Bounding entropies of hard squares and friends
 How to pick a good vector

Andrew Rechnitzer Yao-ban Chan

Melbourne, April 2013

INE YE OLDE DÆS

In the dark ages there was tape.

In the dark ages there was tape.

Data is stored along tape as magnetised regions.

FIELD UP, FIELD DOWN, ONE AND ZERO

Naive idea - store 1's and 0's as regions with field in different directions.

FIELD UP, FIELD DOWN, ONE AND ZERO

Naive idea - store 1's and 0's as regions with field in different directions.

A core question

How much data can we store?

FIELD UP, FIELD DOWN, ONE AND ZERO

Naive idea - store 1's and 0's as regions with field in different directions.

A core question

How much data can we store?

- n regions can store 2^{n} possible words.
- 1 bit per region.

The engineering is easier if we encode data as

- Store 0 as "field unchanged"
- Store 1 as "field changed"

- The magnetic regions are not perfectly discrete
- The read mechanism might misread "change-change".
- Store data so that we forbid "change-change"
- Store words in $\{0,1\}$ so that there is no " 11 " subword.

ENCODE DATA DIFFERENTLY

- Store data so that we forbid "change-change"
- Store words in $\{0,1\}$ so that there is no " 11 " subword.

A core question

How much data can we store?
How many legal words are there?

COUNT LEGAL WORDS

Let

- $\psi_{n}(\oplus)$ be \# legal words ending in \oplus
- $\psi_{n}(\ominus)$ be \# legal words ending in \ominus

$$
\begin{aligned}
& \psi_{n+1}(\oplus)=\psi_{n}(\ominus) \\
& \psi_{n+1}(\ominus)=\psi_{n}(\oplus)+\psi_{n}(\ominus)
\end{aligned}
$$

COUNT LEGAL WORDS

Let

- $\psi_{n}(\oplus)$ be \# legal words ending in \oplus
- $\psi_{n}(\ominus)$ be \# legal words ending in \ominus

$$
\begin{aligned}
& \psi_{n+1}(\oplus)=\psi_{n}(\ominus) \\
& \psi_{n+1}(\ominus)=\psi_{n}(\oplus)+\psi_{n}(\ominus) \quad=\psi_{n}
\end{aligned}
$$

COUNT LEGAL WORDS

Let

- $\psi_{n}(\oplus)$ be \# legal words ending in \oplus
- $\psi_{n}(\ominus)$ be \# legal words ending in \ominus

$$
\begin{aligned}
\psi_{n+1}(\oplus) & =\psi_{n}(\ominus) \\
\psi_{n+1}(\ominus) & =\psi_{n}(\oplus)+\psi_{n}(\ominus) \quad=\psi_{n} \\
\psi_{n+1}(\ominus) & =\psi_{n}(\ominus)+\psi_{n-1}(\ominus) \\
\psi_{n} & =\psi_{n-1}+\psi_{n-2}
\end{aligned}
$$

BUILD A TRANSFER MATRIX

More generally...

BUILD A TRANSFER MATRIX

More generally...

$$
\left[\begin{array}{l}
\psi_{n+1}(\ominus) \\
\psi_{n+1}(\oplus)
\end{array}\right]=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left[\begin{array}{l}
\psi_{n}(\ominus) \\
\psi_{n}(\oplus)
\end{array}\right]=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}\left[\begin{array}{l}
\psi_{0}(\ominus) \\
\psi_{0}(\oplus)
\end{array}\right]
$$

More generally...

$$
\begin{aligned}
{\left[\begin{array}{l}
\psi_{n+1}(\ominus) \\
\psi_{n+1}(\oplus)
\end{array}\right] } & =\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)\left[\begin{array}{c}
\psi_{n}(\ominus) \\
\psi_{n}(\oplus)
\end{array}\right]=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)^{n}\left[\begin{array}{l}
\psi_{0}(\ominus) \\
\psi_{0}(\oplus)
\end{array}\right] \\
& =P^{T}\left(\begin{array}{cc}
\lambda_{1}^{n} & 0 \\
0 & \lambda_{2}^{n}
\end{array}\right) P\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Number of words $\sim n^{\text {th }}$ power of dominant eigenvalue

So for this " 11 "-forbidden model

$$
\psi_{n} \sim\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

Entropy of encoding is $\log _{2}\left(\frac{1+\sqrt{5}}{2}\right) \approx 0.69$ bits per region.

So for this " 11 "-forbidden model

$$
\psi_{n} \sim\left(\frac{1+\sqrt{5}}{2}\right)^{n}
$$

Entropy of encoding is $\log _{2}\left(\frac{1+\sqrt{5}}{2}\right) \approx 0.69$ bits per region.

What about other models?

- Run-length limited (d, k)
— forbid subwords $\left\{11,101,1001, \ldots 10^{d} 1,0^{k+1}\right\}$.
- Charge model (b)
- cumulative charge lies between $\pm b$.
- Parity models
- even \# 0's between 1's.
— odd \# 0's between 1's.
Use same transfer matrix machinery.

But NOW WE LIVE IN THE FUTURE. . .

