On the Polynomial Part of a
 Restricted Partition Function

Karl Dilcher
Dalhousie University, Halifax, Nova Scotia, Canada

Séminaire de l'équipe CALIN, 21 novembre 2017

Joint work with

Christophe Vignat

Joint work with

Christophe Vignat

Le 21 novembre 2017 à 14h45 en B107, Christophe Vignat nous parlera de : Séries génératrices pour la fonction "somme des chiffres en base b"

Résumé : La fonction $s_{b}(n)$ est égale à la somme des chiffres qui composent la représentation de l'entier n en base b. De nombreuses séries associées à cette séquence ont été calculées, par exemple dans J.P. Allouche, J. Shallit, Sums of digits and the Hurwitz Zeta function, Analytic Number Theory pp. 19-30, LNM 1434. On présentera de nouvelles séries génératrices associées à la suite $s_{b}(n)$, ainsi que certains produits infinis. L'obtention de ces résultats utilise des outils rencontrés dans le domaine du calcul symbolique et de la théorie des probabilités. Ce travail a été realisé en collaboration avec T. Wakhare.

An interesting topic in the theory of partitions is that of restricted partitions:

Given a vector

$$
\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right)
$$

of positive integers, let $W(s, \mathbf{d})$ be the number of partitions of the integer s with parts in \mathbf{d},

An interesting topic in the theory of partitions is that of restricted partitions:

Given a vector

$$
\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right)
$$

of positive integers, let $W(s, \mathbf{d})$ be the number of partitions of the integer s with parts in \mathbf{d},
i.e., $W(s, \mathbf{d})$ is the number of solutions of

$$
\begin{equation*}
d_{1} x_{1}+d_{2} x_{2}+\cdots+d_{m} x_{m}=s \tag{1}
\end{equation*}
$$

in nonnegative integers x_{1}, \ldots, x_{m}.

Example: Let $\mathbf{d}=(1,2,3)$ and $s=6$.

Example: Let $\mathbf{d}=(1,2,3)$ and $s=6$.
Then the restricted partitions are

$$
\begin{gathered}
3+3=3+2+1=3+1+1=2+2+2=2+2+1+1 \\
=2+1+1+1+1=1+1+1+1+1+1 .
\end{gathered}
$$

Example: Let $\mathbf{d}=(1,2,3)$ and $s=6$.
Then the restricted partitions are

$$
\begin{gathered}
3+3=3+2+1=3+1+1=2+2+2=2+2+1+1 \\
=2+1+1+1+1=1+1+1+1+1+1 .
\end{gathered}
$$

So $W(6,(1,2,3))=7$.

Example: Let d=(1,2,3) and $s=6$.
Then the restricted partitions are

$$
\begin{gathered}
3+3=3+2+1=3+1+1=2+2+2=2+2+1+1 \\
=2+1+1+1+1=1+1+1+1+1+1 .
\end{gathered}
$$

So $W(6,(1,2,3))=7$.
Remark: When $\mathbf{d}=(1,2, \ldots, m)$, one usually writes

$$
W(s, \mathbf{d})=p(s, m) .
$$

Euler introduced generating functions in the study of questions of this type.

Euler introduced generating functions in the study of questions of this type.

In our example: Consider

$\frac{1}{1-t^{1}} \times \frac{1}{1-t^{2}} \times \frac{1}{1-t^{3}}$

In our example: Consider

$$
\begin{aligned}
\frac{1}{1-t^{1}} & \times \frac{1}{1-t^{2}} \times \frac{1}{1-t^{3}} \\
= & \left(1+t^{1}+t^{1+1}+t^{1+1+1}+t^{1+1+1+1}+\ldots\right) \\
& \times\left(1+t^{2}+t^{2+2}+t^{2+2+2}+t^{2+2+2+2}+\ldots\right) \\
& \times\left(1+t^{3}+t^{3+3}+t^{3+3+3}+t^{3+3+3+3}+\ldots\right)
\end{aligned}
$$

In our example: Consider

$$
\begin{aligned}
\frac{1}{1-t^{1}} & \times \frac{1}{1-t^{2}} \times \frac{1}{1-t^{3}} \\
= & \left(1+t^{1}+t^{1+1}+t^{1+1+1}+t^{1+1+1+1}+\ldots\right) \\
& \times\left(1+t^{2}+t^{2+2}+t^{2+2+2}+t^{2+2+2+2}+\ldots\right) \\
& \times\left(1+t^{3}+t^{3+3}+t^{3+3+3}+t^{3+3+3+3}+\ldots\right) \\
& =1+t^{1}+\left(t^{2}+t^{1+1}\right)+\left(t^{3}+t^{2+1}+t^{1+1+1}\right)+\ldots
\end{aligned}
$$

In our example: Consider

$$
\begin{aligned}
\frac{1}{1-t^{1}} & \times \frac{1}{1-t^{2}} \times \frac{1}{1-t^{3}} \\
= & \left(1+t^{1}+t^{1+1}+t^{1+1+1}+t^{1+1+1+1}+\ldots\right) \\
& \times\left(1+t^{2}+t^{2+2}+t^{2+2+2}+t^{2+2+2+2}+\ldots\right) \\
& \times\left(1+t^{3}+t^{3+3}+t^{3+3+3}+t^{3+3+3+3}+\ldots\right) \\
= & 1+t^{1}+\left(t^{2}+t^{1+1}\right)+\left(t^{3}+t^{2+1}+t^{1+1+1}\right)+\ldots \\
= & \sum_{s=0}^{\infty} W(s,(1,2,3)) t^{s}
\end{aligned}
$$

