdots), \\
 Q_{0,u}(u_{1,2}(z)) &= \frac{f_{1,2}(z) - M(z, 0)}{u_{1,2}(z)}(1 - zQ_{y_0}(\cdots) \\
 &+ z\frac{f_{1,2}(z) - M(z, 0) - u_{1,2}(z)M_u(z, 0)}{u_{1,2}(z)^3}Q_{y_2}(\cdots)
\end{align*}
\]

This cannot be rewritten into a positive strongly connected polynomial system.
Second Differences: The Linear Case

Theorem 3’. [D.+Hainzl] Squareroot singularity:

\[Q_0(z, u), Q_1(z, u), Q_2(z, u), Q_3(z, u) \ldots \] polynomials with non-negative coefficients (+ some technical conditions).

\[
M(z, u) = Q_0(z, u) + z M(z, u) Q_1(z, u) + z^2 \frac{M(z, u) - M(z, 0)}{u} Q_2(z, u)
+ z^3 \frac{M(z, u) - M(z, 0) - M_u(z, u) u}{u^2} Q_3(z, u)
\]

\[
\implies M_n = [z^n] M(z, 0) \sim c \cdot n^{-3/2} z_0^{-n}, \quad n \equiv j_0 \mod m,
\]

(for some constants \(c, z_0 > 0 \)) and \(M_n = 0 \) for \(n \not\equiv j_0 \mod m \), where \(m \geq 1 \).
Second Differences: The Non-linear Case

Theorem 4’. [D.+Hainzl] 3/2-Singularity:

\(Q(y_0, y_1, y_2, z, u) \) \ldots polynomial with non-negative coefficients that is \textbf{non-linear} in \(y_0, y_1, y_2 \) (+ some technical conditions).

\[M(z, u) = Q_0(u) + zQ \left(M(z, u), \frac{M(z, u) - M(z, 0)}{u}, \frac{M(z, u) - M(z, 0) - M_u(z, 0)u}{u^2}, z, u \right) \]

\[\implies M_n = [z^n] M(z, 0) \sim c \cdot n^{-5/2} z_0^{-n}, \quad n \equiv j_0 \mod m, \]

(for some constants \(c, z_0 > 0 \)) and \(M_n = 0 \) for \(n \neq j_0 \mod m \), where \(m \geq 1 \).
Applications

One-dimensional non-negative lattice path with steps ± 1 and ± 2

$E_0(z) = 1 + z(E_1(z) + E_2(z)),$

$E_1(z) = z(E_0(z) + E_1(z) + E_2(z)),$

$E_k(z) = z(E_{k-2}(z) + E_{k-1}(z) + E_{k+1}(z) + E_{k+2}(z)) \quad (k \geq 2),$

which gives for $E(z, u) = \sum_{k \geq 0} E_k(z) u^k$

$$E(z, u) = 1 + z(u + u^2)E(z, u) + z\frac{E(z, u) - E(z, 0)}{u} + z\frac{E(z, u) - E(z, 0) - uE_v(u, 0)}{u^2}.$$
Applications

3-Constellations in Eulerian Maps

\[M(z, u) = 1 + zuM(z, u)^3 + zu(2M(z, u) + M(z, 1)) \frac{M(z, u) - M(z, 1)}{u - 1} \]
\[+ zu \frac{M(z, u) - M(z, 1) - M_u(z, 1)(u - 1)}{(u - 1)^2} \]

Remark. There are many equations of this type in the context of map enumeration (even more generally with higher differences)
Higher Differences

Conjecture

Consider a catalytic equation with higher differences:

\[M(z, u) = Q_0(u) + zQ\left(M(z, u), \Delta^{(1)}(z, u), \ldots, \Delta^{(d)}(z, u), z, u\right) \]

where \(Q_0 \) and \(Q \) have non-negative coefficients (+ some technical conditions)

- If \(Q \) is linear in \(y_0, y_1, \ldots, y_d \) then \(M(z, 0) \) has a squareroot singularity

- If \(Q \) is non-linear in \(y_0, y_1, \ldots, y_d \) then \(M(z, 0) \) has a \(3/2 \)-singularity
Theorem 3’: Proof Ideas for the Linear Case

Set

\[R(z, u) = zu^2Q_1(z, u) + zuQ_2(z, u) + Q_3(z, u) \]

Then the kernel equation for \(u = u_{1,2}(z) \) reads as

\[u^2 = R(z, u) \]

Ansatz

\[u_1(z) = g(z) + \sqrt{h(z)} \quad u_2(z) = g(z) - \sqrt{h(z)} \]
Proof Ideas for the Linear Case

\[u^2 = (g \pm \sqrt{h})^2 = g^2 + h \pm \sqrt{h} \cdot 2g \]

\[R(z, g \pm \sqrt{h}) = \sum_k R_k(z)(g \pm \sqrt{h})^k \]

\[= \sum_k R_k(z) \sum_{j=0}^{k} \binom{k}{j} g^{k-j}(\pm 1)^j h^{j/2} \]

\[= \sum_{k, \ell} R_k(z) \binom{k}{2\ell} g^{k-2\ell} h^\ell \pm \sqrt{h} \sum_{k, \ell} R_k(z) \binom{k}{2\ell+1} g^{k-2\ell-1} h^\ell \]

\[= R^+(z, g, h) \pm \sqrt{h} \cdot R^-(z, g, h) \]

\[u^2 = R(z, u) \implies g^2 + h = R^+(z, g, h), \quad 2g = R^-(z, g, h) \]
Proof Ideas for the Linear Case

