On lattice polytopes, convex matroid optimization, and degree sequences of hypergraphs

Antoine Deza, Paris Sud
based on joint works with: Asaf Levin, Technion
George Manoussakis, Ben Gurion Shmuel Onn, Technion

Linear Optimization?

Given an n-dimensional vector \boldsymbol{b} and an $\boldsymbol{n} \times \boldsymbol{d}$ matrix \boldsymbol{A} find, in any, a d-dimensional vector \boldsymbol{x} such that:
$A x=b$

$$
\begin{aligned}
& A x=b \\
& x \geq 0
\end{aligned}
$$

linear algebra
linear optimization

Linear Optimization?

Given an n-dimensional vector \boldsymbol{b} and an $n \times d$ matrix \boldsymbol{A} find, in any, a d-dimensional vector \boldsymbol{x} such that :
$A x=b$
linear algebra

$$
A x \leq b
$$

linear optimization
Can linear optimization be solved in strongly polynomial time? is listed by Smale (Fields Medal 1966) as one of the top mathematical problems for the XXI century

Strongly polynomial : algorithm independent from the input data length and polynomial in n and d.

Lattice polytopes with large diameter

lattice (d, k)-polytope : convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$
diameter $\delta(P)$ of polytope \boldsymbol{P} : smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges
$\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes
ex. $\delta(3,3)=6$ and is achieved by a truncated cube

Lattice polytopes with large diameter

lattice (d, k)-polytope : convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$
diameter $\delta(\boldsymbol{P})$ of polytope \boldsymbol{P} : smallest number such that any two vertices of P can be connected by a path with at most $\delta(P)$ edges
$\delta(d, k)$: largest diameter over all lattice (d,k)-polytopes
$>\delta(P)$: lower bound for the worst case number of iterations required by pivoting methods (simplex) to optimize a linear function over \boldsymbol{P}
$>$ Hirsch conjecture : $\delta(\boldsymbol{P}) \leq \boldsymbol{n}-\boldsymbol{d}$
(n number of inequalities) was disproved [Santos 2012]

Lattice polytopes with large diameter

$\delta(d, k)$: largest diameter of a convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$ upper bounds :

$$
\begin{array}{ll}
\delta(d, 1) \leq d & \text { [Naddef 1989] } \\
\delta(2, k)=O\left(k^{2 / 3}\right) & \text { [Balog-Bárány 1991] } \\
\delta(2, k)=6(k / 2 \pi)^{2 / 3}+O\left(k^{1 / 3} \log k\right) & \text { [Thiele 1991] } \\
& \text { [Acketa-Žunić 1995] } \\
\delta(d, k) \leq k d & \text { [Kleinschmid-Onn 199 } \\
\delta(d, k) \leq k d-\lceil d / 2\rceil & \text { for } k \geq 2
\end{array} \text { [Del Pia-Michini 2016] } \begin{array}{lll}
\delta(d, k) \leq k d-\lceil 2 d / 3\rceil-(k-3) & \text { for } k \geq 3 & \text { [Deza-Pournin 2018] }
\end{array}
$$

Lattice polytopes with large diameter

$\delta(d, k)$: largest diameter of a convex hull of points drawn from $\{0,1, \ldots, k\}^{d}$ lower bounds :

$$
\begin{array}{ll}
\delta(d, 1) \geq d & \text { [Naddef 1989] } \\
\delta(d, 2) \geq\lfloor 3 d / 2\rfloor & \text { [Del Pia-Michini 2016] } \\
\delta(d, k)=\Omega\left(k^{2 / 3} d\right) & \text { [Del Pia-Michini 2016] } \\
\left.\delta(d, k) \geq \bigsqcup_{\lfloor }(k+1) d / 2\right\rfloor \text { for } k<2 d & {[\text { Deza-Manoussakis-Onn 2018] }}
\end{array}
$$

Lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2								
	3	3								
	4	4								
	5	5								
1) $=$ d ${ }^{\text {[Naddef 1989] }}$										

Lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2	3	4	4	5	6	6	7	8
	3	3								
	4	4								
	5	5								

$\delta(d, 1)=d$
$\delta(2, k)$: close form
[Naddef 1989]
[Thiele 1991] [Acketa-Žunić 1995]