In our example: Consider

$$
\begin{aligned}
\frac{1}{1-t^{1}} & \times \frac{1}{1-t^{2}} \times \frac{1}{1-t^{3}} \\
= & \left(1+t^{1}+t^{1+1}+t^{1+1+1}+t^{1+1+1+1}+\ldots\right) \\
& \times\left(1+t^{2}+t^{2+2}+t^{2+2+2}+t^{2+2+2+2}+\ldots\right) \\
& \times\left(1+t^{3}+t^{3+3}+t^{3+3+3}+t^{3+3+3+3}+\ldots\right) \\
= & 1+t^{1}+\left(t^{2}+t^{1+1}\right)+\left(t^{3}+t^{2+1}+t^{1+1+1}\right)+\ldots \\
= & \sum_{s=0}^{\infty} W(s,(1,2,3)) t^{s}
\end{aligned}
$$

In general:

$$
F(t, \mathbf{d}):=\prod_{j=1}^{m} \frac{1}{1-t^{d_{j}}}=\sum_{s=0}^{\infty} W(s, \mathbf{d}) t^{s} .
$$

The next major advance was made by Sylvester (1857, 1882):

The next major advance was made by Sylvester (1857, 1882):

J. J. Sylvester (1814-1897)

He wrote $W(s, \mathbf{d})$ as a sum of "waves",

$$
W(s, \mathbf{d})=\sum_{j \geq 1} W_{j}(s, \mathbf{d})
$$

the sum taken over all distinct divisors j of the components of \mathbf{d}.

He wrote $W(s, \mathbf{d})$ as a sum of "waves",

$$
W(s, \mathbf{d})=\sum_{j \geq 1} W_{j}(s, \mathbf{d})
$$

the sum taken over all distinct divisors j of the components of \mathbf{d}.
Only $W_{1}(s, \mathbf{d})$ is a polynomial, called the polynomial part of the restricted partition function $W(s, \mathbf{d})$.

He wrote $W(s, \mathbf{d})$ as a sum of "waves",

$$
W(s, \mathbf{d})=\sum_{j \geq 1} W_{j}(s, \mathbf{d})
$$

the sum taken over all distinct divisors j of the components of \mathbf{d}.
Only $W_{1}(s, \mathbf{d})$ is a polynomial, called the polynomial part of the restricted partition function $W(s, \mathbf{d})$.

The $W_{j}(s, \mathbf{d})$ for $j \geq 1$ are quasipolynomials, i.e., polynomials separately for s in each residue class modulo j.

He wrote $W(s, \mathbf{d})$ as a sum of "waves",

$$
W(s, \mathbf{d})=\sum_{j \geq 1} W_{j}(s, \mathbf{d})
$$

the sum taken over all distinct divisors j of the components of \mathbf{d}.
Only $W_{1}(s, \mathbf{d})$ is a polynomial, called the polynomial part of the restricted partition function $W(s, \mathbf{d})$.

The $W_{j}(s, \mathbf{d})$ for $j \geq 1$ are quasipolynomials, i.e., polynomials separately for s in each residue class modulo j.

Purpose of this talk:

- To give an elementary expression for $W_{1}(s, \mathbf{d})$.

He wrote $W(s, \mathbf{d})$ as a sum of "waves",

$$
W(s, \mathbf{d})=\sum_{j \geq 1} W_{j}(s, \mathbf{d})
$$

the sum taken over all distinct divisors j of the components of \mathbf{d}.
Only $W_{1}(s, \mathbf{d})$ is a polynomial, called the polynomial part of the restricted partition function $W(s, \mathbf{d})$.

The $W_{j}(s, \mathbf{d})$ for $j \geq 1$ are quasipolynomials, i.e., polynomials separately for s in each residue class modulo j.

Purpose of this talk:

- To give an elementary expression for $W_{1}(s, \mathbf{d})$.
- In the process, introduce a symbolic notation for Bernoulli numbers and polynomials.

2. The Main Result

Sylvester (1882) showed that for each such $j, W_{j}(s, d)$ is the residue of

$$
F_{j}(s, t):=\sum_{\substack{0 \leq \nu<j \\ \operatorname{gcd}(\nu, j)=1}} \frac{\rho_{j}^{-\nu s} e^{s t}}{\left(1-\rho_{j}^{\nu d_{1}} e^{-d_{1} t}\right) \ldots\left(1-\rho_{j}^{\nu d_{m}} e^{-d_{m} t}\right)}
$$

where ρ_{j} is a primitive j-th root of unity, e.g., $\rho_{j}=e^{2 \pi i / j}$.

2. The Main Result

Sylvester (1882) showed that for each such $j, W_{j}(s, d)$ is the residue of

$$
F_{j}(s, t):=\sum_{\substack{0 \leq \nu<j \\ \operatorname{gcd}(\nu, j)=1}} \frac{\rho_{j}^{-\nu s} e^{s t}}{\left(1-\rho_{j}^{\nu d_{1}} e^{-d_{1} t}\right) \ldots\left(1-\rho_{j}^{\nu d_{m}} e^{-d_{m} t}\right)}
$$

where ρ_{j} is a primitive j-th root of unity, e.g., $\rho_{j}=e^{2 \pi i / j}$.
In other words: Sum is taken over all j-th roots of unity ρ_{j}^{ν}.

Restricted partitions were also studied by A. Cayley (1856/58), and Sylvester waves by J. W. L. Glaisher (1908, 1910).

Restricted partitions were also studied by A. Cayley (1856/58), and Sylvester waves by J. W. L. Glaisher (1908, 1910).

A. Cayley (1821-1895)

J. W. L. Glaisher
(1848-1928)

More recently, restricted partitions and Sylvester waves were investigated in detail by

- M. Beck, I. M. Gessel, and T. Komatsu (2001),
- L. G. Fel and B. Y. Rubinstein (2002, 2006),
- B. Y. Rubinstein (2008),
- J. S. Dowker (preprints, 2011, 2013),
- A. V. Sills and D. Zeilberger (2012),
- C. O'Sullivan (2015),
- M. Cimpoeas and F. Nicolae (2017).

