# Multiple tree automata a new model of tree automata 

Gwendal Collet (TU Wien), Julien David (LIPN)

Séminaire CALIN, 24 mars 2015
(1) Introduction to automata: definitions and motivation
(2) Description of the model: Multiple Tree Automata
(3) Minimization
(4) Closure properties
(5) Yield of a MTA: Link with language theory

## Introduction: Regular Word Automata

Finite alphabet: $a, b, c \ldots$

$$
\mathcal{A}=(\Sigma, Q, I, F, \delta)
$$

Finite set of states: initial, final...


$$
\begin{aligned}
& i \in I, r, s \in F \\
& (i, b, r),(q, a, q), \ldots \in \Delta \\
& \mathcal{L}_{\mathcal{A}}=(b c)^{\star}\left(1+a^{+} b\right) \\
& \text { e.g.: bcaaab } \in \mathcal{L}_{\mathcal{A}}
\end{aligned}
$$

## Introduction: Regular Tree Automata

Finite ranked alphabet: $a(0), b(1), c(1), d(2) \ldots$

$$
\mathcal{A}=\left(\Sigma=\cup_{k \geq 0} \Sigma_{k}, Q, I, \Delta\right) \quad \text { Set of transitions: }
$$

Finite set of states: initial, finat...


$$
\begin{aligned}
& a \in \Sigma_{0}(\text { leaf }), b, c \in \Sigma_{1}, d \in \Sigma_{2} \\
& i \in I \\
& (i, b, r),(q, a, \epsilon),(s, d,(q, q)), \ldots \in \Delta \\
& \mathcal{L}_{\mathcal{A}}=\frac{(b(c(\ldots b(c(d(a, d(a, a)))))))}{\star} \stackrel{b}{\downarrow}{ }^{\text {e.g. }}{ }_{a^{\prime}}^{d_{d}} \in \mathcal{L}_{\mathcal{A}}
\end{aligned}
$$

## Introduction: Regular Tree Automata

Finite ranked alphabet: $a(0), b(1), c(1), d(2) \ldots$

$$
\mathcal{A}=\left(\Sigma=\cup_{k \geq 0} \Sigma_{k}, Q, I, \Delta\right) \quad \text { Set of transitions: }
$$

Finite set of states: initial,finat..


## Introduction: Regular Tree Automata

Finite ranked alphabet: $a(0), b(1), c(1), d(2) \ldots$
$\mathcal{A}=\left(\stackrel{\downarrow}{\Sigma}=\cup_{k \geq 0} \Sigma_{k}, Q, I, \Delta\right) \quad$ Set of transitions: $\quad \Delta \subset \cup_{k \geq 0} Q \times \Sigma_{k} \times Q^{k}$
Finite set of states: initial, finat..


## What if we could handle

 dependencies between children?Independance

Random sampling of trees controlling the number of occurrences of a given pattern

Pattern


2 occurrences

Random sampling of trees
controlling the number of occurrences of a given pattern

## Pattern



When reading the tree top-down:
Dependencies between nodes at a same height

Idea (C., David, Jacquot 2014):

- Use refined tree automata which count occurrences of a given pattern $\rightarrow$ need to handle dependencies
- Translate the associated tree grammar into a system of equations on generating series
- Design a bivariate Boltzmann sampler with the GS


## Multiple Tree Automata (MTA)

Finite ranked alphabet: $a(0), b(1), c(1), d(2) \ldots$
$\mathcal{A}=\left(\Sigma=\cup_{k \geq 0} \Sigma_{k}, Q=\cup_{\ell \geq 1} Q_{\ell}, I, \Delta\right)$
Finite ranked set of states Initial states $\in Q_{1}$