But NOW WE LIVE IN THE FUTURE. . .

and we can store data in 2d! (InPhase Technologies \& hVault)

and we can store data in 2d! (InPhase Technologies \& hVault)

Coding theorists extend entropy question from 1 d to 2 d

A core question

How much data can we store in 2 d ?

and we can store data in 2d! (InPhase Technologies \& hVault)

Coding theorists extend entropy question from 1 d to 2 d

A core question

How many 2 d words avoid 11 and ${ }_{1}^{1}$?

2 d coding problem $=$ hard square lattice gas

2 d coding problem $=$ hard square lattice gas
$=$ independent sets on \mathbb{Z}^{2}

What do we want to know?

More generally...

2d shift of finite type

- Given a finite alphabet \mathcal{A}, and
- a finite set of words \mathcal{F},
- a word in $\mathcal{A}^{\mathbb{Z}^{2}}$ is valid when it avoids words in \mathcal{F}.

What do we want to know?

More generally...

2d shift of finite type

- Given a finite alphabet \mathcal{A}, and
- a finite set of words \mathcal{F},
- a word in $\mathcal{A}^{\mathbb{Z}^{2}}$ is valid when it avoids words in \mathcal{F}.

Entropy

- Let $C_{n \times n}$ be the \# valid $n \times n$ words.
- Entropy is $\log _{2} \kappa=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log _{2} C_{n \times n}$

More generally...

2d shift of finite type

- Given a finite alphabet \mathcal{A}, and
- a finite set of words \mathcal{F},
- a word in $\mathcal{A}^{\mathbb{Z}^{2}}$ is valid when it avoids words in \mathcal{F}.

Entropy

- Let $C_{n \times n}$ be the \# valid $n \times n$ words.
- Entropy is $\log _{2} \kappa=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log _{2} C_{n \times n}$

So what do we know...

- Algorithmically undecideable if there are any valid words
[Berger 1966]

Provably hard

- Algorithmically undecideable if there are any valid words [Berger 1966]
- In $1 \mathrm{~d}, \kappa \in \mathbb{R}^{+}$is an entropy iff κ is a Peron number
[Lind 1983]
- Algorithmically undecideable if there are any valid words [Berger 1966]
- In $1 \mathrm{~d}, \kappa \in \mathbb{R}^{+}$is an entropy iff κ is a Peron number
[Lind 1983]
- In $2 d$ and up, $\kappa \in \mathbb{R}^{+}$is an entropy iff κ is recursively enumerable [Hochman \& Meyerovitch 2007]
- Algorithmically undecideable if there are any valid words [Berger 1966]
- In $1 \mathrm{~d}, \kappa \in \mathbb{R}^{+}$is an entropy iff κ is a Peron number
[Lind 1983]
- In 2 d and up, $\kappa \in \mathbb{R}^{+}$is an entropy iff κ is recursively enumerable [Hochman \& Meyerovitch 2007]
- In $2 d$ and up, κ known exactly for very few SFTs

EXAMPLE OF EXACT

Odd constraint

Words in $\{0,1\}$ so that between 1's there are odd number of 0's.
[Louidor \& Marcus 2010] $\kappa=\sqrt{2}$.

EXAMPLE OF EXACT

Odd constraint

Words in $\{0,1\}$ so that between 1's there are odd number of 0 's.
[Louidor \& Marcus 2010] $\kappa=\sqrt{2}$.

One sub-lattice fixed as 0's and other is unconstrained.

Bounds

Back to hardsquares...

- No reason that κ should have a "nice" expression.
- So try to find tight bounds.

Bounds

Back to hardsquares...

- No reason that κ should have a "nice" expression.
- So try to find tight bounds.

Most approaches based on transfer matrices

Big problem — \# states grows exponentially with width

TRANSFER MATRIX

$T_{w}=$ column-to-column TM for hard squares in strip of width w

TRANSFER MATRIX

$T_{w}=$ column-to-column TM for hard squares in strip of width w

	ㅇ	:	\circ	$\stackrel{8}{8}$:	:	:	:
\bigcirc	1	1	1	1	0	1	0	0
:	1	0	1	1	0	0	0	0
:	1	1	0	1	0	1	0	0
!	1	1	1	0	0	0	0	0
:	0	0	0	0	0	0	0	0
:	1	0	1	0	0	0	0	0
:	0	0	0	0	0	0	0	0
:	0	0	0	0	0	0	0	0

TRANSFER MATRIX

$T_{w}=$ column-to-column TM for hard squares in strip of width w

	\%	-	:	\bigcirc	:	:	:	:
$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline 8 \end{aligned}$	1	1	1	1	0	1	0	0
\bigcirc	1	0	1	1	0	0	0	0
:	1	1	0	1	0	1	0	0
\bigcirc	1	1	1	0	0	0	0	0
:	0	0	0	0	0	0	0	0
\%	1	0	1	0	0	0	0	0
:	0	0	0	0	0	0	0	0
$:$	0	0	0	0	0	0	0	0

$$
\kappa=\lim _{w \rightarrow \infty} \Lambda_{w}^{1 / w}
$$

where Λ_{w} is dominant eigenvalue

Useful ideas from Linear Algebra 101

Symmetric matrix V

- Eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ all real

Useful ideas from Linear Algebra 101

Symmetric matrix V

- Eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ all real
- Min-max Theorem - for any non-trivial vector x,

$$
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
$$

Useful ideas from Linear Algebra 101

Symmetric matrix V

- Eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ all real
- Min-max Theorem - for any non-trivial vector x,

$$
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
$$

- Trace of power

$$
\operatorname{Tr} V^{k}=\lambda_{1}^{k}+\lambda_{2}^{k}+\cdots+\lambda_{n}^{k}
$$