Lattice polytopes with large diameter

$\delta(d, k)$	k										
	1	2	3	4	5	6	7	8	9		
\boldsymbol{d}	2	2	3	4	4	5	6	6	7	8	
	3	3	4								
	4	4	6								
	5	5	7								

$\delta(d, 1)=d$
$\delta(2, k)$: close form
$\delta(d, 2)=\lfloor 3 d / 2\rfloor$
[Naddef 1989]
[Thiele 1991] [Acketa-Žunić 1995]
[Del Pia-Michini 2016]

Lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2	3	4	4	5	6	6	7	8
	3	3	4	6	7	9				
	4	4	6	8						
	5	5	7							

$\delta(d, 1)=d$
$\delta(2, k):$ close form
$\delta(d, 2)=\lfloor 3 d / 2\rfloor$
$\delta(4,3)=8, \delta(3,4)=7, \delta(3,5)=9$
[Naddef 1989]
[Thiele 1991] [Acketa-Žunić 1995]
[Del Pia-Michini 2016]
[Deza-Pournin 2018], [Chadder-Deza 2017]

Lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2	3	4	4	5	6	6	7	8
	3	3	4	6	7	9	10			
	4	4	6	8						
	5	5	7	10						

[Naddef 1989]
[Thiele 1991] [Acketa-Žunić 1995]
[Del Pia-Michini 2016]
[Deza-Pournin 2018], [Chadder-Deza 2017]
[Deza-Deza-Guan-Pournin 2018]

Lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2	3	4	4	5	6	6	7	8
	3	3	4	6	7	9	10	11+	12+	13+
	4	4	6	8	10+	12+	14+	16+	17+	18+
	5	5	7	10	12+	15+	17+	20+	22+	25+

$>$ Conjecture [Deza-Manoussakis-Onn 2018] $\delta(d, k) \leq\lfloor(k+1) d / 2\rfloor$
and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors. The conjecture holds for all known entries of $\delta(d, k)$

Lattice polygons with many vertices

Q. What is $\delta(2, k)$: largest diameter of a polygon which vertices are drawn form the $k \times k$ grid?

A polygon can be associated to a set of vectors (edges) summing up to zero, and without a pair of positively multiple vectors

$\delta(2,3)=4$ is achieved by the 8 vectors : $(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1)$

Lattice polygons with many vertices

$\delta(2,2)=2$; vectors : $(\pm 1,0),(0, \pm 1)$

Lattice polygons with many vertices

$\delta(2,2)=2$; vectors : $(\pm 1,0),(0, \pm 1)$

Lattice polygons with many vertices

```
```

\delta(2,2)=2 ; vectors: (}\pm1,0),(0,\pm1

```
```

\delta(2,2)=2 ; vectors: (}\pm1,0),(0,\pm1
\delta(2,3)=4; vectors : (}\pm1,0),(0,\pm1),(\pm1,\pm1

```
```

\delta(2,3)=4; vectors : (}\pm1,0),(0,\pm1),(\pm1,\pm1

```
```

$\|x\|_{1} \leq 2$

Lattice polygons with many vertices

$\|x\|_{1} \leq 3$

$$
\begin{aligned}
& \delta(2,2)=2 ; \text { vectors }:(\pm 1,0),(0, \pm 1) \\
& \delta(2,3)=4 ; \text { vectors }:(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1) \\
& \delta(2,9)=8 ; \text { vectors : }(\pm 1,0),(0, \pm 1),(\pm 1, \pm 1),(\pm 1, \pm 2),(\pm 2, \pm 1)
\end{aligned}
$$

Lattice polygons with many vertices

Lattice polygons

$\delta(2, k)$	k								
	1	2	3	4	5	6	7	8	9
p	1		2						3
v	4	6	8	8	10	12	12	14	16
δ	2	3	4	4	5	6	6	7	8

$\delta(2, k)=2 \sum_{i=1}^{p} \varphi(i)$ for $k=\sum_{i=1}^{p} i \varphi(i)$
$\varphi(p)$: Euler totient function counting positive integers less or equal to p relatively prime with p $\varphi(1)=\varphi(2)=1, \varphi(3)=\varphi(4)=2, \ldots$