Consider Sylvester's formula

$$
F_{j}(s, t):=\sum_{\substack{0 \leq \nu<j \\ \operatorname{gcd}(\nu, j)=1}} \frac{\rho_{j}^{-\nu s} e^{s t}}{\left(1-\rho_{j}^{\nu d_{1}} e^{-d_{1} t}\right) \ldots\left(1-\rho_{j}^{\nu d_{m}} e^{-d_{m} t}\right)}
$$

for $j=1$:

Consider Sylvester's formula

$$
F_{j}(s, t):=\sum_{\substack{0 \leq \nu<j \\ \operatorname{gcd}(\nu, j)=1}} \frac{\rho_{j}^{-\nu s} e^{s t}}{\left(1-\rho_{j}^{\nu d_{1}} e^{-d_{1} t}\right) \ldots\left(1-\rho_{j}^{\nu d_{m}} e^{-d_{m} t}\right)}
$$

for $j=1$: Very close to the generating function of a higher-order Bernoulli polynomial.

Consider Sylvester's formula

$$
F_{j}(s, t):=\sum_{\substack{0 \leq \nu<j \\ \operatorname{gcd}(\nu, j)=1}} \frac{\rho_{j}^{-\nu s} e^{s t}}{\left(1-\rho_{j}^{\nu d_{1}} e^{-d_{1} t}\right) \ldots\left(1-\rho_{j}^{\nu d_{m}} e^{-d_{m} t}\right)}
$$

for $j=1$: Very close to the generating function of a higher-order Bernoulli polynomial.

This fact was used by Rubinstein and Fel (2006) to write $W_{1}(s, d)$ in a very compact form in terms of a single higher-order Bernoulli polynomial. (See later).

Consider Sylvester's formula

$$
F_{j}(s, t):=\sum_{\substack{0 \leq \nu<j \\ \operatorname{gcd}(\nu, j)=1}} \frac{\rho_{j}^{-\nu s} e^{s t}}{\left(1-\rho_{j}^{\nu d_{1}} e^{-d_{1} t}\right) \ldots\left(1-\rho_{j}^{\nu d_{m}} e^{-d_{m} t}\right)}
$$

for $j=1$: Very close to the generating function of a higher-order Bernoulli polynomial.

This fact was used by Rubinstein and Fel (2006) to write $W_{1}(s, d)$ in a very compact form in terms of a single higher-order Bernoulli polynomial. (See later).

A version of this result, given in two different forms, was earlier obtained by Beck, Gessel and Komatsu (2001).

Similarly, for $j=2$ we have $\rho_{j}=-1$, and

$$
\sum_{\substack{0 \leq \nu<j \\ \operatorname{gcd}(\nu, j)=1}} \frac{\rho_{j}^{-\nu s} e^{s t}}{\left(1-\rho_{j}^{\nu d_{1}} e^{-d_{1} t}\right) \ldots\left(1-\rho_{j}^{\nu d_{m}} e^{-d_{m} t}\right)}
$$

leads to a convolution sum of

- higher-order Bernoulli polynomials and
- higher-order Euler polynomials.
(Rubinstein and Fel, 2006).

Similarly, for $j=2$ we have $\rho_{j}=-1$, and

$$
\sum_{\substack{0 \leq \nu<j \\ \operatorname{gcd}(\nu, j)=1}} \frac{\rho_{j}^{-\nu s} e^{s t}}{\left(1-\rho_{j}^{\nu d_{1}} e^{-d_{1} t}\right) \ldots\left(1-\rho_{j}^{\nu d_{m}} e^{-d_{m} t}\right)}
$$

leads to a convolution sum of

- higher-order Bernoulli polynomials and
- higher-order Euler polynomials.
(Rubinstein and Fel, 2006).
Rubinstein (2008):
All the $W_{j}(s, \mathbf{d})$ can be written as linear combinations of the first wave $(j=1)$ alone, with modified integers s and vectors d.

This last result makes it worthwhile to give further consideration to $W_{1}(s, \mathbf{d})$.

This last result makes it worthwhile to give further consideration to $W_{1}(s, \mathbf{d})$.

Theorem 1 ($\mathrm{D} \&$ Vignat)

Let $\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$, and denote $d:=d_{1} \ldots d_{m}$ and $\widetilde{d}_{i}:=d / d_{i}, i=1, \ldots, m$.

This last result makes it worthwhile to give further consideration to $W_{1}(s, \mathbf{d})$.

Theorem 1 (D \& Vignat)

Let $\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$, and denote $d:=d_{1} \ldots d_{m}$ and $\tilde{d}_{i}:=d / d_{i}, i=1, \ldots, m$. Then

$$
\begin{aligned}
W_{1}(s, \mathbf{d})= & \frac{1}{(m-1)!d^{m}} \\
& \times \sum_{\substack{0 \leq \ell_{1} \leq \tilde{d}_{1}-1 \\
0 \leq \ell_{m} \leq \tilde{d}_{m}-1}} \prod_{j=1}^{m-1}\left(s+j d-\ell_{1} d_{1}-\cdots-\ell_{m} d_{m}\right) .
\end{aligned}
$$

This last result makes it worthwhile to give further consideration to $W_{1}(s, \mathbf{d})$.

Theorem 1 (D \& Vignat)

Let $\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$, and denote $d:=d_{1} \ldots d_{m}$ and $\widetilde{d}_{i}:=d / d_{i}, i=1, \ldots, m$. Then

$$
\begin{aligned}
W_{1}(s, \mathbf{d})= & \frac{1}{(m-1)!d^{m}} \\
& \times \sum_{\substack{0 \leq \ell_{1} \leq \tilde{d}_{1}-1 \\
0 \leq \ell_{m} \leq \tilde{d}_{m}-1}} \prod_{j=1}^{m-1}\left(s+j d-\ell_{1} d_{1}-\cdots-\ell_{m} d_{m}\right) .
\end{aligned}
$$

Note: New in this identity:
It does not contain Bernoulli numbers or polynomials.