The kernel equation

\[u^2 = R(z, u) \]

rewrites to

\[g^2 + h = R^+(z, g, h), \quad 2g = R^-(z, g, h) \]

or to

\[h = R^+(z, g, h) - g^2, \quad g = \frac{1}{2}R^-(z, g, h) \]

This is not a positive system!
Proof Ideas for the Linear Case

Lemma

The functions $g(z)$, $h(z)$ have the following properties:

- they have non-negative coefficients
- they have a common *squareroot singularity* z_0
- the function $u_2(z) = g(z) - \sqrt{h(z)}$ is regular at z_0

Corollary. The functions $M(z, 0)$, $M_u(z, 0)$ have a *squareroot singularity* at z_0, too.
Additional Parameters

Number of vertices in planar maps

\[M(z, x, u) \] generating function of rooted planar maps, where the variable \(z \) corresponds to the number of edges, \(x \) to the number of vertices and \(u \) to the root face valency.

\[
M(z, x, v) = x + zu^2M(z, x, u)^2 + zu \frac{M(z, x, 1) - uM(z, x, u)}{1 - u}
\]

\(X_n \) number of vertices in a random planar map with \(n \) edges

Central Limit Theorem

\(X_n \) satisfies a central limit theorem with \(\mathbb{E}[X_n] = \frac{1}{2}n + O(1) \) and \(\text{Var}[X_n] = \frac{5}{32}n + O(1) \).
Additional Parameters

Theorem 7

Suppose that $M(z, x, u)$ and $M_1(z, x)$ are the solutions of the catalytic equation

$$P(M(z, x, u), M_1(z, x), z, x, u) = 0,$$

where the function $P(x_0, x_1, z, x, u)$ is analytic and $M_1(z, 1)$ has a singularity at $z = z_0$ of the form

$$M_1(z, 1) = y_0 + y_2 \left(1 - \frac{z}{z_0}\right) + y_3 \left(1 - \frac{z}{z_0}\right)^{3/2} + \cdots,$$

with $y_3 \neq 0$ (+ some technical conditions)

Then $M_1(z, x)$ has a local singular representation of the form

$$M_1(z, x) = a_0(x) + a_2(x) \left(1 - \frac{z}{\rho(x)}\right) + a_3(x) \left(1 - \frac{z}{\rho(x)}\right)^{3/2} + \cdots$$

Corollary. Hwang’s Quasi-Power-Theorem leads then to a Central Limit Theorem
Additional Parameters

Vertices of degree k in planar maps

$M(z, x, u) \ldots$ generating function for rooted planar maps, where z corresponds to the number of edges, x to the number of non-root faces of degree k, and u to the root-face degree

$$M(z, x, u) \left(1 - z(x - 1)u^{-k+2} \right)$$

$$= 1 + zu^2 M(z, x, u) + zu \frac{uM(z, x, u) - M(z, x, 1)}{u - 1}$$

$$- z(x - 1)u^{-k+2} G(z, x, M(z, x, 1), u),$$

where $G(z, x, y, u)$ is a polynomial of degree $k - 2$ in u with coefficients that are analytic functions in (z, x, y) for $|z| \leq 1/10$, $|x - 1| \leq 2^{1-k}$, and $|y| \leq 2$.
Additional Parameters

Pure k-gons in planar maps

We say that a face is a pure k-gon ($k \geq 2$) if it is incident exactly to k different edges and k different vertices.

$P(z, x, u)$... generating function for rooted planar maps, where z corresponds to the number of edges, x to the number of non-root faces that are pure k-gons, and u to the root-face degree.

$$P(z, x, u) = 1 + zu^2 P(z, x, u) + z u \frac{uP(z, x, u) - P(z, x, 1)}{u - 1}$$

$$- z(x - 1)u^{-k+2} \tilde{G}(z, x, P(z, x, 1), u),$$

where $\tilde{G}(z, x, y, u)$ is a polynomial of degree $k - 2$ in u with coefficients that are analytic functions in (z, x, y) for $|z| \leq 1/10$, $|x - 1| \leq 2^{1-k}$, and $|y| \leq 2$.
Additional Parameters

Vertices of degree \(k \) in simple planar maps

\(S(z, x, u) \) ... generating function for simple rooted planar maps, where \(z \) corresponds to the number of edges, \(x \) to the number of non-root vertices of degree \(k \), and \(u \) to the root-face degree.

\[
S(z, x, u) = 1 + zu^2S(z, x, u) + zu \frac{uS(z, x, u) - S(z, x, 1)}{u - 1}
- zuS(z, x, u)S(z, x, 1) - (S(z, x, u) - 1)(S(z, x, 1) - 1)
+ (x - 1) \left(zu^{-k+2}S(z, x, u)G_1(z, x, S(z, x, 1), u)
- zuS(z, x, u)G_2(z, x, S(z, x, 1))
- (S(z, x, u) - 1)G_3(z, x, S(z, x, 1)) \right),
\]

where \(G_1(z, x, y, u) \) is a polynomial of degree \(k - 2 \) in \(u \) with coefficients that are analytic functions in \((z, x, y)\) for \(|z| \leq 2/25, |x - 1| \leq 2^{-k-5} \), and \(|y - 1| \leq 2/5 \). Similarly properties hold for the functions \(G_2(z, x, y) \) and \(G_3(z, x, y) \).
Thank You!