Primitive polygons

$$
\|x\|_{1} \leq p
$$

$H_{1}(2, p)$: Minkowski sum generated by $\left\{x \in Z^{2}:\|x\|_{1} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right\}$ $H_{1}(2, p)$ has diameter $\delta(2, k)=2 \sum_{i=1}^{p} \varphi(i)$ for $k=\sum_{i=1}^{p} i \varphi(i)$

Ex. $H_{1}(2,2)$ generated by $(1,0),(0,1),(1,1),(1,-1)$ (fits, up to translation, in 3×3 grid)

$$
x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
$$

Primitive zonotopes

(generalization of the permutahedron of type B_{d})

$$
\begin{aligned}
& H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& Z_{q}(d, p): \text { Zonotope }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)
\end{aligned}
$$

$$
x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
$$

Given a set \boldsymbol{G} of \boldsymbol{m} vectors (generators)
Minkowski (G) : convex hull of the 2^{m} sums of the \boldsymbol{m} vectors in G Zonotope (G) : convex hull of the 2^{m} signed sums of the \boldsymbol{m} vectors in G
up to translation $Z(G)$ is the image of $H(G)$ by an homothety of factor 2

* Primitive zonotopes: zonotopes generated by short integer vectors which are pairwise linearly independent

Primitive zonotopes

(generalization of the permutahedron of type B_{d})
$H_{q}(d, p)$: Minkowski $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$
$Z_{q}(d, p)$: Zonotope $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$
$x \geq 0$: first nonzero coordinate of x is nonnegative
$>H_{q}(d, 1):[0,1]^{d}$ cube for $\boldsymbol{q} \neq \infty$

Primitive zonotopes

(generalization of the permutahedron of type B_{d})
$H_{q}(d, p):$ Minkowski $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$
$Z_{q}(d, p)$: Zonotope $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$

$$
x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
$$

$>Z_{1}(d, 2)$: permutahedron of type B_{d}

Primitive zonotopes

(generalization of the permutahedron of type B_{d})
$H_{q}(d, p)$: Minkowski $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$
$Z_{q}(d, p):$ Zonotope $\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right)$

$$
x \geq 0 \text { : first nonzero coordinate of } x \text { is nonnegative }
$$

> $H_{1}(3,2)$: truncated cuboctahedron (great rhombicuboctahedron)

Primitive zonotopes

(generalization of the permutahedron of type B_{d})

$$
\begin{aligned}
& H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& Z_{q}(d, p): \text { Zonotope }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& x \geq 0: \text { first nonzero coordinate of } x \text { is nonnegative }
\end{aligned}
$$

$>H_{\infty}(3,1)$: truncated small rhombicuboctahedron

Primitive zonotopes

(generalization of the permutahedron of type B_{d})

$$
\begin{aligned}
& H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& Z_{q}(d, p): \text { Zonotope }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& x \geq 0: \text { first nonzero coordinate of } x \text { is nonnegative } \\
& H^{+} / Z^{+}: \text {positive primitive lattice polytope } x \in Z^{d}+
\end{aligned}
$$

$>H_{1}(d, 2)^{+}$: Minkowski sum of the permutahedron with the $\{0,1\}^{d}$, i.e., graphical zonotope obtained by the d-clique with a loop at each node
graphical zonotope Z_{G} : Minkowski sum of segments $\left[\mathrm{e}_{i}, \mathrm{e}_{j}\right]$ for all edges $\{i\}$,$\} of a given graph G$

Primitive zonotopes

(generalization of the permutahedron of type B_{d})

$$
\begin{aligned}
& H_{q}(d, p): \text { Minkowski }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& Z_{q}(d, p): \text { Zonotope }\left(x \in Z^{d}:\|x\|_{q} \leq p, \operatorname{gcd}(x)=1, x \geq 0\right) \\
& x \geq 0: \text { first nonzero coordinate of } x \text { is nonnegative } \\
& H^{+} / Z^{+}: \text {positive primitive lattice polytope } x \in Z^{d}+
\end{aligned}
$$

$>$ For $k<2 d$, Minkowski sum of a subset of the generators of $H_{1}(d, 2$ is, up to translation, a lattice (d, k)-polytope with diameter $\left.{ }_{L}(k+1) d / 2\right\rfloor$

Lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2	3	4	4	5	6	6	7	8
	3	3	4	6	7	9	10	11+	12+	13+
	4	4	6	8	10+	12+	14+	16+	17+	18+
	5	5	7	10	12+	15+	17+	20+	22+	25+

$>$ Conjecture [Deza-Manoussakis-Onn 2018] $\delta(d, k) \leq\lfloor(k+1) d / 2\rfloor$
and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors. The conjecture holds for all known entries of $\delta(d, k)$

Lattice polytopes with large diameter

$\delta(d, k)$		k								
		1	2	3	4	5	6	7	8	9
d	2	2	3	4	4	5	6	6	7	8
	3	3	4	6	7	9	10	11	12	13
	4	4	6	8	10	12	14	16	17	18
	5	5	7	10	12	15	17	20	22	25

$>$ Conjecture [Deza-Manoussakis-Onn 2018] $\delta(d, k) \leq\lfloor(k+1) d / 2\rfloor$
and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors. The conjecture holds for all known entries of $\delta(d, k)$

Computational determination of $\delta(d, k)$

Given a lattice (d, k)-polytope \boldsymbol{P}, two vertices u and v such that $\delta(\boldsymbol{P})=d(u, v)$, then $d(u, v) \leq \delta(d-1, k)+k$ and $d(u, v)<\delta(d-1, k)+k$ unless:
$>u+v=(k, k, \ldots, k)$,
$>$ any edge of \boldsymbol{P} with u or v as vertex is $\{-1,0,1\}$-valued,
$>$ any intersection of \boldsymbol{P} with a facet of the cube $[0, k]^{d}$ is a ($d-1$)-dimensional face of \boldsymbol{P} of diameter $\delta(d-1, k)$.

Those conditions, combined with enumeration up to symmetry, drastically reduce the search space for lattice (d, k)-polytopes such that $\delta(P)=\delta(d-1, k)+k$

Computationally ruling out $\delta(d, k)=\delta(d-1, k)+k$ and using $\left.\delta(d, k) \leq_{\llcorner }(k+1) d / 2\right\rfloor$ for $k<2 d$ yields : $\delta(3,4)=7$ and $\delta(3,5)=9$
$>\delta($ great rhombicuboctahedron $)=\delta(3,5)$

* Additional tools needed to rule out $\delta(d, k)=\delta(d-1, k)+k-1$

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES ${ }^{\circledR}$

founded in 1964 by N. J. A. Sloane

(Greetings from The On-Line Encyclopedia of Integer Sequences') Search Hints

A034997 Number of Generalized Retarded Functions in Quantum Field Theory.
2, 6, 32, 370, 11292, 1066044, 347326352, 419172756930 (list; graph; refs; listen; history; text; internal format)
OFFSET 1,1
COMMENTS $\quad a(d)$ is the number of parts into which d-dimensional space ($x_{-} 1, \ldots, x_{-} d$) is split by a set of (2 ^d - 1) hyperplanes c_1 x_1 + c_2 x_2 + ...+ c_d x_d $=0$ where c_j are 0 or +1 and we exclude the case with all $\mathrm{c}=0$.
Also, $a(d)$ is the number of independent real-time Green functions of Quantum Field Theory produced when analytically continuing from euclidean time/energy ($\mathrm{d}+1=$ number of energy/time variables). These are also known as Generalized Retarded Functions.
The numbers up to $d=6$ were first produced by T. S. Evans using a Pascal program, strictly as upper bounds only. M. van Eijck wrote a C program using a direct enumeration of hyperplanes which confirmed these and produced the value for $\mathrm{d}=7$. Kamiya et al. showed how to find these numbers and some associated polynomials using more sophisticated methods, giving results up to d=7. T. S. Evans added the last number on Aug 012011 using an updated version of van Eijck's program, which took 7 days on a standard desktop computer.

Number of Generalized Retarded Functions in Quantum Field Theory.