Useful ideas from Linear Algebra 101

Symmetric matrix V

- Eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ all real
- Min-max Theorem - for any non-trivial vector x,

$$
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
$$

- Trace of power

$$
\begin{aligned}
\operatorname{Tr} V^{k} & =\lambda_{1}^{k}+\lambda_{2}^{k}+\cdots+\lambda_{n}^{k} \\
\operatorname{Tr} V^{2 k} & =\lambda_{1}^{2 k}+\lambda_{2}^{2 k}+\cdots+\lambda_{n}^{2 k} \geq \lambda_{\max }^{2 k}
\end{aligned}
$$

Useful ideas from Linear Algebra 101

Symmetric matrix V

- Eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ all real
- Min-max Theorem - for any non-trivial vector x,

$$
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
$$

- Trace of power

$$
\begin{aligned}
\operatorname{Tr} V^{k} & =\lambda_{1}^{k}+\lambda_{2}^{k}+\cdots+\lambda_{n}^{k} \\
\operatorname{Tr} V^{2 k} & =\lambda_{1}^{2 k}+\lambda_{2}^{2 k}+\cdots+\lambda_{n}^{2 k} \geq \lambda_{\text {max }}^{2 k}
\end{aligned}
$$

Leverage these to get good bounds [Engel 1990] and [Calkin \& Wilf 1998]

TRACE TRICK

Rewrite trace

$$
\operatorname{Tr} V^{2 k}=\sum V_{\psi_{0}, \psi_{1}} V_{\psi_{1}, \psi_{2}} \ldots V_{\psi_{2 k-1}, \psi_{0}}
$$

Sum is over all sequences of states, but only "legal" ones count

TRACE TRICK

Rewrite trace

$$
\operatorname{Tr} V^{2 k}=\sum V_{\psi_{0}, \psi_{1}} V_{\psi_{1}, \psi_{2}} \ldots V_{\psi_{2 k-1}, \psi_{0}}
$$

Sum is over all sequences of states, but only "legal" ones count

TRACE TRICK

Rewrite trace

$$
\operatorname{Tr} V^{2 k}=\sum V_{\psi_{0}, \psi_{1}} V_{\psi_{1}, \psi_{2}} \ldots V_{\psi_{2 k-1}, \psi_{0}}
$$

Sum is over all sequences of states, but only "legal" ones count

So $\operatorname{Tr} T_{w}^{2 k}$ is equivalent to "legal" configurations on rings

$$
\operatorname{Tr} T_{w}^{2 k}=\langle\mathbf{1}| B_{2 k}^{w-1}|\mathbf{1}\rangle
$$

TRACE TRICK

Rewrite trace

$$
\operatorname{Tr} V^{2 k}=\sum V_{\psi_{0}, \psi_{1}} V_{\psi_{1}, \psi_{2}} \ldots V_{\psi_{2 k-1}, \psi_{0}}
$$

Sum is over all sequences of states, but only "legal" ones count

So $\operatorname{Tr} T_{w}^{2 k}$ is equivalent to "legal" configurations on rings

$$
\operatorname{Tr} T_{w}^{2 k}=\langle\mathbf{1}| B_{2 k}^{w-1}|\mathbf{1}\rangle
$$

Sneaky — "width" is now exponent.

So build TM for rings $B_{2 k}$ - also grows exponentially with circumference.

So build TM for rings $B_{2 k}$ - also grows exponentially with circumference.

$$
\Lambda_{w}^{2 k} \leq \operatorname{Tr} T_{w}^{2 k}=\langle\mathbf{1}| B_{2 k}^{w-1}|\mathbf{1}\rangle
$$

Limits

So build TM for rings $B_{2 k}$ - also grows exponentially with circumference.

$$
\Lambda_{w}^{2 k} \leq \operatorname{Tr} T_{w}^{2 k}=\langle\mathbf{1}| B_{2 k}^{w-1}|\mathbf{1}\rangle
$$

Raise to $1 / w$ and let width $\rightarrow \infty$

$$
\begin{array}{ccc}
\Lambda_{w}^{2 k / w} & \leq\left(\operatorname{Tr~T}_{w w}^{2 k}\right)^{1 / w} & =\langle\mathbf{1}| B_{2 k}^{w-1}|\mathbf{1}\rangle^{1 / w} \\
\downarrow \\
\kappa^{2 k} & & \\
\xi_{2 k}
\end{array}
$$

Upper bound

Let $B_{2 k}$ be the TM for system on ring of circumference $2 k$, then

$$
\kappa \leq \xi_{2 k}^{1 / 2 k}
$$

where $\xi_{2 k}$ is dominant eigenvalue of $B_{2 k}$.
$\xi_{2}=2.41421356237309504 \ldots \quad \kappa \leq 1.55377397403003730 \ldots$

$$
\begin{array}{ll}
\xi_{2} & =2.41421356237309504 \ldots \\
\xi_{4}=5.15632517465866169 \ldots & \kappa \leq 1.55377397403003730 \ldots \\
\hline 1.50690222590181180 \ldots
\end{array}
$$

$$
\begin{array}{cc}
\xi_{2}=2.41421356237309504 \ldots & \kappa \leq 1.55377397403003730 \ldots \\
\xi_{4}=5.15632517465866169 \ldots & \kappa \leq 1.50690222590181180 \ldots \\
\xi_{6}=11.5517095660481450 \ldots & \kappa \leq 1.50351480947590302 \ldots \\
& \text { [Calkin \& Wilf 1998] }
\end{array}
$$

```

\section*{Results}
```

