	Packing bits 2d 00000000 00	Bounds	Upper 000	Lower 0000	Picking well	Beware CTM 00000	Results 00000
--	---	--------	--------------	---------------	--------------	---------------------	------------------

Bounding entropies of hard squares and friends How to pick a good vector

Andrew Rechnitzer Yao-ban Chan

Melbourne, April 2013

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
•0000000	00000	000	000	0000	00000	00000	00000
INE YE OI	.DE DÆ	S					

In the dark ages there was tape.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
•0000000	00000	000	000	0000	00000	00000	00000
INE YE OL	DE DÆS	5					

In the dark ages there was tape.

Data is stored along tape as magnetised regions.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
0000000	00000	000	000	0000	00000	00000	00000
FIELD UP.	FIELD I	OWN. OI	NE AND 7	ZERO			

Naive idea — store 1's and 0's as regions with field in different directions.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
0000000	00000	000	000	0000	00000	00000	00000
FIELD UP.	FIELD I	DOWN, OI	NE AND Z	ZERO			

Naive idea — store 1's and 0's as regions with field in different directions.

A core question

How much data can we store?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
0000000	00000	000	000	0000	00000	00000	00000
Field up.	FIELD I	DOWN, ON	NE AND Z	ZERO			

Naive idea — store 1's and 0's as regions with field in different directions.

A core question

How much data can we store?

- *n* regions can store 2^{*n*} possible words.
- 1 bit per region.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
0000000	00000	000	000	0000	00000	00000	00000
REAL WO	RLD GE	TS IN THE	E WAY				

The engineering is easier if we encode data as

- Store 0 as "field unchanged"
- Store 1 as "field changed"

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
000●0000	00000	000	000	0000	00000	00000	00000
FLIP-FLOP	PROBL	EMS					

- The magnetic regions are not perfectly discrete
- The read mechanism might misread "change-change".

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00000
ENCODE I	DATA D	IFFERENT	ĽY				

- Store data so that we forbid "change-change"
- Store words in {0,1} so that there is no "11" subword.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
0000●000	00000	000	000	0000	00000	00000	00000
ENCODE	DATA D	IFFERENT	ΊLΥ				

- Store data so that we forbid "change-change"
- Store words in {0,1} so that there is no "11" subword.

A core question

How much data can we store?

How many legal words are there?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00000
COUNT L	EGAL W	ORDS					

Let

- $\psi_n(\oplus)$ be # legal words ending in \oplus
- $\psi_n(\ominus)$ be # legal words ending in \ominus

$$\psi_{n+1}(\oplus) = \psi_n(\ominus)$$

$$\psi_{n+1}(\ominus) = \psi_n(\oplus) + \psi_n(\ominus)$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00000
COUNT L	EGAL W	ORDS					

Let

- $\psi_n(\oplus)$ be # legal words ending in \oplus
- $\psi_n(\ominus)$ be # legal words ending in \ominus

$$\psi_{n+1}(\oplus) = \psi_n(\oplus)$$

$$\psi_{n+1}(\oplus) = \psi_n(\oplus) + \psi_n(\oplus) \qquad = \psi_n$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00000
COUNT L	EGAL W	ORDS					

Let

- $\psi_n(\oplus)$ be # legal words ending in \oplus
- $\psi_n(\ominus)$ be # legal words ending in \ominus

$$\begin{split} \psi_{n+1}(\oplus) &= \psi_n(\oplus) \\ \psi_{n+1}(\oplus) &= \psi_n(\oplus) + \psi_n(\oplus) \\ \psi_{n+1}(\oplus) &= \psi_n(\oplus) + \psi_{n-1}(\oplus) \\ \psi_n &= \psi_{n-1} + \psi_{n-2} \end{split}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
000000●0	00000	000	000	0000	00000	00000	00000
BUILD A	TRANSF	ER MAT	RIX				

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
000000●0	00000	000	000	0000	00000	00000	00000
BUILD A	TRANSF	ER MATR	IX				

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
000000●0	00000	000	000	0000	00000	00000	00000
BUILD A	TRANSF	ER MAT	RIX				

Number of words $\sim n^{\text{th}}$ power of dominant eigenvalue

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
0000000	00000	000	000	0000	00000	00000	00000
1D IS EASY	Ý						

So for this "11"-forbidden model

$$\psi_n \sim \left(\frac{1+\sqrt{5}}{2}\right)^n$$

Entropy of encoding is $\log_2\left(\frac{1+\sqrt{5}}{2}\right)\approx 0.69$ bits per region.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
0000000	00000	000	000	0000	00000	00000	00000
1D IS EASY	Y						

So for this "11"-forbidden model

$$\psi_n \sim \left(\frac{1+\sqrt{5}}{2}\right)^n$$

Entropy of encoding is $\log_2\left(\frac{1+\sqrt{5}}{2}\right) \approx 0.69$ bits per region.

What about other models?

• Run-length limited (d, k)

— forbid subwords $\{11, 101, 1001, \dots 10^d 1, 0^{k+1}\}$.

• Charge model (*b*)

— cumulative charge lies between $\pm b$.