370 , 11292, $1066044,347326352,419172756930$ (list; graph; refs; listen; history; text; internal format)
1, 1
a(d) is the number of parts into which d-dimensional space (x_1,..., x_d) is split by a set of ($2^{\wedge} \mathrm{d}-1$) hyperplanes $c_{-} 1 \mathrm{x}_{-} 1+\mathrm{c}_{-} 2 \mathrm{x}_{1} 2+\ldots+\mathrm{c}_{\mathrm{d}} \mathrm{d} \mathrm{x} _\mathrm{d}$ $=0$ where $c_{-} j$ are 0 or +1 and we exclude the case with all c=0.
Also, a(d) is the number of independent real-time Green functions of Quantum Field Theory produced when analytically continuing from euclidean time/energy ($\mathrm{d}+1=$ number of energy/time variables). These are also known as Generalized Retarded Functions.
The numbers up to d=6 were first produced by T. S. Evans using a Pascal program, strictly as upper bounds only. M. van Eijck wrote a C program using a direct enumeration of hyperplanes which confirmed these and produced the value for $d=7$. Kamiya et al. showed how to find these numbers and some associated polynomials using more sophisticated methods, giving results up to d=7. T. S. Evans added the last number on Aug 012011 using an updated version of van Eijck's program, which took 7 days on a standard desktop computer.

Björner, Anders. "Positive Sum Systems", in Bruno Benedetti, Emanuele Delucchi, and Luca Moci, editors, Combinatorial Methods in Topology and Algebra. Springer International Publishing, 2015. 157-171.
T. S. Evans, N-point finite temperature expectation values at real times, Nuclear Physics B 374 (1992) 340-370.
H. Kamiya, A. Takemura and H. Terao, Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47 (2011) 379 - 400.
M. van Eijck, Thermal Field Theory and Finite-Temperature Renormalisation Group, PhD thesis, Univ. Amsterdam, 4th Dec. 1995.
Table of n, $a(n)$ for $n=1 . .8$.
L. J. Billera, J. T. Moore, C. D. Moraites, Y. Wang and K. Williams, Maximal unbalanced families, arXiv preprint arXiv:1209.2309, 2012. - From N. J. A. Sloane. Dec 262012

Computational determination of the number of vertices of primitive zonotopes

Sloane OEI sequences

$H_{\infty}(d, 1)^{+}$vertices : A034997 = number of generalized retarded functions in quantum Field theory (determined till $d=8$)
$H_{\infty}(d, 1)$ vertices : A009997 = number of regions of hyperplane arrangements with $\{-1,0,1\}$-valued normals in dimension d (determined till $d=7$)

Estimating the number of vertices of $H_{\infty}(d, 1)^{+}$
[Odlyzko 1988], [Zuev 1992], [Kovijanić-Vukićević 2007]

$$
d^{2}(1-o(1)) \leq \log _{2}\left|H_{\infty}(d, 1)^{+}\right| \leq d^{2}
$$

Convex Matroid Optimization

The optimal solution of $\max \{\mathrm{f}(\mathbf{W} x): x \in S\}$ is attained at a vertex of the projection integer polytope in $\mathbf{R}^{d}: \operatorname{conv}(\mathbf{W S})=\mathbf{W c o n v}(\mathbf{S})$
S : set of feasible point in $Z^{n} \quad$ (in the talk $S \in\{0,1\}^{n}$)
W: integer $d x n$ matrix
(W is $\{0,1, \ldots, p\}$-valued)
\mathbf{f} : convex function from \mathbf{R}^{d} to \mathbf{R}
Q. What is the maximum number $\mathbf{v}(d, n)$ of vertices of $\operatorname{conv}(\mathrm{WS})$ when $S \in\{0,1\}^{n}$ and W is a $\{0,1\}$-valued $d x n$ matrix ?
obviously $\quad v(d, n) \leq|W S|=O\left(n^{d}\right)$
in particular $\quad \mathrm{v}(2, n)=\mathrm{O}\left(n^{2}\right)$, and $\mathrm{v}(2, n)=\Omega\left(n^{0.5}\right)$

Convex Matroid Optimization

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1, \ldots, p\}$-valued $d x n$ matrix \mathbf{W}, the maximum number $m(d, p)$ of vertices of conv(WS) is independent of n and S