\xi
\xi
\xi6=11.5517095660481450 ···. \kappa\leq1.50351480947590302 ···.
[Calkin \& Wilf 1998]
\xi}\mp@subsup{\xi}{36}{}=2349759.74655388695···. \kappa\leq1.5030480824753399273
[Friedland, Lundow \& Markström 2010]

```

\section*{Results}
\[
\begin{array}{cc}
\xi_{2}=2.41421356237309504 \ldots & \kappa \leq 1.55377397403003730 \ldots \\
\xi_{4}=5.15632517465866169 \ldots & \kappa \leq 1.50690222590181180 \ldots \\
\xi_{6}=11.5517095660481450 \ldots & \kappa \leq 1.50351480947590302 \ldots \\
& \text { [Calkin \& Wilf 1998] } \\
\xi_{36}=2349759.74655388695 \ldots & \kappa \leq 1.5030480824753399273 \\
& \text { [Friedland, Lundow \& Markström 2010] }
\end{array}
\]

Huge transfer matrix - use symmetries to compress it.

\section*{Rayleigh Quotients}

\section*{Min-max theorem}
\[
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
\]


\section*{Min-max theorem}
\[
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
\]

So the simplest idea - set \(|x\rangle=|\mathbf{1}\rangle\).

\section*{RAYLEIGH QUOTIENTS}

\section*{Min-max theorem}
\[
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
\]

So the simplest idea - set \(|x\rangle=|\mathbf{1}\rangle\).
\[
\Lambda_{w} \geq \frac{\langle\mathbf{1}| T_{w}|\mathbf{1}\rangle}{\langle\mathbf{1} \mid \mathbf{1}\rangle}
\]

\section*{Min-max theorem}
\[
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
\]

So the simplest idea - set \(|x\rangle=|\mathbf{1}\rangle\).
\[
\Lambda_{w} \geq \frac{\langle\mathbf{1}| T_{w}|\mathbf{1}\rangle}{\langle\mathbf{1} \mid \mathbf{1}\rangle}
\]

For fixed \(w\) this is silly - instead compute the eigenvalue by power method.

\section*{Min-max theorem}
\[
\lambda_{\min } \leq \frac{\langle x| V|x\rangle}{\langle x \mid x\rangle} \leq \lambda_{\max }
\]

So the simplest idea - set \(|x\rangle=|\mathbf{1}\rangle\).
\[
\Lambda_{w} \geq \frac{\langle\mathbf{1}| T_{w}|\mathbf{1}\rangle}{\langle\mathbf{1} \mid \mathbf{1}\rangle}
\]

For fixed \(w\) this is silly - instead compute the eigenvalue by power method. But if we can choose a better vector...

\section*{SNEAKY TRICKS AGAIN}

Vector \(|\mathbf{1}\rangle\) a poor choice.


\section*{SNEAKY TRICKS AGAIN}

Power method - replace \(|\mathbf{1}\rangle\) with \(T_{w}^{q}|\mathbf{1}\rangle\).

\[
\Lambda_{w}^{p} \geq \frac{\left\langle T_{w}^{q} \mathbf{1}\right| T_{w}^{p}\left|T_{w}^{q} \mathbf{1}\right\rangle}{\left\langle T_{w}^{q} \mathbf{1} \mid T_{w}^{q} \mathbf{1}\right\rangle}
\]

\section*{SNEAKY TRICKS AGAIN}

Massage denominator

\[
\left\langle T_{w}^{q} \mathbf{1} \mid T_{w}^{q} \mathbf{1}\right\rangle=\langle\mathbf{1}| T_{w}^{2 q}|\mathbf{1}\rangle
\]

\section*{SNEAKY TRICKS AGAIN}

Massage denominator

\[
\left\langle T_{w}^{q} \mathbf{1} \mid T_{w}^{q} \mathbf{1}\right\rangle=\langle\mathbf{1}| T_{w}^{2 q}|\mathbf{1}\rangle
\]

\section*{SNEAKY TRICKS AGAIN}

All configs in \(w \times 2 q\) rectangle \(=\) configs in \(2 q \times w\) rectangle

\[
\left\langle T_{w}^{q} \mid T_{w w}^{q} \mathbf{1}\right\rangle=\langle\mathbf{1}| T_{w}^{2 q}|\mathbf{1}\rangle=\langle\mathbf{1}| T_{2 q}^{w}|\mathbf{1}\rangle
\]

Sneaky — width becomes exponent

\section*{SNEAKY TRICKS AGAIN}

Look at numerator now

\[
\Lambda_{w}^{p} \geq \frac{\left\langle T_{w}^{q} \mathbf{1}\right| T_{w}^{p}\left|T_{w}^{q} \mathbf{1}\right\rangle}{\left\langle T_{w}^{q} \mathbf{1} \mid T_{w}^{q} \mathbf{1}\right\rangle}
\]

\section*{SNEAKY TRICKS AGAIN}

Massage things a little

\[
\left\langle T_{w}^{q} \mathbf{1}\right| T_{w w}^{p}\left|T_{w}^{q} \mathbf{1}\right\rangle=\langle\mathbf{1}| T_{w}^{2 q+p}|\mathbf{1}\rangle
\]

\section*{SNEAKY TRICKS AGAIN}

Massage things a little

\[
\left\langle T_{w}^{q} \mathbf{1}\right| T_{w w}^{p}\left|T_{w}^{q} \mathbf{1}\right\rangle=\langle\mathbf{1}| T_{w}^{2 q+p}|\mathbf{1}\rangle