• Parity models

— even # 0's between 1's.

— odd # 0's between 1's.

Use same transfer matrix machinery.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results		
00000000	●0000	000	000	0000	00000	00000	00000		
DUT NOW WE INFINE DUTUDE									

BUT NOW WE LIVE IN THE FUTURE...

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	●0000	000	000	0000	00000	00000	00000
BUT NOW	WEIN	E IN THE	FUTUPE				

and we can store data in 2d! (InPhase Technologies & hVault)

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	●0000	000	000	0000	00000	00000	00000
BUT NOW	WEIN	E IN THE	FUTURE				

and we can store data in 2d! (InPhase Technologies & hVault)

Coding theorists extend entropy question from 1d to 2d

A core question How much data can we store in 2d?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	●0000	000	000	0000	00000	00000	00000
BUT NOW	WEIN	E IN THE	FUTURE				

and we can store data in 2d! (InPhase Technologies & hVault)

Coding theorists extend entropy question from 1d to 2d

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	0●000	000	000	0000	00000	00000	00000
WHAT DO	ES THI	S LOOK LI	KE?				

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	0●000	000	000	0000	00000	00000	00000
WHAT DO	ES THE	S LOOK LI	KE?				

2d coding problem = hard square lattice gas

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	0●000	000	000	0000	00000	00000	00000
WHAT DO	ES THIS	5 LOOK LI	KE?				

2d coding problem = hard square lattice gas = independent sets on \mathbb{Z}^2

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00●00	000	000	0000	00000	00000	00000
WHAT DO	WE WA	NT TO K	NOW?				

2d shift of finite type

- Given a finite alphabet *A*, and
- a finite set of words *F*,
- a word in $\mathcal{A}^{\mathbb{Z}^2}$ is valid when it avoids words in \mathcal{F} .

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00●00	000	000	0000	00000	00000	00000
WHAT DO	WE WA	NT TO K	NOW?				

2d shift of finite type

- Given a finite alphabet A, and
- a finite set of words *F*,
- a word in $\mathcal{A}^{\mathbb{Z}^2}$ is valid when it avoids words in \mathcal{F} .

Entropy

- Let $C_{n \times n}$ be the # valid $n \times n$ words.
- Entropy is $\log_2 \kappa = \lim_{n \to \infty} \frac{1}{n^2} \log_2 C_{n \times n}$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00●00	000	000	0000	00000	00000	00000
WHAT DO	WE WA	NT TO K	NOW?				

2d shift of finite type

- Given a finite alphabet A, and
- a finite set of words *F*,
- a word in $\mathcal{A}^{\mathbb{Z}^2}$ is valid when it avoids words in \mathcal{F} .

Entropy

- Let $C_{n \times n}$ be the # valid $n \times n$ words.
- Entropy is $\log_2 \kappa = \lim_{n \to \infty} \frac{1}{n^2} \log_2 C_{n \times n}$

So what do we know...

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	000●0	000	000	0000	00000	00000	00000
PROVABL	Y HARE)					

Algorithmically undecideable if there are any valid words
[Berger 1966]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	000●0	000	000	0000	00000	00000	00000
PROVABLY	Y HARD	1					

• Algorithmically undecideable if there are any valid words

[Berger 1966]

• In 1d, $\kappa \in \mathbb{R}^+$ is an entropy iff κ is a Peron number

[Lind 1983]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	000●0	000	000	0000	00000	00000	00000
PROVABL	Y HARE)					

• Algorithmically undecideable if there are any valid words

[Berger 1966]

• In 1d, $\kappa \in \mathbb{R}^+$ is an entropy iff κ is a Peron number

[Lind 1983]

• In 2d and up, $\kappa \in \mathbb{R}^+$ is an entropy iff κ is recursively enumerable [Hochman & Meyerovitch 2007]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	000●0	000	000	0000	00000	00000	00000
PROVABL	Y HARE)					

• Algorithmically undecideable if there are any valid words

[Berger 1966]

• In 1d, $\kappa \in \mathbb{R}^+$ is an entropy iff κ is a Peron number

[Lind 1983]

• In 2d and up, $\kappa \in \mathbb{R}^+$ is an entropy iff κ is recursively enumerable

[Hochman & Meyerovitch 2007]

• In 2d and up, κ known exactly for very few SFTs

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	0000●	000	000	0000	00000	00000	00000
EXAMPLE	OF EXA	СТ					

Odd constraint

Words in $\{0, 1\}$ so that between 1's there are odd number of 0's. [Louidor & Marcus 2010] $\kappa = \sqrt{2}$.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	0000●	000	000	0000	00000	00000	00000
EXAMPLE	OF EXA	ΔСТ					

Odd constraint

Words in $\{0, 1\}$ so that between 1's there are odd number of 0's. [Louidor & Marcus 2010] $\kappa = \sqrt{2}$.

One sub-lattice fixed as 0's and other is unconstrained.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	●00	000	0000	00000	00000	00000
Bounds							

Back to hardsquares...