Examples:

We can obtain some well-known small cases, e.g.,

$$
W_{1}\left(s,\left(d_{1}, d_{2}\right)\right)=\frac{1}{d_{1} d_{2}} s+\frac{d_{1}+d_{2}}{2 d_{1} d_{2}}
$$

Examples:

We can obtain some well-known small cases, e.g.,

$$
W_{1}\left(s,\left(d_{1}, d_{2}\right)\right)=\frac{1}{d_{1} d_{2}} s+\frac{d_{1}+d_{2}}{2 d_{1} d_{2}}
$$

or, for $m=3$,

$$
\begin{aligned}
W_{1}\left(s,\left(d_{1}, d_{2}, d_{3}\right)\right)= & \frac{1}{2 d_{1} d_{2} d_{3}} s^{2}+\frac{d_{1}+d_{2}+d_{3}}{2 d_{1} d_{2} d_{3}} s \\
& +\frac{1}{12}\left(\frac{\left(d_{1}+d_{2}+d_{3}\right)^{2}}{d_{1} d_{2} d_{3}}+\frac{1}{d_{1}}+\frac{1}{d_{2}}+\frac{1}{d_{3}}\right) .
\end{aligned}
$$

Examples:

We can obtain some well-known small cases, e.g.,

$$
W_{1}\left(s,\left(d_{1}, d_{2}\right)\right)=\frac{1}{d_{1} d_{2}} s+\frac{d_{1}+d_{2}}{2 d_{1} d_{2}},
$$

or, for $m=3$,

$$
\begin{aligned}
W_{1}\left(s,\left(d_{1}, d_{2}, d_{3}\right)\right)= & \frac{1}{2 d_{1} d_{2} d_{3}} s^{2}+\frac{d_{1}+d_{2}+d_{3}}{2 d_{1} d_{2} d_{3}} s \\
& +\frac{1}{12}\left(\frac{\left(d_{1}+d_{2}+d_{3}\right)^{2}}{d_{1} d_{2} d_{3}}+\frac{1}{d_{1}}+\frac{1}{d_{2}}+\frac{1}{d_{3}}\right) .
\end{aligned}
$$

Note: Glaisher (1908) obtained these, and all cases $m \leq 7$, by a different method.

Other authors obtained explicit polynomial parts for $\mathbf{d}=(1,2, \ldots, m)$ for small m.

Figure 1: $W_{1}(s, \mathbf{d})$ (solid line) and $W(s, \mathbf{d})$ (dots) for $\mathbf{d}=(3,5)$ and $s \leq 200$.

Figure 2: $W_{1}(s, \mathbf{d})$ (solid line) and $W(s, \mathbf{d})$ (dots) for $\mathbf{d}=(3,5,7)$ and $s \leq 100$.

3. Higher-order Bernoulli Polynomials

The (ordinary) Bernoulli polynomials $B_{n}(x), n=0,1,2, \ldots$ are defined by

$$
\frac{z}{e^{z}-1} e^{x z}=\sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!} .
$$

3. Higher-order Bernoulli Polynomials

The (ordinary) Bernoulli polynomials $B_{n}(x), n=0,1,2, \ldots$ are defined by

$$
\frac{z}{e^{z}-1} e^{x z}=\sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!} .
$$

For an integer $k \geq 1$, the Bernoulli polynomial of order k is defined by

$$
\left(\frac{z}{e^{z}-1}\right)^{k} e^{x z}=\sum_{n=0}^{\infty} B_{n}^{(k)}(x) \frac{z^{n}}{n!}
$$

3. Higher-order Bernoulli Polynomials

The (ordinary) Bernoulli polynomials $B_{n}(x), n=0,1,2, \ldots$ are defined by

$$
\frac{z}{e^{z}-1} e^{x z}=\sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!}
$$

For an integer $k \geq 1$, the Bernoulli polynomial of order k is defined by

$$
\left(\frac{z}{e^{z}-1}\right)^{k} e^{x z}=\sum_{n=0}^{\infty} B_{n}^{(k)}(x) \frac{z^{n}}{n!}
$$

(Note: Can also be defined for arbitrary k - not needed here).

3. Higher-order Bernoulli Polynomials

The (ordinary) Bernoulli polynomials $B_{n}(x), n=0,1,2, \ldots$ are defined by

$$
\frac{z}{e^{z}-1} e^{x z}=\sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!} .
$$

For an integer $k \geq 1$, the Bernoulli polynomial of order k is defined by

$$
\left(\frac{z}{e^{z}-1}\right)^{k} e^{x z}=\sum_{n=0}^{\infty} B_{n}^{(k)}(x) \frac{z^{n}}{n!}
$$

(Note: Can also be defined for arbitrary k - not needed here).
Among numerous properties, they satisfy

$$
B_{m-1}^{(m)}(x)=(x-1)(x-2) \ldots(x-m+1) \quad(m \geq 2)
$$

with $B_{0}^{(1)}(x)=B_{0}(x)=1$.

A further generalization:

For $m \geq 1$ and $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)\left(d_{j} \in \mathbb{N}\right)$ we define the polynomials $B_{n}^{(m)}(x \mid \mathbf{d}), n=0,1, \ldots$, by

$$
e^{x z} \prod_{i=1}^{m} \frac{d_{i} z}{e^{d_{i} z}-1}=\sum_{n=0}^{\infty} B_{n}^{(m)}(x \mid \mathbf{d}) \frac{z^{n}}{n!}
$$

A further generalization:
For $m \geq 1$ and $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)\left(d_{j} \in \mathbb{N}\right)$ we define the polynomials $B_{n}^{(m)}(x \mid \mathbf{d}), n=0,1, \ldots$, by

$$
e^{x z} \prod_{i=1}^{m} \frac{d_{i} z}{e^{d_{i} z}-1}=\sum_{n=0}^{\infty} B_{n}^{(m)}(x \mid \mathbf{d}) \frac{z^{n}}{n!}
$$

(Nörlund, "Differenzenrechnung", 1924).