\]

\section*{SNEAKY TRICKS AGAIN}

Again use the \(x \leftrightarrow y\) symmetry

\[
\left\langle T_{w}^{q} \mathbf{1}\right| T_{w w}^{p}\left|T_{w w}^{q} \mathbf{1}\right\rangle=\langle\mathbf{1}| T_{w}^{2 q+p}|\mathbf{1}\rangle=\langle\mathbf{1}| T_{2 q+p}^{w}|\mathbf{1}\rangle
\]

Sneaky — width becomes exponent

Putting this together
\[
\Lambda_{w}^{p} \geq \frac{\langle\mathbf{1}| T_{2 q+p}^{w}|\mathbf{1}\rangle}{\langle\mathbf{1}| T_{2 q}^{w}|\mathbf{1}\rangle}
\]

Now raise to \(1 / w\) and let \(w \rightarrow \infty\)

\section*{Results}

Putting this together
\[
\Lambda_{w}^{p} \geq \frac{\langle\mathbf{1}| T_{2 q+p}^{w}|\mathbf{1}\rangle}{\langle\mathbf{1}| T_{2 q}^{w}|\mathbf{1}\rangle}
\]

Now raise to \(1 / w\) and let \(w \rightarrow \infty\)
Lower bound
[Calkin \& Wilf 1998]
For any \(p, q \geq 1\)
\[
\kappa^{p} \geq \frac{\Lambda_{2 q+p}}{\Lambda_{2 q}}
\]

\section*{Results}

Putting this together
\[
\Lambda_{w}^{p} \geq \frac{\langle\mathbf{1}| T_{2 q+p}^{w}|\mathbf{1}\rangle}{\langle\mathbf{1}| T_{2 q}^{w}|\mathbf{1}\rangle}
\]

Now raise to \(1 / w\) and let \(w \rightarrow \infty\)
Lower bound
[Calkin \& Wilf 1998]
For any \(p, q \geq 1\)
\[
\kappa^{p} \geq \frac{\Lambda_{2 q+p}}{\Lambda_{2 q}}
\]
- \(\kappa \geq 1.50304768131466259 \ldots(p=3, q=2)\)
- \(\kappa \geq 1.50304808247533226 \ldots(p=1, q=13)\)
[Calkin \& Wilf]
[Friedland et al]

\section*{PICK A BETTER VECTOR}
- We use corner transfer matrix formalism to pick a better vector.

\section*{PICK A BETTER VECTOR}
- We use corner transfer matrix formalism to pick a better vector.
- Corner transfer matrices used to study lattice gas \& magnet models
[Baxter 1968]

\section*{Pick a better vector}
- We use corner transfer matrix formalism to pick a better vector.
- Corner transfer matrices used to study lattice gas \& magnet models
[Baxter 1968]
- Very famously lead to solution of hard hexagons [Baxter 1980]

\section*{How to build a vector}


Each entry of vector corresponds to a state along the cut


Each entry of vector corresponds to a state along the cut
Baxter's Ansatz which extends [Kramers \& Wannier 1941]
Build Rayleigh quotient with vector \(\psi\)
\[
\psi\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{w}\right)=\operatorname{Tr}\left[F\left(\sigma_{1}, \sigma_{2}\right) F\left(\sigma_{2}, \sigma_{3}\right) \ldots F\left(\sigma_{w}, \sigma_{1}\right)\right]
\]

For some matrices \(F(a, b)\).

\section*{What does this look like?}

- Can think of \(F\) as a "literal" half-row transfer matrix. - but it can be almost any matrix.

\section*{What does this look like?}

- Can think of \(F\) as a "literal" half-row transfer matrix. - but it can be almost any matrix.
- Trace makes it a cylinder - doesn't change bound.

\section*{Rayleigh quotient}
\[
\Lambda_{w} \geq \frac{\langle\psi| T_{w}|\psi\rangle}{\langle\psi \mid \psi\rangle}
\]
\[
\begin{aligned}
\langle\psi| T|\psi\rangle & =\operatorname{Tr} S^{w} \\
\langle\psi \mid \psi\rangle & =\operatorname{Tr} R^{w}
\end{aligned}
\]


\section*{Rayleigh quotient}
\[
\Lambda_{w} \geq \frac{\langle\psi| T_{w}|\psi\rangle}{\langle\psi \mid \psi\rangle}
\]
\[
\begin{aligned}
\langle\psi| T|\psi\rangle & =\operatorname{Tr} S^{w} \\
\langle\psi \mid \psi\rangle & =\operatorname{Tr} R^{w}
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline\(F\) & \(F\) \\
\hline\(F\) & & \(F\) \\
\hline\(F\) & \(\sigma_{3}\) & \(F\) \\
\hline\(F\) & \(\sigma_{2}\) & \(F\) \\
\hline\(F\) & \(\sigma_{1}\) & \(F\) \\
\hline\(F\) & \(\sigma_{w}\) & \(F\) \\
\hline\(F\) & & \(F\) \\
\hline & \\
\hline
\end{tabular}\(=\langle\psi \mid \psi\rangle=\operatorname{Tr} R^{w}\)


\section*{Rayleigh quotient \(\rightarrow\) Traces}

\section*{Rayleigh quotient}
\[