- No reason that κ should have a "nice" expression.
- So try to find tight bounds.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	•00	000	0000	00000	00000	00000
Bounds							

Back to hardsquares...

- No reason that κ should have a "nice" expression.
- So try to find tight bounds.

Most approaches based on transfer matrices

Big problem — # states grows exponentially with width
Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	O●O	000	0000	00000	00000	00000
TRANSFEI	R MATR	IX					

 T_w = column-to-column TM for hard squares in strip of width w

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	O●O	000	0000	00000	00000	00000
TRANSFEI	R MATR	IX					

 T_w = column-to-column TM for hard squares in strip of width w

	000 00	Image: Second se		(ê				
00 00	$\left[1 \right]$	$\left[1 \right]$	1	1	0	$\left[1 \right]$	0	0
	$\begin{bmatrix} 1 \end{bmatrix}$	0	$\begin{bmatrix} 1 \end{bmatrix}$	$\begin{bmatrix} 1 \end{bmatrix}$		0		0
$\left[\begin{array}{c} \circ\\ \circ\end{array}\right]$	$\left[1 \right]$	$\left[1 \right]$		$\begin{bmatrix} 1 \end{bmatrix}$	0	$\begin{bmatrix} 1 \end{bmatrix}$	0	0
●	$\left[1 \right]$	$\left[1 \right]$	1	0	0	0	0	0
	0	0	0	0	0	0	0	0
	$\begin{bmatrix} 1 \end{bmatrix}$	0	1	0	0	0	0	0
) •	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	O●O	000	0000	00000	00000	00000
TRANSFER	R MATR	IX					

 T_w = column-to-column TM for hard squares in strip of width w

$$\kappa = \lim_{w \to \infty} \Lambda_w^{1/w}$$

where Λ_w is dominant eigenvalue

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	00●	000	0000	00000	00000	00000
I SEELLI I	DEASE	ROM I	INFAR AL	CEBRA 1	01		

• Eigenvalues $\lambda_1, \ldots, \lambda_n$ all real

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	00●	000	0000	00000	00000	00000
I SEELL II		OM LINE	AP ALCI	BRA 101			

- Eigenvalues $\lambda_1, \ldots, \lambda_n$ all real
- Min-max Theorem for any non-trivial vector *x*,

$$\lambda_{min} \leq rac{\langle x \mid V \mid x
angle}{\langle x \mid x
angle} \leq \lambda_{max}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	00●	000	0000	00000	00000	00000
I SEELL II		OM LINE	AP ALCI	BRA 101			

- Eigenvalues $\lambda_1, \ldots, \lambda_n$ all real
- Min-max Theorem for any non-trivial vector *x*,

$$\lambda_{min} \leq rac{\langle x \mid V \mid x
angle}{\langle x \mid x
angle} \leq \lambda_{max}$$

• Trace of power

$$\operatorname{Tr} V^k = \lambda_1^k + \lambda_2^k + \dots + \lambda_n^k$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	00●	000	0000	00000	00000	00000
ISEEIII		POMI	INFAR AL	CEBRA 1	01		

- Eigenvalues $\lambda_1, \ldots, \lambda_n$ all real
- Min-max Theorem for any non-trivial vector *x*,

$$\lambda_{min} \leq rac{\langle x \mid V \mid x
angle}{\langle x \mid x
angle} \leq \lambda_{max}$$

• Trace of power

$$\operatorname{Tr} V^{k} = \lambda_{1}^{k} + \lambda_{2}^{k} + \dots + \lambda_{n}^{k}$$
$$\operatorname{Tr} V^{2k} = \lambda_{1}^{2k} + \lambda_{2}^{2k} + \dots + \lambda_{n}^{2k} \ge \lambda_{max}^{2k}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	00●	000	0000	00000	00000	00000
USEFUL II	DEAS FR	OM LINE	AR ALGE	EBRA 101			

- Eigenvalues $\lambda_1, \ldots, \lambda_n$ all real
- Min-max Theorem for any non-trivial vector *x*,

$$\lambda_{min} \leq rac{\langle x \, | \, V \, | \, x
angle}{\langle x \, | \, x
angle} \leq \lambda_{max}$$

• Trace of power

$$\begin{aligned} & \operatorname{Tr} V^k = \lambda_1^k + \lambda_2^k + \dots + \lambda_n^k \\ & \operatorname{Tr} V^{2k} = \lambda_1^{2k} + \lambda_2^{2k} + \dots + \lambda_n^{2k} \geq \lambda_{max}^{2k} \end{aligned}$$

Leverage these to get good bounds

[Engel 1990] and [Calkin & Wilf 1998]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	●00	0000	00000	00000	00000
TRACE TR	ICK						

Tr
$$V^{2k} = \sum V_{\psi_0,\psi_1} V_{\psi_1,\psi_2} \dots V_{\psi_{2k-1},\psi_0}$$

Sum is over all sequences of states, but only "legal" ones count

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	●00	0000	00000	00000	00000
TRACE TR	ICK						

Tr
$$V^{2k} = \sum V_{\psi_0,\psi_1} V_{\psi_1,\psi_2} \dots V_{\psi_{2k-1},\psi_0}$$