A further generalization:
For $m \geq 1$ and $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)\left(d_{j} \in \mathbb{N}\right)$ we define the polynomials $B_{n}^{(m)}(x \mid \mathbf{d}), n=0,1, \ldots$, by

$$
e^{x z} \prod_{i=1}^{m} \frac{d_{i} z}{e^{d_{i} z}-1}=\sum_{n=0}^{\infty} B_{n}^{(m)}(x \mid \mathbf{d}) \frac{z^{n}}{n!}
$$

(Nörlund, "Differenzenrechnung", 1924).
By comparing generating functions:

$$
B_{n}^{(m)}(x \mid(1, \ldots, 1))=B_{n}^{(m)}(x)
$$

A further generalization:
For $m \geq 1$ and $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right)\left(d_{j} \in \mathbb{N}\right)$ we define the polynomials $B_{n}^{(m)}(x \mid \mathbf{d}), n=0,1, \ldots$, by

$$
e^{x z} \prod_{i=1}^{m} \frac{d_{i} z}{e^{d_{i} z}-1}=\sum_{n=0}^{\infty} B_{n}^{(m)}(x \mid \mathbf{d}) \frac{z^{n}}{n!}
$$

(Nörlund, "Differenzenrechnung", 1924).
By comparing generating functions:

$$
B_{n}^{(m)}(x \mid(1, \ldots, 1))=B_{n}^{(m)}(x)
$$

The $B_{n}^{(m)}(x \mid \mathbf{d})$ are also known as Bernoulli-Barnes polynomials. (With different notation and normalization).

Main lemma: An analogue of the identity

$$
\begin{equation*}
B_{m-1}^{(m)}(x)=(x-1)(x-2) \ldots(x-m+1) . \tag{2}
\end{equation*}
$$

Main lemma: An analogue of the identity

$$
\begin{equation*}
B_{m-1}^{(m)}(x)=(x-1)(x-2) \ldots(x-m+1) \tag{2}
\end{equation*}
$$

Lemma 2 (D \& Vignat)

Let $m \in \mathbb{N}$ and $\mathbf{d}:=\left(d_{1}, \ldots, d_{m}\right), d_{j} \in \mathbb{N}$. Denote $d:=d_{1} \ldots d_{m}$ and $\widetilde{d}_{i}:=d / d_{i}, 1 \leq i \leq k$. Then

$$
B_{m-1}^{(m)}(x \mid \mathbf{d})=\frac{1}{d^{m-1}} \sum_{\substack{0 \leq \ell_{1} \leq \tilde{d}_{1}-1 \\ 0 \leq \varkappa_{m} \leq \tilde{d}_{m}-1}} \prod_{j=1}^{m-1}\left(x-j d+\ell_{1} d_{1}+\cdots+\ell_{m} d_{m}\right)
$$

Main lemma: An analogue of the identity

$$
\begin{equation*}
B_{m-1}^{(m)}(x)=(x-1)(x-2) \ldots(x-m+1) . \tag{2}
\end{equation*}
$$

Lemma 2 (D \& Vignat)

Let $m \in \mathbb{N}$ and $\mathbf{d}:=\left(d_{1}, \ldots, d_{m}\right), d_{j} \in \mathbb{N}$. Denote $d:=d_{1} \ldots d_{m}$ and $\widetilde{d}_{i}:=d / d_{i}, 1 \leq i \leq k$. Then

$$
B_{m-1}^{(m)}(x \mid \mathbf{d})=\frac{1}{d^{m-1}} \sum_{\substack{0 \leq \ell_{1} \leq \tilde{d}_{1}-1 \\ 0 \leq \tilde{d}_{m} \\ 0 \leq \ell_{m} \leq \tilde{d}_{m}-1}} \prod_{j=1}^{m-1}\left(x-j d+\ell_{1} d_{1}+\cdots+\ell_{m} d_{m}\right)
$$

Note: When $\mathbf{d}=(1, \ldots, 1)$, sum on the right of (3) collapses to $\ell_{1}=\ldots=\ell_{m}=0$; we recover (2).

Another lemma: Recall reflection formula for Bernoulli polynomials:

$$
B_{n}(x+1)=(-1)^{n} B_{n}(-x) .
$$

Another lemma: Recall reflection formula for Bernoulli polynomials:

$$
B_{n}(x+1)=(-1)^{n} B_{n}(-x) .
$$

Higher-order analogue:

Lemma 3

Let m and d_{1}, \ldots, d_{m} be as before, and $\mathbf{d}:=\left(d_{1}, \ldots, d_{m}\right)$ and $\sigma:=d_{1}+\cdots+d_{m}$. Then for all $n \geq 0$,

$$
B_{n}^{(m)}(x+\sigma \mid \mathbf{d})=(-1)^{n} B_{n}^{(m)}(-x \mid \mathbf{d}) .
$$

Another lemma: Recall reflection formula for Bernoulli polynomials:

$$
B_{n}(x+1)=(-1)^{n} B_{n}(-x) .
$$

Higher-order analogue:

Lemma 3

Let m and d_{1}, \ldots, d_{m} be as before, and $\mathbf{d}:=\left(d_{1}, \ldots, d_{m}\right)$ and $\sigma:=d_{1}+\cdots+d_{m}$. Then for all $n \geq 0$,

$$
B_{n}^{(m)}(x+\sigma \mid \mathbf{d})=(-1)^{n} B_{n}^{(m)}(-x \mid \mathbf{d}) .
$$

Can be found in Nörlund's "Differenzenrechnung" (1924).

Proof of our theorem:

Proof of our theorem:

Rubinstein and Fel (2006) proved:

$$
\begin{equation*}
W_{1}(s, \mathbf{d})=\frac{1}{(m-1)!d} B_{m-1}^{(m)}(s+\sigma \mid \mathbf{d}) \tag{4}
\end{equation*}
$$

where, as before, $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right), d=d_{1} \ldots d_{m}$, and $\sigma=d_{1}+\cdots+d_{m}$.

