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Parking rules on a tree
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General model

I First, fix a rooted tree t (deterministic or random, finite or infinite).

I Add a car decoration (Au : u 2 t) on each vertex, i.i.d. with law µ

X = Number of outgoing cars.

Example and motivation: Family of laws (µ↵ : ↵ > 0) stochastically increas-
ing with E[µ↵] = ↵.

�! Phase transition
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Simu?
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Régime sous-critique

Flux de voitures sortantes = oℙ(n)



Régime critique

Flux de voitures sortantes = oℙ(n)



Régime surcritique

Flux de voitures sortantes = (c + oℙ(1))n



Phase transition

If t is a deterministic infinite tree (e.g. line or binary tree)

X = number of outgoing cars.

I Subcritical : X < 1 almost surely.

I Supercritical : X = 1 almost surely.

We can define a “phase transition” for finite but large trees (see later).
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Case of the line

Patata
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Case of the line

“Trivial” phase transition: always at ↵ = 1 whatever the distribution.
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And on random trees ?

I Fix t = Tn a Bienaymé–Galton–Watson tree conditioned to have n
vertices with o↵spring distribution

⌫ =
1X

k=0

⌫k�k aperiodic with mean 1 and finite variance ⌃2.

I The car arrivals on each vertex are independent.

I The law of the car arrivals only depends on the degree of the vertex.

Alice Contat Parking on the infinite binary tree 7 / 30



And on random trees ?
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Phase transition on critical random trees

Building on [Curien, Hénard 2019]

Theorem (C. 2020)

We observe a phase transition which depends only on

⇥ = (1� ↵)2 � ⌃2(↵+ ↵2 � �2) or ⇥ = ⇥(⌃2, . . .)

subcritical critical supercritical

⇥ > 0 ⇥ = 0 ⇥ < 0

'(Tn) when n ! 1 finite o(n) ⇠ cn with c > 0

E['(T )]

< 1 = 1 = 1

|Cmax(n)| when n ! 1

 A log(n) ? ⇠ Cn avec C > 0
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Location of the transition in the binary case

Take t the infinite binary tree. Let G be the generating function of the law
µ of the car arrivals.

Theorem (Aldous, C., Curien, Hénard, 2022)

Suppose there exists

tc = min
�
t � 0, 2(G (t)� tG 0(t))2 = t2G (t)G 00(t)

 
.

The parking process is subcritical if and only if

(tc � 2)G (tc) � tc(tc � 1)G 0(tc).

In the generic situation, the time tc exists.

Alice Contat Parking on the infinite binary tree 9 / 30

Location of the transition in the binary case

Alice Contat Parking on the infinite binary tree 9 / 30



Location of the transition in the binary case

Take t the infinite binary tree. Let G be the generating function of the law
µ of the car arrivals.

Theorem (Aldous, C., Curien, Hénard, 2022)

Suppose there exists

tc = min
�
t � 0, 2(G (t)� tG 0(t))2 = t2G (t)G 00(t)

 
.

The parking process is subcritical if and only if

(tc � 2)G (tc) � tc(tc � 1)G 0(tc).

In the generic situation, the time tc exists.

Alice Contat Parking on the infinite binary tree 9 / 30



Location of the transition in the binary case

Take t the infinite binary tree. Let G be the generating function of the law
µ of the car arrivals.

Theorem (Aldous, C., Curien, Hénard, 2022)

Suppose there exists

tc = min
�
t � 0, 2(G (t)� tG 0(t))2 = t2G (t)G 00(t)

 
.

The parking process is subcritical if and only if

(tc � 2)G (tc) � tc(tc � 1)G 0(tc).

In the generic situation, the time tc exists.

Alice Contat Parking on the infinite binary tree 9 / 30



Location of the transition in the binary case

Take t the infinite binary tree. Let G be the generating function of the law
µ of the car arrivals.

Theorem (Aldous, C., Curien, Hénard, 2022)

Suppose there exists

tc = min
�
t � 0, 2(G (t)� tG 0(t))2 = t2G (t)G 00(t)

 
.

The parking process is subcritical if and only if

(tc � 2)G (tc) � tc(tc � 1)G 0(tc).

In the generic situation, the time tc exists.

Alice Contat Parking on the infinite binary tree 9 / 30



Examples

Car arrivals Critical value ↵c

Binary 0/2

1

14

µ↵ = (1� ↵
2
)�0 +

↵
2
�2

Binary 0/k

⇠ Cste
2kk

µ↵ = (1� ↵
k )�0 +

↵
k �k

Poisson

3� 2
p
2

G↵(t) = exp (t(↵� 1))

Geometric

1

8

G↵(t) =
1

1+↵�↵t
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Probabilistic consequences

I In the subcritical regime, we need E[2#cars] < 1.

I E[X ] < 1 in the subcritical and critical regime.

I Size of the cluster of parked cars/empty spots ?
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Sketch of proof: combinatorial decomposition

I Decomposition of the final configuration into clusters of parked cars

I Prerequisite: Enumeration of Fully parked trees.