Sum is over all sequences of states, but only "legal" ones count

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	●00	0000	00000	00000	00000
TRACE TR	ICK						

$${
m Tr}\,V^{2k} = \sum V_{\psi_0,\psi_1}V_{\psi_1,\psi_2}\dots V_{\psi_{2k-1},\psi_0}$$

Sum is over all sequences of states, but only "legal" ones count

So Tr T_w^{2k} is equivalent to "legal" configurations on rings

$$\operatorname{Tr} T_w^{2k} = \left\langle \mathbf{1} \left| B_{2k}^{w-1} \right| \mathbf{1} \right\rangle$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	●00	0000	00000	00000	00000
TRACE TR	ICK						

$$\text{Tr } V^{2k} = \sum V_{\psi_0,\psi_1} V_{\psi_1,\psi_2} \dots V_{\psi_{2k-1},\psi_0}$$

Sum is over all sequences of states, but only "legal" ones count

So Tr T_w^{2k} is equivalent to "legal" configurations on rings

$$\operatorname{Tr} T_{w}^{2k} = \left\langle \mathbf{1} \left| B_{2k}^{w-1} \right| \mathbf{1} \right\rangle$$

Sneaky — "width" is now exponent.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	0●0	0000	00000	00000	00000
LIMITS							

So build TM for rings B_{2k} — also grows exponentially with circumference.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	0●0	0000	00000	00000	00000
LIMITS							

So build TM for rings B_{2k} — also grows exponentially with circumference.

$$\Lambda_w^{2k} \leq \operatorname{Tr} T_w^{2k} = \left\langle \mathbf{1} \left| B_{2k}^{w-1} \right| \mathbf{1} \right\rangle$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	0●0	0000	00000	00000	00000
LIMITS							

So build TM for rings B_{2k} — also grows exponentially with circumference.

$$\Lambda_w^{2k} \leq \operatorname{Tr} T_w^{2k} = \left\langle \mathbf{1} \left| B_{2k}^{w-1} \right| \mathbf{1} \right\rangle$$

Raise to 1/w and let width $\rightarrow \infty$

1

$$\begin{array}{llll} \Lambda_w^{2k/w} & \leq & \left(\operatorname{Tr} T_w^{2k}\right)^{1/w} & = & \left\langle \mathbf{1} \, \big| \, B_{2k}^{w-1} \, \big| \, \mathbf{1} \right\rangle^{1/w} \\ \downarrow & & \downarrow \\ \kappa^{2k} & \leq & \xi_{2k} \end{array}$$

Upper bound

Let B_{2k} be the TM for system on ring of circumference 2k, then

 $\kappa \leq \xi_{2k}^{1/2k}$

where ξ_{2k} is dominant eigenvalue of B_{2k} .

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	00●	0000	00000	00000	00000
RESULTS							

 $\xi_2 = 2.41421356237309504\ldots$ $\kappa \le 1.55377397403003730\ldots$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	00●	0000	00000	00000	00000
RESULTS							

- $\xi_2 = 2.41421356237309504\ldots$ $\kappa \le 1.55377397403003730\ldots$
- $\xi_4 = 5.15632517465866169\ldots$ $\kappa \le 1.50690222590181180\ldots$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	00●	0000	00000	00000	00000
RESULTS							

$$\begin{split} \xi_2 &= 2.41421356237309504\ldots \quad \kappa \leq 1.55377397403003730\ldots \\ \xi_4 &= 5.15632517465866169\ldots \quad \kappa \leq 1.50690222590181180\ldots \\ \xi_6 &= 11.5517095660481450\ldots \quad \kappa \leq 1.50351480947590302\ldots \\ & \textbf{[Calkin & Wilf 1998]} \end{split}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	00●	0000	00000	00000	00000
RESULTS							

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	00●	0000	00000	00000	00000
RESULTS							

$\xi_2 = 2.41421356237309504\ldots$	$\kappa \leq 1.55377397403003730\ldots$
$\xi_4 = 5.15632517465866169\ldots$	$\kappa \leq 1.50690222590181180\ldots$
$\xi_6 = 11.5517095660481450\ldots$	$\kappa \leq 1.50351480947590302\ldots$
	[Calkin & Wilf 1998]
$\xi_{36} = 2349759.74655388695\dots$	$\kappa \leq 1.5030480824753399273$
	[Friedland, Lundow & Markström 2010]

Huge transfer matrix — use symmetries to compress it.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	●000	00000	00000	00000
RAYLEIGH	I OUOT	IENTS					

$$\lambda_{min} \leq rac{\langle x \, | \, V \, | \, x
angle}{\langle x \, | \, x
angle} \leq \lambda_{max}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00000
RAYLEIGH	I OUOT	IENTS					

$$\lambda_{min} \leq rac{\langle x \, | \, V \, | \, x
angle}{\langle x \, | \, x
angle} \leq \lambda_{max}$$