Ex: maximum number $\mathbf{m}(2,1)$ of vertices of a planar projection conv(WS) of matroid S by a binary matrix W is attained by the following matrix and uniform matroid of rank 3 and order 8:

$$
\begin{aligned}
\mathbf{W} & =\left(\begin{array}{cccccccc}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right) \\
\mathbf{S}=\mathbf{U}(3,8) & =\left(\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

conv(WS)

Convex Matroid Optimization

The optimal solution of $\max \{\mathrm{f}(\mathbf{W} x): x \in \mathrm{~S}\}$ is attained at a vertex of the projection integer polytope in $\mathbf{R}^{d}: \operatorname{conv}(\mathbf{W S})=\mathbf{W c o n v}(\mathbf{S})$

S: set of feasible point in $Z^{n} \quad$ (in the talk $S \in\{0,1\}^{n}$)
W: integer $d x n$ matrix
(W is mostly $\{0,1, \ldots, p\}$-valued)
\mathbf{f} : convex function from \mathbf{R}^{d} to \mathbf{R}
Q. What is the maximum number $\mathbf{v}(d, n)$ of vertices of $\operatorname{conv}(\mathrm{WS})$ when $S \in\{0,1\}^{n}$ and W is a $\{0,1\}$-valued $d x n$ matrix ?
obviously $\quad v(d, n) \leq|W S|=O\left(n^{d}\right)$
in particular $\quad \mathrm{v}(2, n)=\mathrm{O}\left(n^{2}\right)$, and $\mathrm{v}(2, n)=\Omega\left(n^{0.5}\right)$
[Melamed-Onn 2014] Given matroid S of order n and $\{0,1, \ldots, p\}$-valued $d \times n$ matrix \mathbf{W}, the maximum number $\mathbf{m}(d, p)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S

Convex Matroid Optimization

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1, \ldots, p\}$-valued $d x n$ matrix \mathbf{W}, the maximum number $m(d, p)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S
[Deza-Manoussakis-Onn 2018] Given matroid S of order $n,\{0,1, \ldots, p\}-$ valued $d x n$ matrix \mathbf{W}, maximum number $\mathbf{m}(d, p)$ of vertices of conv(WS) is equal to the number of vertices of $H_{\infty}(d, p)$

$$
\mathbf{m}(d, p)=\left|H_{\infty}(d, p)\right|
$$

Convex Matroid Optimization

[Melamed-Onn 2014] Given matroid S of order n and $\{0,1, \ldots, p\}$-valued $d \times n$ matrix \mathbf{W}, the maximum number $\mathbf{m}(d, p)$ of vertices of $\operatorname{conv}(W S)$ is independent of n and S
[Deza-Manoussakis-Onn 2018] Given matroid S of order $n,\{0,1, \ldots, p\}$ valued $d \times n$ matrix \mathbf{W}, maximum number $\mathbf{m}(d, p)$ of vertices of $\operatorname{conv(WS)}$ is equal to the number of vertices of $H_{\infty}(d, p)$

$$
\mathbf{m}(d, p)=\left|H_{\infty}(d, p)\right|
$$

[Melamed-Onn 2014]
$d 2^{d} \leq \mathbf{m}(d, 1) \leq 2 \sum_{i=0}^{d-1}\binom{\left(3^{d}-3\right) / 2}{i}$
$24 \leq m(3,1) \leq 158$
$64 \leq \boldsymbol{m}(4,1) \leq 19840$
$\mathbf{m}(2,1)=8$
[Deza-Manoussakis-Onn 2017]

$$
d!2^{d} \leq \mathbf{m}(d, 1) \leq 2 \sum_{i=0}^{d-1}\binom{\left(3^{d}-3\right) / 2}{i}-f(d)
$$

$$
m(3,1)=96
$$

$$
\mathrm{m}(4,1)=5376
$$

$$
\mathbf{m}(2, p)=8 \sum_{i=1}^{p} \varphi(i)
$$

Primitive Zonotopes

(degree sequences)
\boldsymbol{D}_{d} : convex hull of the degree sequences of all hypergraphs on d nodes

$$
\boldsymbol{D}_{d}=H_{\infty}(d, 1)+
$$

$\boldsymbol{D}_{d}(\boldsymbol{k})$: convex hull of the degree sequences of all \boldsymbol{k}-uniform hypergraphs on d nodes