We denote by
p� = P(the root is empty), and

p• = P(X = 0 and the root is parked).
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Decomposition into clusters

P(X = k) =
X

n�1

X

t2Tk
n

w(t)P(X = 0)n+1.
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Decomposition into clusters

p• =
X

n�1

X

t2Tk
n

w(t)pn+1

�

Alice Contat Parking on the infinite binary tree 13 / 30

1



Decomposition into clusters

p� = µ0(p� + p•)
2
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Characterization of the subcritical regime

F (x , y) =
X

n�1

X

p�0

X

t2Tp
n

w(t)xnyp

The parking process is subcritical i↵ there exists a positive solution to

1 = µ0x(1 + F (x , 0))2
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Characterization of the subcritical regime

F (x , y) =
X

n�1

X

p�0

X

t2Tp
n

w(t)xnyp

The parking process is subcritical i↵ at xc radius of convergence of F

1  µ0xc(1 + F (xc , 0))
2
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Enumeration of FPT : decomposition “à la Tutte”

F (x , y) =
X

n�1

X

p�0

X

t2Tp
n

w(t)xnyp

p

=

 
p+ 1

or
`

p1

p = p1 + `� 1

x 2

or
`

p1

p = p1 + p2 + `� 1

p2
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p+ 1

or
`

p1

p = p1 + `� 1

x 2

or
`

p1

p = p1 + p2 + `� 1

p2

F (x, y) = x
yG(y) + 2x

yF (x, y)G(y) x
yF (x, y)2G(y)+

x
yG(0) � 2x

yF (x, 0)G(0) x
yF (x, 0)2G(0)��
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Solving the equation

Tutte’s equation can be written in the form

P(F(x , y),F(x , 0), x , y) = 0

where P is polynomial.

Key: Find Y = Y (x) such that

@f P(F(x ,Y (x)),F0(x), x ,Y (x)) = 0,

since we will also get

@yP(F(x ,Y (x)),F0(x), x ,Y (x)) = 0.
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We get 3 equations :

8
<

:

Y � 2xFG (Y ) = 0,
1 + xG 0(Y )F2 = F,
Y + xG (Y )F2 = Y F + xG (0)F2

0

We obtain

x =
Y (2G (Y )� YG 0(Y ))

4G (Y )2
and F0(x) =

2G (Y )
p
G (Y )� YG 0(Y )

(2G (Y )� YG 0(Y ))
p

G (0)
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tc

x =  (Y )

Y = Y (x)

x =
Y (2G (Y )� YG 0(Y ))

4G (Y )2

F0(x) =
2G (Y )

p
G (Y )� YG 0(Y )

(2G (Y )� YG 0(Y ))
p
G (0)

tc = min{t � 0, 2(G (t)� tG 0(t))2 = t2G (t)G 00(t)}.

1  µ0xc(1 + F (xc , 0))
2 , (tc � 2)G (tc) � tc(tc � 1)G 0(tc).
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Non generic case?

tc

xc

x =  (Y )

Y yc

xc

x =  (Y )

Y

dilute non-generic dense
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Bonus:

Supercritical Bienaymé–Galton–Watson trees
with geometric o↵spring distribution
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• Consider a Bienaymé—Galton—Watson tree  with geometric 
offspring distribution 





with .


• Again, we denote by  the number of outgoing cars.


‣Subcritical :  is almost surely finite. 

‣Supercritical :  is infinite as soon an  is infinite.

𝒯

νq =
+∞

∑
k=0

qk(1 − q)δk

q > 1/2

X

X
X 𝒯



• Similarly, we obtain a collection of equations.



p∘ =
(1 − q)G(0)

1 − q(p∘ + p∙)

∀k ≥ 0, ℙ (X = k + 1) =
1 − qp∘

q
[yk]F ( q(1 − q)

(1 − qp∘)2
, y)



• Similarly, we obtain a collection of equations.



p∘ =
(1 − q)G(0)

1 − q(p∘ + p∙)

p∙ =
1 − qp∘

q
F ( q(1 − q)

(1 − qp∘)2
,0)



• Good News : Linxiao has already enumerated the fully parked 
trees !



• Bad news: the same equation does not characterize the 
subcritical regime 
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• Bad news: the same equation does not characterize the 
subcritical regime 

• Solution: in the subcritical regime, we have ℙ(X < ∞) = 1

• Good News : Linxiao has already enumerated the fully parked 
trees !

The parking process is subcritical if and only if there exists a 
positive solution  to the equation 
p∘

1 − qp
q

⋅ F ( q(1 − q)
(1 − qp)2

,1) + p = 1



Theorem (Chen, C., 2024)

Suppose that there exists tc such that

tc := inf{t > 0, (G (t)� tG 0
(t))2 = 2t2G (t)G 00

(t)}.

Then the parking process is subcritical if and only if

tc > 1 and
tcG (tc)

'(tc)2
 q(1� q),

where '(y) = (y + 1)G (y)� y(y � 1)G 0
(y).
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Sanst
j'ait

Thank you for 
your attention !   