So the simplest idea — set $|x\rangle = |\mathbf{1}\rangle$.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00000
RAYLEIGH	I OUOT	IENTS					

$$\lambda_{min} \leq rac{\langle x \, | \, V \, | \, x
angle}{\langle x \, | \, x
angle} \leq \lambda_{max}$$

So the simplest idea — set $|x\rangle = |\mathbf{1}\rangle$.

$$\Lambda_w \geq \frac{\langle \mathbf{1} \mid T_w \mid \mathbf{1} \rangle}{\langle \mathbf{1} \mid \mathbf{1} \rangle}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	●000	00000	00000	00000
RAYLEIGH	I OUOT	IENTS					

$$\lambda_{min} \leq rac{\langle x \, | \, V \, | \, x
angle}{\langle x \, | \, x
angle} \leq \lambda_{max}$$

So the simplest idea — set $|x\rangle = |\mathbf{1}\rangle$.

$$\Lambda_w \geq \frac{\langle \mathbf{1} \, | \, T_w \, | \, \mathbf{1} \rangle}{\langle \mathbf{1} \, | \, \mathbf{1} \rangle}$$

For fixed *w* this is silly — instead compute the eigenvalue by power method.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	●000	00000	00000	00000
RAYLEIGH	I OUOT	IENTS					

$$\lambda_{min} \leq rac{\langle x \, | \, V \, | \, x
angle}{\langle x \, | \, x
angle} \leq \lambda_{max}$$

So the simplest idea — set $|x\rangle = |\mathbf{1}\rangle$.

$$\Lambda_w \geq \frac{\langle \mathbf{1} \, | \, T_w \, | \, \mathbf{1} \rangle}{\langle \mathbf{1} \, | \, \mathbf{1} \rangle}$$

For fixed w this is silly — instead compute the eigenvalue by power method. But if we can choose a better vector...

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00000
SNEAKY T	RICKS .	AGAIN					

Vector $|\mathbf{1}\rangle$ a poor choice.

$$\Lambda_{w}^{p} \geq \frac{\left\langle \mathbf{1} \mid T_{w}^{p} \mid \mathbf{1} \right\rangle}{\left\langle \mathbf{1} \mid \mathbf{1} \right\rangle}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0●00	00000	00000	00000
SNEAKY T	RICKS	AGAIN					

Power method — replace $|\mathbf{1}\rangle$ with $T_w^q |\mathbf{1}\rangle$.

$$\Lambda_{w}^{p} \geq \frac{\left\langle T_{w}^{q} \mathbf{1} \mid T_{w}^{p} \mid T_{w}^{q} \mathbf{1} \right\rangle}{\left\langle T_{w}^{q} \mathbf{1} \mid T_{w}^{q} \mathbf{1} \right\rangle}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0●00	00000	00000	00000
SNEAKY T	RICKS	AGAIN					

Massage denominator

$$\left\langle T_{w}^{q}\mathbf{1} \,\middle|\, T_{w}^{q}\mathbf{1} \right\rangle = \left\langle \mathbf{1} \,\middle|\, T_{w}^{2q} \,\middle|\, \mathbf{1} \right\rangle$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0●00	00000	00000	00000
SNEAKY T	AGAIN						

Massage denominator

$$\left\langle T_{w}^{q}\mathbf{1} \,\middle|\, T_{w}^{q}\mathbf{1} \right\rangle = \left\langle \mathbf{1} \,\middle|\, T_{w}^{2q} \,\middle|\, \mathbf{1} \right\rangle$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0●00	00000	00000	00000
SNEAKY 7	RICKS	AGAIN					

All configs in $w \times 2q$ rectangle = configs in $2q \times w$ rectangle

$$\left\langle T_{w}^{q}\mathbf{1} \left| T_{w}^{q}\mathbf{1} \right\rangle = \left\langle \mathbf{1} \left| T_{w}^{2q} \right| \mathbf{1} \right\rangle = \left\langle \mathbf{1} \left| T_{2q}^{w} \right| \mathbf{1} \right\rangle$$

Sneaky — width becomes exponent

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	00●0	00000	00000	00000
SNEAKY T	RICKS .	AGAIN					

Look at numerator now

$$\Lambda_w^p \geq \frac{\left\langle T_w^q \mathbf{1} \, \middle| \, T_w^p \, \middle| \, T_w^q \mathbf{1} \right\rangle}{\left\langle T_w^q \mathbf{1} \, \middle| \, T_w^q \mathbf{1} \right\rangle}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	00●0	00000	00000	00000
SNEAKY T	RICKS .	AGAIN					

Massage things a little

$$\left\langle T_{w}^{q}\mathbf{1} \mid T_{w}^{p} \mid T_{w}^{q}\mathbf{1} \right\rangle = \left\langle \mathbf{1} \mid T_{w}^{2q+p} \mid \mathbf{1} \right\rangle$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	00●0	00000	00000	00000
SNEAKY T	AGAIN						

Massage things a little

$$\left\langle T_{w}^{q}\mathbf{1} \mid T_{w}^{p} \mid T_{w}^{q}\mathbf{1} \right\rangle = \left\langle \mathbf{1} \mid T_{w}^{2q+p} \mid \mathbf{1} \right\rangle$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	00●0	00000	00000	00000
SNEAKY T	AGAIN						