Proof of our theorem:

Rubinstein and Fel (2006) proved:

$$
\begin{equation*}
W_{1}(s, \mathbf{d})=\frac{1}{(m-1)!d} B_{m-1}^{(m)}(s+\sigma \mid \mathbf{d}) \tag{4}
\end{equation*}
$$

where, as before, $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right), d=d_{1} \ldots d_{m}$, and $\sigma=d_{1}+\cdots+d_{m}$.

A version of this can also be found in Beck \& Robins, "Computing the Continuous Discretely", 2nd ed., 2015.

Proof of our theorem:
Rubinstein and Fel (2006) proved:

$$
\begin{equation*}
W_{1}(s, \mathbf{d})=\frac{1}{(m-1)!d} B_{m-1}^{(m)}(s+\sigma \mid \mathbf{d}) \tag{4}
\end{equation*}
$$

where, as before, $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right), d=d_{1} \ldots d_{m}$, and $\sigma=d_{1}+\cdots+d_{m}$.

A version of this can also be found in Beck \& Robins, "Computing the Continuous Discretely", 2nd ed., 2015.

Combining (4) with both lemmas immediately gives the theorem.

Proof of our theorem:

Rubinstein and Fel (2006) proved:

$$
\begin{equation*}
W_{1}(s, \mathbf{d})=\frac{1}{(m-1)!d} B_{m-1}^{(m)}(s+\sigma \mid \mathbf{d}) \tag{4}
\end{equation*}
$$

where, as before, $\mathbf{d}=\left(d_{1}, \ldots, d_{m}\right), d=d_{1} \ldots d_{m}$, and $\sigma=d_{1}+\cdots+d_{m}$.

A version of this can also be found in Beck \& Robins, "Computing the Continuous Discretely", 2nd ed., 2015.

Combining (4) with both lemmas immediately gives the theorem.

Remark: Theorem 1 can be rewritten:

Corollary 4

Let $\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ and $d:=d_{1} \ldots d_{m}$. Then

$$
\begin{equation*}
W_{1}(s, \mathbf{d})=\frac{1}{d} \sum_{\ell}\binom{m-1+\frac{s-\ell}{d}}{m-1} \tag{5}
\end{equation*}
$$

where the sum is taken over all ℓ with

$$
\ell=\ell_{1} d_{1}+\cdots+\ell_{m} d_{m}, \quad 0 \leq \ell_{i} \leq \frac{d}{d_{i}}-1, \quad i=1, \ldots, m .
$$

Corollary 4

Let $\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ and $d:=d_{1} \ldots d_{m}$. Then

$$
\begin{equation*}
W_{1}(s, \mathbf{d})=\frac{1}{d} \sum_{\ell}\binom{m-1+\frac{s-\ell}{d}}{m-1} \tag{5}
\end{equation*}
$$

where the sum is taken over all ℓ with

$$
\ell=\ell_{1} d_{1}+\cdots+\ell_{m} d_{m}, \quad 0 \leq \ell_{i} \leq \frac{d}{d_{i}}-1, \quad i=1, \ldots, m .
$$

Independently proved by M. Cimpoeas and F. Nicolae (2017).

Corollary 4

Let $\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ and $d:=d_{1} \ldots d_{m}$. Then

$$
\begin{equation*}
W_{1}(s, \mathbf{d})=\frac{1}{d} \sum_{\ell}\binom{m-1+\frac{s-\ell}{d}}{m-1} \tag{5}
\end{equation*}
$$

where the sum is taken over all ℓ with

$$
\ell=\ell_{1} d_{1}+\cdots+\ell_{m} d_{m}, \quad 0 \leq \ell_{i} \leq \frac{d}{d_{i}}-1, \quad i=1, \ldots, m .
$$

Independently proved by M. Cimpoeas and F. Nicolae (2017).
When $d_{1}=\cdots=d_{m}=1$, (5) collapses to a single term:

$$
W(s, \mathbf{d})=W_{1}(s, \mathbf{d})=\binom{m-1+s}{m-1}
$$

(A well-known elementary expression).

4. Symbolic Notation

We define the Bernoulli symbol \mathcal{B} by

$$
\mathcal{B}^{n}=B_{n} \quad(n=0,1, \ldots),
$$

where B_{n} is the nth Bernoulli number.

4. Symbolic Notation

We define the Bernoulli symbol \mathcal{B} by

$$
\mathcal{B}^{n}=B_{n} \quad(n=0,1, \ldots),
$$

where B_{n} is the nth Bernoulli number. So we can rewrite the usual definition

$$
B_{n}(x)=\sum_{j=0}^{n}\binom{n}{j} B_{j} x^{n-j} \quad \text { as } \quad B_{n}(x)=(x+\mathcal{B})^{n}
$$

4. Symbolic Notation

We define the Bernoulli symbol \mathcal{B} by

$$
\mathcal{B}^{n}=B_{n} \quad(n=0,1, \ldots),
$$

where B_{n} is the nth Bernoulli number.
So we can rewrite the usual definition

$$
B_{n}(x)=\sum_{j=0}^{n}\binom{n}{j} B_{j} x^{n-j} \quad \text { as } \quad B_{n}(x)=(x+\mathcal{B})^{n}
$$

With the usual (generating function) definition of B_{n} we have

$$
\exp (\mathcal{B} z)=\sum_{n=0}^{\infty} \mathcal{B}^{n} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}=\frac{z}{e^{z}-1}
$$

4. Symbolic Notation

We define the Bernoulli symbol \mathcal{B} by

$$
\mathcal{B}^{n}=B_{n} \quad(n=0,1, \ldots),
$$

where B_{n} is the nth Bernoulli number.
So we can rewrite the usual definition

$$
B_{n}(x)=\sum_{j=0}^{n}\binom{n}{j} B_{j} x^{n-j} \quad \text { as } \quad B_{n}(x)=(x+\mathcal{B})^{n}
$$

With the usual (generating function) definition of B_{n} we have

$$
\exp (\mathcal{B} z)=\sum_{n=0}^{\infty} \mathcal{B}^{n} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}=\frac{z}{e^{z}-1}
$$