Primitive Zonotopes

 (degree sequences)\boldsymbol{D}_{d} : convex hull of the degree sequences of all hypergraphs on d nodes

$$
D_{d}=H_{\infty}(d, 1)+
$$

$\boldsymbol{D}_{d}(\boldsymbol{k})$: convex hull of the degree sequences of all \boldsymbol{k}-uniform hypergraphs on d nodes

Q: check whether $x \in \boldsymbol{D}_{d}(\boldsymbol{k}) \cap \mathbf{Z}^{d}$ is the degree sequence of a \boldsymbol{k}-uniform hypergraph. Necessary condition: sum of the coordinates of x is multiple of \boldsymbol{k}.
[Erdős-Gallai 1960]: for $\boldsymbol{k}=2$ (graphs) necessary condition is sufficient
[Liu 2013] exhibited counterexamples (holes) for $\boldsymbol{k}=3$ (Klivans-Reiner Q.)

Primitive Zonotopes

 (degree sequences)\boldsymbol{D}_{d} : convex hull of the degree sequences of all hypergraphs on d nodes

$$
D_{d}=H_{\infty}(d, 1)+
$$

$\boldsymbol{D}_{d}(\boldsymbol{k})$: convex hull of the degree sequences of all \boldsymbol{k}-uniform hypergraphs on d nodes

Q: check whether $x \in \boldsymbol{D}_{d}(\boldsymbol{k}) \cap \mathbf{Z}^{d}$ is the degree sequence of a \boldsymbol{k}-uniform hypergraph. Necessary condition: sum of the coordinates of x is multiple of \boldsymbol{k}.
[Erdős-Gallai 1960]: for $\boldsymbol{k}=2$ (graphs) necessary condition is sufficient
[Liu 2013] exhibited counterexamples (holes) for $\boldsymbol{k}=3$ (Klivans-Reiner Q.)
> Answer to Colbourn-Kocay-Stinson Q. (1986) Deciding whether a given integer sequence is the degree sequence of a 3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017]

Primitive zonotopes, convex matroid optimization, and degree sequences of hypergraphs

$\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes
$>$ Conjecture : $\left.\delta(d, k) \leq_{\lfloor }(k+1) d / 2\right\rfloor$ and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors (holds for all known $\delta(d, k)$)

$$
\Rightarrow \delta(d, k)=\lfloor(k+1) d / 2\rfloor \text { for } k<2 d
$$

$>\mathbf{m}(d, p)=\left|H_{\infty}(d, p)\right| \quad$ (convex matroid optimization complexity)
$>$ determination of $\delta(3, k)$ and of $\delta(d, 3) \quad ? \quad(\delta(d, 3)=2 d ?)$
$>$ complexity issues, e.g. decide whether a given point is a vertex of $Z_{\infty}(d, 1)$
> Answer to [Colbourn-Kocay-Stinson 1986] question:
Deciding whether a given integer sequence is the degree sequence of a 3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017]

Primitive zonotopes, convex matroid optimization, and degree sequences of hypergraphs

$\delta(d, k)$: largest diameter over all lattice (d, k)-polytopes
$>$ Conjecture : $\left.\delta(d, k) \leq_{\lfloor }(k+1) d / 2\right\rfloor$ and $\delta(d, k)$ is achieved, up to translation, by a Minkowski sum of primitive lattice vectors (holds for all known $\delta(d, k)$)

$$
\Rightarrow \delta(d, k)=\lfloor(k+1) d / 2\rfloor \text { for } k<2 d
$$

$>\mathbf{m}(d, p)=\left|H_{\infty}(d, p)\right| \quad$ (convex matroid optimization complexity)
$>$ determination of $\delta(3, k)$ and of $\delta(d, 3) \quad ? \quad(\delta(d, 3)=2 d ?)$
$>$ complexity issues, e.g. decide whether a given point is a vertex of $Z_{\infty}(d, 1)$
> Answer to [Colbourn-Kocay-Stinson 1986] question:
Deciding whether a given integer sequence is the degree sequence of a 3-hypergraph is NP-complete [Deza-Levin-Meesum-Onn 2017]
\checkmark thank you