\Lambda_{w} \geq \frac{\langle\psi| T_{w}|\psi\rangle}{\langle\psi \mid \psi\rangle}
\]
\[
\begin{aligned}
\langle\psi| T|\psi\rangle & =\operatorname{Tr} S^{w} \\
\langle\psi \mid \psi\rangle & =\operatorname{Tr} R^{w}
\end{aligned}
\]
\begin{tabular}{|cc|c|c|c|c|}
\hline\(F\) & & \(\omega\) & & \(F\) \\
\hline\(F\) & & \(\omega\) & & \(F\) \\
\hline\(F\) & \(\sigma_{3}\) & \(\omega\) & \(\tau_{3}\) & \(F\) \\
\hline\(F\) & \(\sigma_{2}\) & \(\omega\) & \(\tau_{2}\) & \(F\) \\
\hline\(F\) & \(\sigma_{1}\) & \(\omega\) & & \(F\) \\
\hline\(F\) & & \(\omega\) & & \(F\) \\
\hline\(F\) & & \(\omega\) & & \(F\) \\
\hline & & & & \\
\hline
\end{tabular}
\[
=\langle\psi| T_{w}|\psi\rangle=\operatorname{Tr} S^{w}
\]


Where \(\omega=1\) if face valid else \(\omega=0\).

\section*{To Get A Bound}

Lower bound
\[
\kappa=\lim _{w \rightarrow \infty} \Lambda_{w}^{1 / w}
\]

\section*{TO GET A BOUND}

Lower bound
\[
\kappa=\lim _{w \rightarrow \infty} \Lambda_{w}^{1 / w} \geq \lim _{w \rightarrow \infty}\left(\frac{\operatorname{Tr} S^{w}}{\operatorname{Tr} R^{w}}\right)^{1 / w}
\]

\section*{To GET A BOUND}

\section*{Lower bound}
\[
\kappa=\lim _{w \rightarrow \infty} \Lambda_{w}^{1 / w} \geq \lim _{w \rightarrow \infty}\left(\frac{\operatorname{Tr} S^{w}}{\operatorname{Tr} R^{w}}\right)^{1 / w}=\frac{\eta}{\xi}
\]
where \(\xi, \eta\) are dominant eigenvalues of \(R\) and \(S\).

\section*{To GET A BOUND}

Lower bound
\[
\kappa=\lim _{w \rightarrow \infty} \Lambda_{w}^{1 / w} \geq \lim _{w \rightarrow \infty}\left(\frac{\operatorname{Tr} S^{w}}{\operatorname{Tr} \boldsymbol{R}^{w}}\right)^{1 / w}=\frac{\eta}{\xi}
\]
where \(\xi, \eta\) are dominant eigenvalues of \(R\) and \(S\).
(1) Pick matrices \(F\) - note dimension need not be related to \(w\)
(2) Form matrices \(R\) and \(S\)
(3) Compute dominant eigenvalues of \(\xi, \eta\).

Lower bound
\[
\kappa=\lim _{w \rightarrow \infty} \Lambda_{w}^{1 / w} \geq \lim _{w \rightarrow \infty}\left(\frac{\operatorname{Tr} S^{w}}{\operatorname{Tr} R^{w}}\right)^{1 / w}=\frac{\eta}{\xi}
\]
where \(\xi, \eta\) are dominant eigenvalues of \(R\) and \(S\).
(1) Pick matrices \(F\) - note dimension need not be related to \(w\)
(2) Form matrices \(R\) and \(S\)
(3) Compute dominant eigenvalues of \(\xi, \eta\).

But how do we pick \(F\) ?

Lower bound
\[
\kappa=\lim _{w \rightarrow \infty} \Lambda_{w}^{1 / w} \geq \lim _{w \rightarrow \infty}\left(\frac{\operatorname{Tr} S^{w}}{\operatorname{Tr} R^{w}}\right)^{1 / w}=\frac{\eta}{\xi}
\]
where \(\xi, \eta\) are dominant eigenvalues of \(R\) and \(S\).
(1) Pick matrices \(F\) - note dimension need not be related to \(w\)
(2) Form matrices \(R\) and \(S\)
(3) Compute dominant eigenvalues of \(\xi, \eta\).

But how do we pick \(F\) ?
And where are these infamous "corner transfer matrices"?
\[
R|X\rangle=\xi|X\rangle
\]
\[
S|Y\rangle=\eta|Y\rangle
\]
\(|X\rangle,|Y\rangle\) eigenvectors of \(R\) and \(S\).

\section*{EIGENVECTORS \(\mapsto\) EIGENMATRICES(?)}

\(X(a), Y(a, b) \approx\) "half-plane transfer matrices"

\section*{TO MAXIMISE, PLANES \(\mapsto\) CORNER \(\times\) CORNER}


Baxter showed that Rayleigh quotient stationary when
\[
X(a)=A(a)^{2} \quad Y(a, b)=A(a) F(a, b) A(b)
\]
where \(A\) is half of \(X\) - a "corner transfer matrix"
Baxter then carefully picked \(F\) to make things work.

- We have used "corner transfer matrix renormalisation group method"
[Nishino \& Okunishi 1996]
- Related to density matrix renormalisation group method
[White 1992]
- We have used "corner transfer matrix renormalisation group method" [Nishino \& Okunishi 1996]
- Related to density matrix renormalisation group method
[White 1992]
- The central idea \(=\) only keep important parts of \(A\).

\section*{BUILD RECURSIVELY}

Start by building "literal" matrices. Let