Note that

$$
\exp ((\mathcal{B}+1) z)=\frac{z}{e^{z}-1} \cdot e^{z}=\frac{-z}{e^{-z}-1}=\exp (-\mathcal{B} z)
$$

4. Symbolic Notation

We define the Bernoulli symbol \mathcal{B} by

$$
\mathcal{B}^{n}=B_{n} \quad(n=0,1, \ldots),
$$

where B_{n} is the nth Bernoulli number.
So we can rewrite the usual definition

$$
B_{n}(x)=\sum_{j=0}^{n}\binom{n}{j} B_{j} x^{n-j} \quad \text { as } \quad B_{n}(x)=(x+\mathcal{B})^{n}
$$

With the usual (generating function) definition of B_{n} we have

$$
\exp (\mathcal{B} z)=\sum_{n=0}^{\infty} \mathcal{B}^{n} \frac{z^{n}}{n!}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}=\frac{z}{e^{z}-1}
$$

Note that

$$
\exp ((\mathcal{B}+1) z)=\frac{z}{e^{z}-1} \cdot e^{z}=\frac{-z}{e^{-z}-1}=\exp (-\mathcal{B} z)
$$

and thus

$$
\mathcal{B}+1=-\mathcal{B} .
$$

The uniform symbol \mathcal{U} is defined by

$$
f(x+\mathcal{U})=\int_{0}^{1} f(x+u) d u .
$$

where f is a polynomial.

The uniform symbol \mathcal{U} is defined by

$$
f(x+\mathcal{U})=\int_{0}^{1} f(x+u) d u
$$

where f is a polynomial. Thus,

$$
\mathcal{U}^{n}=\frac{1}{n+1} \quad(n=0,1, \ldots)
$$

The uniform symbol \mathcal{U} is defined by

$$
f(x+\mathcal{U})=\int_{0}^{1} f(x+u) d u
$$

where f is a polynomial. Thus,

$$
\mathcal{U}^{n}=\frac{1}{n+1} \quad(n=0,1, \ldots),
$$

which gives

$$
\exp (\mathcal{U} z)=\sum_{n=0}^{\infty} \mathcal{U}^{n} \frac{z^{n}}{n!}=\frac{e^{z}-1}{z}
$$

The uniform symbol \mathcal{U} is defined by

$$
f(x+\mathcal{U})=\int_{0}^{1} f(x+u) d u
$$

where f is a polynomial. Thus,

$$
\mathcal{U}^{n}=\frac{1}{n+1} \quad(n=0,1, \ldots)
$$

which gives

$$
\exp (\mathcal{U} z)=\sum_{n=0}^{\infty} \mathcal{U}^{n} \frac{z^{n}}{n!}=\frac{e^{z}-1}{z}
$$

Combining this with the analogous identity for $\exp (\mathcal{U z})$,

$$
1=\frac{z}{e^{z}-1} \cdot \frac{e^{z}-1}{z}=\exp (z(\mathcal{B}+\mathcal{U}))=\sum_{n=0}^{\infty}(\mathcal{B}+\mathcal{U})^{n} \frac{z^{n}}{n!} .
$$

Hence \mathcal{B} and \mathcal{U} annihilate each other, i.e.,

$$
(\mathcal{B}+\mathcal{U})^{n}=0 \quad \text { for all } \quad n>0 .
$$

Hence \mathcal{B} and \mathcal{U} annihilate each other, i.e.,

$$
(\mathcal{B}+\mathcal{U})^{n}=0 \quad \text { for all } \quad n>0
$$

In other words,

$$
f(x+\mathcal{B}+\mathcal{U})=f(x)
$$

for a polynomial f.

Hence \mathcal{B} and \mathcal{U} annihilate each other, i.e.,

$$
(\mathcal{B}+\mathcal{U})^{n}=0 \quad \text { for all } \quad n>0
$$

In other words,

$$
f(x+\mathcal{B}+\mathcal{U})=f(x)
$$

for a polynomial f.
Also useful: independent Bernoulli symbols $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$.

Hence \mathcal{B} and \mathcal{U} annihilate each other, i.e.,

$$
(\mathcal{B}+\mathcal{U})^{n}=0 \quad \text { for all } \quad n>0
$$

In other words,

$$
f(x+\mathcal{B}+\mathcal{U})=f(x)
$$

for a polynomial f.
Also useful: independent Bernoulli symbols $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$.
Independence means: for any two Bernoulli symbols \mathcal{B}_{1} and \mathcal{B}_{2},

$$
\mathcal{B}_{1}^{k} \mathcal{B}_{2}^{\ell}=B_{k} B_{\ell}
$$

Hence \mathcal{B} and \mathcal{U} annihilate each other, i.e.,

$$
(\mathcal{B}+\mathcal{U})^{n}=0 \quad \text { for all } \quad n>0 .
$$

In other words,

$$
f(x+\mathcal{B}+\mathcal{U})=f(x)
$$

for a polynomial f.
Also useful: independent Bernoulli symbols $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$.
Independence means: for any two Bernoulli symbols \mathcal{B}_{1} and \mathcal{B}_{2},

$$
\mathcal{B}_{1}^{k} \mathcal{B}_{2}^{\ell}=B_{k} B_{\ell} .
$$

Related to this, we define the higher-order Bernoulli symbol $\mathcal{B}^{(k)}$ by

$$
\mathcal{B}^{(k)}=\mathcal{B}_{1}+\cdots+\mathcal{B}_{k},
$$

where $\mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$ are independent Bernoulli symbols.