Again use the $x \leftrightarrow y$ symmetry

$$\langle T_w^q \mathbf{1} | T_w^p | T_w^q \mathbf{1} \rangle = \langle \mathbf{1} | T_w^{2q+p} | \mathbf{1} \rangle = \langle \mathbf{1} | T_{2q+p}^{w} | \mathbf{1} \rangle$$

Sneaky — width becomes exponent

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	000●	00000	00000	00000
RESULTS							

Putting this together

$$\Lambda_{w}^{p} \geq \frac{\left\langle \mathbf{1} \mid T_{2q+p}^{w} \mid \mathbf{1} \right\rangle}{\left\langle \mathbf{1} \mid T_{2q}^{w} \mid \mathbf{1} \right\rangle}$$

Now raise to 1/w and let $w \to \infty$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	000●	00000	00000	00000
RESULTS							

Putting this together

$$\Lambda_{w}^{p} \geq \frac{\left\langle \mathbf{1} \mid T_{2q+p}^{w} \mid \mathbf{1} \right\rangle}{\left\langle \mathbf{1} \mid T_{2q}^{w} \mid \mathbf{1} \right\rangle}$$

Now raise to 1/w and let $w \to \infty$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	000●	00000	00000	00000
RESULTS							

Putting this together

$$\Lambda_{w}^{p} \geq \frac{\left\langle \mathbf{1} \mid T_{2q+p}^{w} \mid \mathbf{1} \right\rangle}{\left\langle \mathbf{1} \mid T_{2q}^{w} \mid \mathbf{1} \right\rangle}$$

Now raise to 1/w and let $w \to \infty$

Lower bound[Calkin & Wilf 1998]For any $p,q \geq 1$ $\kappa^p \geq \frac{\Lambda_{2q+p}}{\Lambda_{2q}}$

- $\kappa \ge 1.50304768131466259\dots(p=3,q=2)$
- $\kappa \ge 1.50304808247533226 \dots (p = 1, q = 13)$

[Calkin & Wilf] [Friedland et al]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	•0000	00000	00000
PICK A BI	ETTER V	ECTOR					

• We use corner transfer matrix formalism to pick a better vector.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	•0000	00000	00000
PICK A B	etter v	VECTOR					

- We use corner transfer matrix formalism to pick a better vector.
- Corner transfer matrices used to study lattice gas & magnet models
 [Baxter 1968]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	•0000	00000	00000
PICK A B	ETTER V	ECTOR					

- We use corner transfer matrix formalism to pick a better vector.
- Corner transfer matrices used to study lattice gas & magnet models
 [Baxter 1968]
- Very famously lead to solution of hard hexagons [Baxter 1980]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	0●000	00000	00000
HOW TO		A VECTO	קר				

Each entry of vector corresponds to a state along the cut

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	O●OOO	00000	00000
HOW TO I		VECTOR	2				

Each entry of vector corresponds to a state along the cut

Baxter's Ansatz which extends [Kramers & Wannier 1941] Build Rayleigh quotient with vector ψ $\psi(\sigma_1, \sigma_2, \dots, \sigma_w) = \text{Tr} [F(\sigma_1, \sigma_2)F(\sigma_2, \sigma_3) \dots F(\sigma_w, \sigma_1)]$ For some matrices F(a, b).

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00●00	00000	00000
WHAT DC	DES THI	s look l	ike?				

• Can think of *F* as a "literal" half-row transfer matrix. — but it can be almost any matrix.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00●00	00000	00000
WHAT DO	DES THI	s look	LIKE?				

- Can think of *F* as a "literal" half-row transfer matrix. — but it can be almost any matrix.
- Trace makes it a cylinder doesn't change bound.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	000€0	00000	00000
PAVIEICH		TENT	TRACES				

RAYLEIGH QUOTIENT \rightarrow TRACES

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	000●0	00000	00000
RAYLEIGH	I OUOT	ient \rightarrow T	RACES				

Where $\omega = 1$ if face valid else $\omega = 0$.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	0000●	00000	00000
TO GET A	BOUNE)					

Lower bound

$$\kappa = \lim_{w \to \infty} \Lambda_w^{1/v}$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	0000●	00000	00000
TO GET A	BOUNE)					

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	0000●	00000	00000
TO GET A	BOUNE)					

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	0000●	00000	00000
TO GET A	BOUNI)					

• Pick matrices F — note dimension need not be related to w

- Form matrices *R* and *S*
- **3** Compute dominant eigenvalues of ξ , η .

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	0000●	00000	00000
TO GET A	BOUNI)					

• Pick matrices F — note dimension need not be related to w

- Form matrices *R* and *S*
- **3** Compute dominant eigenvalues of ξ , η .

But how do we pick *F*?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	0000●	00000	00000
TO GET A	BOUNI)					

• Pick matrices F — note dimension need not be related to w

- Form matrices *R* and *S*
- **3** Compute dominant eigenvalues of ξ , η .

But how do we pick *F*?