- \(A\) be corner transfer matrix for a \(2 \times 2\) grid
- \(F\) be the half-row / half-column transfer matrix for a \(1 \times 2\) grid


\section*{BUILD RECURSIVELY}

Start by building "literal" matrices. Let
- \(A\) be corner transfer matrix for a \(2 \times 2\) grid
- \(F\) be the half-row / half-column transfer matrix for a \(1 \times 2\) grid

- Then build larger matrices by
\[
\begin{aligned}
\left.A_{l}(c)\right|_{d, a} & =\sum_{d} \omega\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) F(c, d) A(b) F(b, a) \\
\left.F(c, d)\right|_{b, a} & =\omega\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) F(b, a)
\end{aligned}
\]

\section*{BUILD RECURSIVELY}

Start by building "literal" matrices. Let
- \(A\) be corner transfer matrix for a \(2 \times 2\) grid
- \(F\) be the half-row / half-column transfer matrix for a \(1 \times 2\) grid

- Then build larger matrices by
\[
\begin{aligned}
\left.A_{l}(c)\right|_{d, a} & =\sum_{d} \omega\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) F(c, d) A(b) F(b, a) \\
\left.F(c, d)\right|_{b, a} & =\omega\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) F(b, a)
\end{aligned}
\]
- Iterate until \(A\) and \(F\) are huge - they are still "literal".
- Look at eigenvalue equation:
\[
\xi \sum_{a} X(a)=\sum_{a, b} F(a, b) X(b) F(b, a)
\]
- Look at eigenvalue equation:
\[
\xi \sum_{a} A(a)^{2}=\sum_{a, b} F(a, b) A(b)^{2} F(b, a)
\]
- Look at eigenvalue equation:
\[
\xi \sum_{a} A(a)^{4}=\sum_{a, b} A(a) F(a, b) A(b)^{2} F(b, a) A(a)
\]
- Look at eigenvalue equation:
\[
\xi \operatorname{Tr} \sum_{a} A(a)^{4}=\operatorname{Tr} \sum_{a, b} A(a) F(a, b) A(b)^{2} F(b, a) A(a)
\]

\section*{NOW ESTIMATE EIGENVALUES \(\xi, \eta\)}
- Look at eigenvalue equation:
\[
\xi=\frac{\operatorname{Tr} \sum_{a, b} A(a) F(a, b) A(b)^{2} F(b, a) A(a)}{\operatorname{Tr} \sum_{a} A(a)^{4}}
\]
- Invariant under similarity transform, so can diagonalise \(A\).

\section*{NOW ESTIMATE EIGENVALUES \(\xi, \eta\)}
- Look at eigenvalue equation:
\[
\xi=\frac{\operatorname{Tr} \sum_{a, b} A(a) F(a, b) A(b)^{2} F(b, a) A(a)}{\operatorname{Tr} \sum_{a} A(a)^{4}}
\]
- Invariant under similarity transform, so can diagonalise \(A\).
- Key idea: discard small eigenvalues Huge "literal" \(A, F \mapsto\) small "aphysical" \(A, F\).

\section*{NOW ESTIMATE EIGENVALUES \(\xi, \eta\)}
- Look at eigenvalue equation:
\[
\xi=\frac{\operatorname{Tr} \sum_{a, b} A(a) F(a, b) A(b)^{2} F(b, a) A(a)}{\operatorname{Tr} \sum_{a} A(a)^{4}}
\]
- Invariant under similarity transform, so can diagonalise \(A\).
- Key idea: discard small eigenvalues Huge "literal" \(A, F \mapsto\) small "aphysical" \(A, F\).

\section*{Clever idea}

\section*{[Nishino \& Okunishi 1996]}
- Building huge literal \(A, F\) and then projecting it down is wasteful.
- Instead grow \& project frequently until \(A, F\) converge.

\section*{Put it all together}
(1) Start with "reasonable" \(A, F\).
(2) Grow \& project repeatedly until \(A, F\) converge.
(3) Use this \(F\) to compute \(\xi, \eta\) and so lower bound for \(\kappa\).
(4) Grow \(A, F\) a little larger and repeat from \#2.

\section*{Put it all together}
(1) Start with "reasonable" \(A, F\).
(2) Grow \& project repeatedly until \(A, F\) converge.
(3) Use this \(F\) to compute \(\xi, \eta\) and so lower bound for \(\kappa\).
(4) Grow \(A, F\) a little larger and repeat from \#2.

\section*{Lower bound}

Previous best lower bound [Friedland, Lundow \& Markström 2010]

\section*{Put it all together}
(1) Start with "reasonable" \(A, F\).
(2) Grow \& project repeatedly until \(A, F\) converge.
(3) Use this \(F\) to compute \(\xi, \eta\) and so lower bound for \(\kappa\).
(4) Grow \(A, F\) a little larger and repeat from \#2.

\section*{Lower bound}
\[