Application:

Recall: Bernoulli polynomial, defined by

$$
e^{x z} \frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!},
$$

can be written as

$$
B_{n}(x)=(x+\mathcal{B})^{n} .
$$

Application:

Recall: Bernoulli polynomial, defined by

$$
e^{x z} \frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{z^{n}}{n!},
$$

can be written as

$$
B_{n}(x)=(x+\mathcal{B})^{n} .
$$

Similarly, we can write

$$
e^{x z} \prod_{i=1}^{m} \frac{d_{i} z}{e^{d_{i} z}-1}=\sum_{n=0}^{\infty} B_{n}^{(m)}(x \mid \mathbf{d}) \frac{z^{n}}{n!}
$$

symbolically as

$$
B_{n}^{(m)}(x \mid \mathbf{d})=\left(x+d_{1} \mathcal{B}_{1}+\cdots+d_{m} \mathcal{B}_{m}\right)^{n} .
$$

For instance, using

$$
\mathcal{B}+1=-\mathcal{B},
$$

For instance, using

$$
\mathcal{B}+1=-\mathcal{B}
$$

we get, with $\sigma:=d_{1}+\cdots+d_{m}$,

$$
\begin{aligned}
B_{n}^{(m)}(x+\sigma \mid \mathbf{d}) & =\left(x+d_{1}\left(\mathcal{B}_{1}+1\right)+\cdots+d_{m}\left(\mathcal{B}_{m}+1\right)\right)^{n} \\
& =\left(x-d_{1} \mathcal{B}_{1}-\cdots-d_{m} \mathcal{B}_{m}\right)^{n} \\
& =(-1)^{n}\left(-x+d_{1} \mathcal{B}_{1}+\cdots+d_{m} \mathcal{B}_{m}\right)^{n} \\
& =B_{n}^{(m)}(-x \mid \mathbf{d})
\end{aligned}
$$

For instance, using

$$
\mathcal{B}+1=-\mathcal{B}
$$

we get, with $\sigma:=d_{1}+\cdots+d_{m}$,

$$
\begin{aligned}
B_{n}^{(m)}(x+\sigma \mid \mathbf{d}) & =\left(x+d_{1}\left(\mathcal{B}_{1}+1\right)+\cdots+d_{m}\left(\mathcal{B}_{m}+1\right)\right)^{n} \\
& =\left(x-d_{1} \mathcal{B}_{1}-\cdots-d_{m} \mathcal{B}_{m}\right)^{n} \\
& =(-1)^{n}\left(-x+d_{1} \mathcal{B}_{1}+\cdots+d_{m} \mathcal{B}_{m}\right)^{n} \\
& =B_{n}^{(m)}(-x \mid \mathbf{d}) .
\end{aligned}
$$

This is Lemma 3.
Lemma 2 can be obtained (and, in fact, was discovered) with similar manipulations.

Recall Theorem 1:

With $\mathbf{d}:=\left(d_{1}, d_{2}, \ldots, d_{m}\right), d:=d_{1} \ldots d_{m}$, and $\widetilde{d}_{i}:=d / d_{i}$,

$$
\begin{aligned}
W_{1}(s, \mathbf{d})= & \frac{1}{(m-1)!d^{m}} \\
& \times \sum_{\substack{0 \leq \ell_{1} \leq \tilde{d}_{1}-1 \\
0 \leq \ell_{m} \leq \tilde{d}_{m}-1}} \prod_{j=1}^{m-1}\left(s+j d-\ell_{1} d_{1}-\cdots-\ell_{m} d_{m}\right)
\end{aligned}
$$

By an easy expansion of the product in Theorem 1 we get:
Corollary 5
For $\mathbf{d}:=\left(d_{1}, \ldots d_{m}\right), d:=d_{1} \ldots d_{m}$, and $\sigma:=d_{1}+\cdots+d_{m}$,

$$
W_{1}(s, \mathbf{d})=\frac{1}{(m-1)!d} s^{m-1}+\frac{\sigma}{2(m-2)!d} s^{m-2}+\ldots
$$

By an easy expansion of the product in Theorem 1 we get:
Corollary 5
For $\mathbf{d}:=\left(d_{1}, \ldots d_{m}\right), d:=d_{1} \ldots d_{m}$, and $\sigma:=d_{1}+\cdots+d_{m}$,

$$
W_{1}(s, \mathbf{d})=\frac{1}{(m-1)!d} s^{m-1}+\frac{\sigma}{2(m-2)!d} s^{m-2}+\ldots
$$

The leading coefficient has long been known.

By an easy expansion of the product in Theorem 1 we get:
Corollary 5
For $\mathbf{d}:=\left(d_{1}, \ldots d_{m}\right), d:=d_{1} \ldots d_{m}$, and $\sigma:=d_{1}+\cdots+d_{m}$,

$$
W_{1}(s, \mathbf{d})=\frac{1}{(m-1)!d} s^{m-1}+\frac{\sigma}{2(m-2)!d} s^{m-2}+\ldots
$$

The leading coefficient has long been known.
The second coefficient was obtained by Rieger (1959) for $\mathbf{d}=(1,2, \ldots, m)$.

By considering the m-fold sum in Theorem 1 as the Riemann sum of a multiple integral, we obtain an asympotic expansion:

By considering the m-fold sum in Theorem 1 as the Riemann sum of a multiple integral, we obtain an asympotic expansion:

Corollary 6

With \mathbf{d} and d as above, let $\lambda>0$ and $s \geq \lambda d$, and let d grow arbitrarily large in such a way that at least two of the components $d_{j}, 1 \leq j \leq m$, are unbounded. Then

$$
W_{1}(s, \mathbf{d}) \sim \frac{1}{(m-1)!d} s^{m-1}
$$

By considering the m-fold sum in Theorem 1 as the Riemann sum of a multiple integral, we obtain an asympotic expansion:

Corollary 6

With \mathbf{d} and d as above, let $\lambda>0$ and $s \geq \lambda d$, and let d grow arbitrarily large in such a way that at least two of the components $d_{j}, 1 \leq j \leq m$, are unbounded. Then

$$
W_{1}(s, \mathbf{d}) \sim \frac{1}{(m-1)!d} s^{m-1}
$$

In other words, $W_{1}(s, \mathbf{d})$ has the same asymptotic behaviour as in the case of bounded d.

Thank you - Merci

