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Motivations

What is Quantum Gravity?

From the point of view of quantum field theory, we would like to write and
solve:

Z =

∫
M
DgµνDΦ exp(−S [gµν ,Φ])

gµν : metric structure on M; Φ: matter content.

What are D, S [·], Z?
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One approach: Holography

Postulate ([’t Hooft 1993, Susskind 1995]):

Quantum Gravity (D + 1 dimensions)

= Quantum Theory (D dimensions)

Hints for the emergence of gravity:

• Black hole entropy [Bekenstein 1972]:

SBH =
c3

4G~
Ahorizon

• Laws of black hole thermodynamics [Bardeen, Bekenstein, Carter, Hawking 1973]
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A simple model of holography

Bulk: Near-horizon limit of (near-extremal) black holes
→ Jackiw-Teitelboim theory (D = 2):

Z =

∫
DgµνDφ exp

(
1

16πGN

∫
d2x
√
gφ(R + 2) +

φb

8πGN

∮
dsk

)
.

Source: math.slu.edu

Boundary: Sachdev-Ye-Kitaev model (D = 1)

H =
∑

1≤i<j<k<l≤N

Jijklψiψjψkψl ,
〈
J2
ijkl

〉
∝ J2

N3
.
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A simple model of holography

Same effective action on the boundary (a comprehensive review is [Mertens 2022]):

φb

8πGN

∮
S1

duSch[t, u] ,

with t : S1 → S1, t′ > 0 (reparametrization) and Sch[t, u] =
(

t′′

t′

)′
− 1

2

(
t′′

t′

)2

.

This theory is integrable! (coadjoint orbit of the Virasoro group)

Also equivalent to a random matrix theory [Saad, Shenker, Stanford 2019]:

Z =

∫
dH exp (−TrV (H)) ,

ρ0(E) =
γ

2π2
sinh

(
2π
√

2γE
)
.

But... no Hilbert space interpretation!
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Immersions of the disk

We are interested in metrics on the disk.

Conformal gauge:
ds2 = e2Σ|dz |2 , z = x + iy .

Metrics of constant curvature:

4∂z∂z̄Σ = −κe2Σ , κ = ±1, 0 .

Theorem

a) Let Σb : S1 → R be a continuous function defined on the boundary of the
disk. Then there exists a unique solution Σ ∈ C∞(D) of the Liouville
equation such that Σ = Σb on the boundary.

b) The most generic solution (up to disk automorphisms, PSL(2,R)) takes
the form:

eΣ =
2|F ′(z)|

1 + κ|F (z)|2
.
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Immersions of the disk

We parametrize metrics on the disk D:

ds2 =
4|F ′(z)|2(

1 + κ|F (z)|2
)2 |dz |

2,

{
F : D → H2 holomorphic,

F ′(z) 6= 0 ∀z ∈ D.

If F is globally injective ( =⇒ F ′(z) 6= 0): embedding.
If F is locally injective (⇐⇒ F ′(z) 6= 0): immersion.

Figure: Reparametrization embedding – General embedding – Immersion
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Questions

• How does considering immersions change the previous results?

• What are the properties of those immersions?
Number of self-overlaps, fractals,...?

• Of their boundaries?
Do they characterise the whole immersion?
Minimal combinatorial properties that lead to an immersion?

21 / 50



Self-overlapping curves: History

Self-overlapping curves = curves that are boundary of an immersed disk.

The classification of holomorphic extensions of the immersions of S1 was posed
by Picard [1893], then solved by Titus [1961] and Blank [1967] (cuts and words).

Such curves can bound multiple non-homeomorphic disks!

Shor & Van Wyk [1992] gave an O(n3) algorithm to determine and count
inequivalent extensions (constrained Delaunay triangulations).
(see also [Mukherjee 2014] for an interesting modification).

Graver & Cargo [2011] solved the problem with graph theory (covering graph).

Evans & Wenk [2020] (interior boundary, minimum homotopy area).
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Self-overlapping curves: Numbers

• Turning number

turn(γ) =
1

2π

∮
γ

kds = 1 , k =
x ′y ′′ − y ′x ′′

(x ′2 + y ′2)3/2
.