\kappa \geq 1 . \begin{aligned}
& 503048082475332264322066329475 \\
& 55368938578103861030506202810
\end{aligned}
\]

Previous best lower bound [Friedland, Lundow \& Markström 2010] Previous best estimate [Baxter 1999]

\section*{Put it all together}
(1) Start with "reasonable" \(A, F\).
(2) Grow \& project repeatedly until \(A, F\) converge.
(3) Use this \(F\) to compute \(\xi, \eta\) and so lower bound for \(\kappa\).
(4) Grow \(A, F\) a little larger and repeat from \#2.

\section*{Lower bound}
\[
\kappa \geq 1 . \begin{aligned}
& 503048082475332264322066329475 \\
& \\
& \\
& \\
& \\
& 7535989383850396969234403050462028101
\end{aligned}
\]

Previous best lower bound [Friedland, Lundow \& Markström 2010] Previous best estimate [Baxter 1999]
Our lower bound

\section*{Put it all together}
(1) Start with "reasonable" \(A, F\).
(2) Grow \& project repeatedly until \(A, F\) converge.
(3) Use this \(F\) to compute \(\xi, \eta\) and so lower bound for \(\kappa\).
(4) Grow \(A, F\) a little larger and repeat from \#2.

\section*{Lower bound}
\(\kappa \geq 1.503048082475332264322066329475\) 553689385781038610305062028101 73593385039692344038046329965

Previous best lower bound [Friedland, Lundow \& Markström 2010]
Previous best estimate [Baxter 1999]
Our lower bound
Our best estimate same except last 2 digits.

\section*{OTHER MODELS}

Hard squares, Read-write Isolated Memory and Non-Attacking Kings



\section*{OTHER MODELS}

Even model


\section*{OTHER MODELS}

Charge 3


\section*{OTHER MODELS}

\section*{Charge 3}


\section*{Results}

Substantial improvement of all previous lower bounds
\begin{tabular}{|c||c|l|}
\hline Model & Matrix size & Lower bound on (and estimate of) \(\kappa\) \\
\hline NAK & 256 & \begin{tabular}{l}
\(\underline{1.342643951} 124601297851730161875\) \\
740395719438196938393943434885 \\
\(4550(1)\)
\end{tabular} \\
\hline RWIM & 128 & \(\underline{1.448957371775608489872231406108}\) \\
\hline Even & \(138686434371(7)\)
\end{tabular}\(| \underline{\underline{1.357587502184123(5)}}\)\begin{tabular}{|c||l|}
\hline Charge(3) & 74 \\
\hline 4-Colouring & 96 \\
\hline 5-Colouring & 64 \\
\hline
\end{tabular}
- NAK, RWIM, Even, Charge(3) - [Louidor \& Marcus (2010)]
- 4-Colouring and 5-colouring - [Lundow \& Markström (2008)]

\section*{Results}

Substantial improvement of all previous lower bounds
\begin{tabular}{|c||c|l|}
\hline Model & Matrix size & Lower bound on (and estimate of) \(\kappa\) \\
\hline NAK & 256 & \begin{tabular}{l}
\(\underline{1.342643951} 124601297851730161875\) \\
740395719438196938393943434885 \\
\(4550(1)\)
\end{tabular} \\
\hline RWIM & 128 & \(\underline{1.448957371775608489872231406108}\) \\
\hline Even & \(138686434371(7)\)
\end{tabular}\(| \underline{\underline{1.357587502184123(5)}}\)\begin{tabular}{|c||l|}
\hline Charge(3) & 74 \\
\hline 4-Colouring & 96 \\
\hline 5-Colouring & 64 \\
\hline
\end{tabular}
- NAK, RWIM, Even, Charge(3) - [Louidor \& Marcus (2010)]
- 4-Colouring and 5-colouring - [Lundow \& Markström (2008)]

Why are Even and Charge(3) the same?

\section*{Open Questions}
- What other models?

\section*{OPEN QUESTIONS}
- What other models?
- Upper bounds?

\section*{Open Questions}
- What other models?
- Upper bounds?
- Methods in literature require computing eigenvalues of huge matrices Can we find a method that relies on picking a good vector?

\section*{Open Questions}
- What other models?
- Upper bounds?
- Methods in literature require computing eigenvalues of huge matrices Can we find a method that relies on picking a good vector?

\section*{Bounds due to [Collatz 1942]}

If \(T\) is non-negative and \(x\) is any positive vector, then
\[
\min _{i}\left|\frac{(T x)_{i}}{x_{i}}\right| \leq \Lambda \leq \max _{i}\left|\frac{(T x)_{i}}{x_{i}}\right|
\]```