And where are these infamous "corner transfer matrices"?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	•0000	00000
EIGENVEO	CTORS +	\rightarrow EIGENN	ATRICES	5(?)			

 $R\left|X\right\rangle = \xi\left|X\right\rangle$

 $S\left|Y\right\rangle =\eta\left|Y\right\rangle$

 $|X\rangle$, $|Y\rangle$ eigenvectors of *R* and *S*.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	●0000	00000
EIGENVEO	CTORS +	\rightarrow EIGENN	MATRICE	5(?)			

 $X(a), Y(a, b) \approx$ "half-plane transfer matrices"

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	0●000	00000
ΤΟ ΜΑΧΙΝ	IISE, PL	$ANES \mapsto 0$	CORNER	× CORNEI	र		

Baxter showed that Rayleigh quotient stationary when

$$X(a) = A(a)^{2} Y(a,b) = A(a)F(a,b)A(b)$$

where *A* is half of X — a "corner transfer matrix" Baxter then carefully picked *F* to make things work.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00●00	00000
Renorm	ALISE II	NSTEAD					

- We have used "corner transfer matrix renormalisation group method"
 [Nishino & Okunishi 1996]
- Related to density matrix renormalisation group method

[White 1992]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00●00	00000
Renorm	ALISE II	NSTEAD					

- We have used "corner transfer matrix renormalisation group method"
 [Nishino & Okunishi 1996]
- Related to density matrix renormalisation group method

[White 1992]

• The central idea = only keep important parts of *A*.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	000●0	00000
Build re	ECURSIV	'ELY					

Start by building "literal" matrices. Let

- *A* be corner transfer matrix for a 2×2 grid
- *F* be the half-row / half-column transfer matrix for a 1×2 grid

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	000●0	00000
Build re	CURSIV	ELY					

Start by building "literal" matrices. Let

- *A* be corner transfer matrix for a 2×2 grid
- *F* be the half-row / half-column transfer matrix for a 1×2 grid

• Then build larger matrices by

$$A_{l}(c)|_{d,a} = \sum_{d} \omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} F(c,d) A(b) F(b,a)$$
$$F(c,d)|_{b,a} = \omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} F(b,a)$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	000●0	00000
Build re	CURSIV	ELY					

Start by building "literal" matrices. Let

- *A* be corner transfer matrix for a 2×2 grid
- *F* be the half-row / half-column transfer matrix for a 1×2 grid

• Then build larger matrices by

$$A_{l}(c)|_{d,a} = \sum_{d} \omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} F(c,d) A(b) F(b,a)$$
$$F(c,d)|_{b,a} = \omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} F(b,a)$$

• Iterate until *A* and *F* are huge — they are still "literal".

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	0000●	00000
NOW EST	IMATE I	EIGENVAI	LUES ξ, η				

$$\xi \sum_{a} X(a) = \sum_{a,b} F(a,b)X(b)F(b,a)$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	0000●	00000
NOW EST	IMATE I	EIGENVAI	LUES ξ, η				

$$\xi \sum_{a} A(a)^2 = \sum_{a,b} F(a,b)A(b)^2 F(b,a)$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	0000●	00000
NOW EST	IMATE I	EIGENVAI	LUES ξ, η				

$$\xi \sum_{a} A(a)^{4} = \sum_{a,b} A(a)F(a,b)A(b)^{2}F(b,a)A(a)$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	0000●	00000
NOW EST	IMATE I	EIGENVAI	LUES ξ, η				

$$\xi \operatorname{Tr} \sum_{a} A(a)^{4} = \operatorname{Tr} \sum_{a,b} A(a)F(a,b)A(b)^{2}F(b,a)A(a)$$

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	0000●	00000
NOW EST	IMATE I	EIGENVAI	LUES ξ, η				

$$\xi = \frac{\operatorname{Tr}\sum_{a,b} A(a)F(a,b)A(b)^2F(b,a)A(a)}{\operatorname{Tr}\sum_a A(a)^4}$$

• Invariant under similarity transform, so can diagonalise *A*.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	0000●	00000
NOW EST	IMATE I	EIGENVAI	LUES ξ, η				

$$\xi = \frac{\operatorname{Tr}\sum_{a,b} A(a)F(a,b)A(b)^2F(b,a)A(a)}{\operatorname{Tr}\sum_a A(a)^4}$$

- Invariant under similarity transform, so can diagonalise *A*.
- Key idea: discard small eigenvalues Huge "literal" $A, F \mapsto$ small "aphysical" A, F.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	0000●	00000
NOW EST	IMATE I	EIGENVAI	LUES ξ, η				

$$\xi = \frac{\operatorname{Tr} \sum_{a,b} A(a) F(a,b) A(b)^2 F(b,a) A(a)}{\operatorname{Tr} \sum_a A(a)^4}$$

- Invariant under similarity transform, so can diagonalise *A*.
- Key idea: discard small eigenvalues Huge "literal" $A, F \mapsto$ small "aphysical" A, F.