• Winding number (number of overlaps)

windγ(z0) =
1

2πi

∮
γ

γ′(t)

γ(t)− z0
dt ≥ 0 .
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Self-overlapping curves: Cuts

Curves that can be decomposed into simple curves through well-chosen cuts.
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Self-overlapping curves: Maximally Planar Matchings

[Bonsma, Breuer 2012] Mapping the curve, together with good Blank cuts*, to a
chordal graph, the problem of counting inequivalent disks corresponds to
counting Maximum Independent Sets in the circle graph (for n vertices of the
circle graph, O(n2)).

*such that it can define the interior of a disk
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Self-overlapping curves: Inequivalent disks

Examples of boundary curves that don’t have a unique holomorphic extension:

(a) Milnor (2 disks) (b) Bennequin (5 disks)

NB: They can also be glued together.
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Milnor’s doodle
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Milnor’s doodle
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Milnor’s doodle

Figure: Minimal number of cuts and the associated “good” pairings.
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Self-overlapping curves: technical results

Theorem (Graver, Cargo 2011)

An oriented normal curve γ, with 0 ≤ windγ(f ) ≤ 2, admits a unique extension
if and only if:

(i) the number of faces with windγ(f ) = 2 equals the number of faces with
windγ(f ) = 0,

(ii) all faces with windγ(f ) = 2 have boundaries of even length.

Theorem (Shor, Van Wyk 1992)

The number of incompatible decompositions is equal to the number of
combinatorially inequivalent constrained Delaunay triangulations.
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Monte Carlo: 2D quantum “flat” gravity

Random samples of immersed disks in R2 (i.e. random flat metrics on the disk)

1) Generate random Gaussian field ΣD(θ): 2 parameters: {N, σ}
(2π-uniform: dθ = 2π

N
)

2) ` =
∫
dθeΣD

(arclength-uniform: dϑ = 2π
`
eΣDdθ)

3) Redefine Σ = −ΣD + 2 log(`/2π)

1 2 3 4 5 6
θ

-12

-10

-8

-6

-4

-2

ΣD

1 2 3 4 5 6
θ

-4

-2

2

4

6

8

Σ

Σ has an action invariant under PSL(2,R).
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Monte Carlo: 2D quantum “flat” gravity

Random samples of immersed disks in R2 (i.e. random flat metrics on the disk)

4) Analytic continuation:

H(z)|z=e iθ = Σ(θ) + iΓ(θ) , Γ(θ) =
1

2π
P

∫
dθ′

Σ(θ′)

tan θ′−θ
2

,

5) Integrate the exponential of its analytic continuation:

F (z)|z=e iθ = i

∫ θ

0

dθ′e iθ
′

exp
[
H(e iθ

′
)
]
, (gauge: F (1) = 0) .

-2.0 -1.5 -1.0 -0.5 0.5

-1.5

-1.0

-0.5

0.5

1.0
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Monte Carlo: Samples

-1.5 -1.0 -0.5
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(a) σ = 0.5
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(f) σ = 8
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Monte Carlo: Lengths

` =

∫
dθeΣ(θ) , 〈`〉 = 2π ,〈

`2
〉

=
4π2

σ
exp

(
−πσ

2

12

)
Erfi

(√
πσ

2

)
,

∆` =

√
〈`2〉 − 〈`〉2 ,

Erfi(z) =
−2i
√
π

∫ z

0

dt et
2
.

0.5 1.0 1.5 2.0 2.5 3.0
σ

2

4

6

8

10

(Δl/l)^2

exact

105 samples

46 / 50



Monte Carlo: Areas (preliminary, 500 samples)

A =

∫
dθdρρe2Σ(θ,ρ) .

1.0 1.5 2.0 2.5 3.0

2

4

6

8

10

12

14

(a) 〈A〉

1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

(b) 4π 〈A〉 /
〈
l2
〉
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Perspectives

• What is this kind of new random object?
(fixed length, extrinsic curvature, order parameter...)

• Implement counting and identification of distinct immersions.
(faster algorithms using minimal number of cuts?)

• Partition function.

• Hyperbolic case, other topologies...

Thank you!
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