Clever idea

[Nishino & Okunishi 1996]

- Building huge literal *A*, *F* and then projecting it down is wasteful.
- Instead grow & project frequently until *A*, *F* converge.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	●0000
PUT IT AI	l togi	ETHER					

- Start with "reasonable" *A*, *F*.
- **2** Grow & project repeatedly until *A*, *F* converge.
- **3** Use this *F* to compute ξ , η and so lower bound for κ .
- Grow *A*, *F* a little larger and repeat from #2.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	●0000
PUT IT AI	LL TOGI	ETHER					

- Start with "reasonable" *A*, *F*.
- **2** Grow & project repeatedly until *A*, *F* converge.
- **③** Use this *F* to compute ξ , η and so lower bound for κ .
- Grow *A*, *F* a little larger and repeat from #2.

Previous best lower bound [Friedland, Lundow & Markström 2010]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	●0000
PUT IT AI	LL TOGI	ETHER					

- Start with "reasonable" *A*, *F*.
- **2** Grow & project repeatedly until *A*, *F* converge.
- **③** Use this *F* to compute ξ , η and so lower bound for κ .
- Grow *A*, *F* a little larger and repeat from #2.

Previous best lower bound [Friedland, Lundow & Markström 2010] Previous best estimate [Baxter 1999]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	●0000
PUT IT AI	LL TOGI	ETHER					

- Start with "reasonable" *A*, *F*.
- **2** Grow & project repeatedly until *A*, *F* converge.
- **③** Use this *F* to compute ξ , η and so lower bound for κ .
- Grow *A*, *F* a little larger and repeat from #2.

Previous best lower bound [Friedland, Lundow & Markström 2010] Previous best estimate [Baxter 1999] Our lower bound
Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	●0000
PUT IT AI	LL TOGI	ETHER					

- Start with "reasonable" *A*, *F*.
- **2** Grow & project repeatedly until *A*, *F* converge.
- **③** Use this *F* to compute ξ , η and so lower bound for κ .
- Grow *A*, *F* a little larger and repeat from #2.

Our lower bound

Our best estimate same except last 2 digits.

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	0●000
OTHER M	ODELS						

Hard squares, Read-write Isolated Memory and Non-Attacking Kings

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00●00
OTHER M	ODELS						

Even model

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00●00
OTHER M	ODELS						

Charge 3

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	00●00
OTHER M	ODELS						

Charge 3

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	000●0
RESULTS							

Substantial improvement of all previous lower bounds

Model	Matrix size	Lower bound on (and estimate of) κ
NAK	256	<u>1.342 643 951</u> 124 601 297 851 730 161 875
		740 395 719 438 196 938 393 943 434 885
		455 0 (1)
RWIM	128	<u>1.448 957 3</u> 71 775 608 489 872 231 406 108
		136 686 434 371 (7)
Even	128	1.357 587 502 184 123 (5)
Charge(3)	74	<u>1.3</u> 57 587 50
_		
4-Colouring	96	2.336 056 641 041 133 656 814 01 (4)
5-Colouring	64	<u>3.250 404 923 16</u> 7 119 143 819 73 (6)

- NAK, RWIM, Even, Charge(3) [Louidor & Marcus (2010)]
- 4-Colouring and 5-colouring [Lundow & Markström (2008)]

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	000●0
RESULTS							

Substantial improvement of all previous lower bounds

Model	Matrix size	Lower bound on (and estimate of) κ
NAK	256	<u>1.342 643 951</u> 124 601 297 851 730 161 875
		740 395 719 438 196 938 393 943 434 885
		455 0 (1)
RWIM	128	<u>1.448 957 3</u> 71 775 608 489 872 231 406 108
		136 686 434 371 (7)
Even	128	<u>1.35</u> 7 587 502 184 123 (5)
Charge(3)	74	<u>1.3</u> 57 587 50
_		
4-Colouring	96	2.336 056 641 041 133 656 814 01 (4)
5-Colouring	64	<u>3.250 404 923 16</u> 7 119 143 819 73 (6)

• NAK, RWIM, Even, Charge(3) — [Louidor & Marcus (2010)]

• 4-Colouring and 5-colouring — [Lundow & Markström (2008)] Why are Even and Charge(3) the same?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	0000●
OPEN QUI	ESTION	S					

• What other models?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	0000●
OPEN QUI	ESTION	S					

- What other models?
- Upper bounds?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	0000●
OPEN QUI	ESTION	S					

- What other models?
- Upper bounds?
- Methods in literature require computing eigenvalues of huge matrices Can we find a method that relies on picking a good vector?

Packing bits	2d	Bounds	Upper	Lower	Picking well	Beware CTM	Results
00000000	00000	000	000	0000	00000	00000	0000●
OPEN QUESTIONS							

- What other models?
- Upper bounds?
- Methods in literature require computing eigenvalues of huge matrices Can we find a method that relies on picking a good vector?

Bounds due to [Collatz 1942]

If *T* is non-negative and *x* is any positive vector, then

$$\min_{i} \left| \frac{(Tx)_{i}}{x_{i}} \right| \leq \Lambda \leq \max_{i} \left| \frac{(Tx)_{i}}{x_{i}} \right|$$