Set of transitions: $\Delta \subset \cup_{\ell \geq 1} Q_{\ell} \times \Sigma^{\ell} \times$ Part $\times Q^{\star}$
$\left(q,\left(a_{1}, \ldots, a_{\ell}\right), P=\left(p_{1}, \ldots, p_{r}\right),\left(q_{1}, \ldots, q_{r}\right)\right)$
such that: $|P|=\sum_{i=1}^{\ell} \operatorname{rank}\left(a_{i}\right)$

$$
\forall 1 \leq j \leq r, \operatorname{rank}\left(q_{j}\right)=\left|p_{j}\right|
$$




Multiple Tree Automata (MTA)


## Multiple Tree Automata (MTA)



## Multiple Tree Automata (MTA)



Def [Non-determinism]:
Non-deterministic MTA iff $|I|>1$ or $\exists q \in Q_{k},\left(a_{1}, \ldots, a_{k}\right) \in \Sigma^{k}$,

$$
\left(q,\left(a_{1}, \ldots, a_{k}\right), P, \vec{p}\right) \text { and }\left(q,\left(a_{1}, \ldots, a_{k}\right), P^{\prime}, \overrightarrow{p^{\prime}}\right) \in \Delta
$$

Deterministic MTA otherwise.

## Minimization: size of a MTA

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore!

size $=6$

size $=7$

size $=5$
$\mathcal{L}_{\mathcal{A}_{1}}=\mathcal{L}_{\mathcal{A}_{2}}=\mathcal{L}_{\mathcal{A}_{3}}=\{$ Binary trees of height less than 3$\}$

## Minimization: size of a MTA

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore! Size $=$ Total length of transitions


$$
\text { size }=12
$$


size $=8$

size $=5$
$\mathcal{L}_{\mathcal{A}_{1}}=\mathcal{L}_{\mathcal{A}_{2}}=\mathcal{L}_{\mathcal{A}_{3}}=\{$ Binary trees of height less than 3$\}$

## Minimization: state equivalence

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore! Size $=$ Total length of transitions

size $=12$

size $=8$ equivalent

size $=5$

## Minimization: state equivalence

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore! Size $=$ Total length of transitions

size $=12$


## Minimization: state equivalence

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore! Size $=$ Total length of transitions

size $=12$

size $=8$

size $=5$

## Minimization: state equivalence

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore! Size $=$ Total length of transitions

size $=12$

size $=8$

size $=5$
A. No equivalent states

## Minimization: splitting

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore! Size $=$ Total length of transitions

size $=12$
A No equivalent states
New operation: splitting

size $=8$

size $=5$

$$
q \in Q_{k} \xrightarrow{\rightarrow} q_{1} \in Q_{k_{1}} \quad \vdots \quad \vdots \quad q_{n} \in Q_{k_{n}}
$$

## Minimization: splitting

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore! Size $=$ Total length of transitions


$$
\text { size }=12
$$

A. No equivalent states

New operation: splitting

$$
q \in Q_{k} \xrightarrow{*} \underset{q_{n} \in Q_{k_{1}}}{\vdots} \quad \begin{gathered}
q_{k_{n}}
\end{gathered} \quad \sum k_{i}=k
$$

## Minimization: splitting

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Number of transitions $\rightarrow$ Not enough anymore! Size $=$ Total length of transitions


$$
\text { size }=12
$$

A No equivalent states
New operation: splitting


$$
\text { size }=7
$$

$$
q \in Q_{k} \xrightarrow{\rightarrow} \stackrel{\rightarrow}{\rightarrow} q_{1} \in Q_{k_{1}} \quad \vdots \quad \sum k_{n}=k
$$

## Minimization: minimal DMTA

Minimize $=$ Compute the smallest equivalent Deterministic MTA Size $=$ Total length of transitions

## Theorem

A MTA without equivalent or splittable states is minimal.
This minimal automaton can be computed for any DMTA.

Sketch of the minimization algorithm

- Compute and merge any equivalent states.
- Compute and split any splittable states.
- Repeat until a fixpoint is reached.


## Closure properties of the tree languages

## Theorem

1. MTA are closed under union and concatenation.
2. Non-deterministic MTA are strictly more powerful than deterministic ones.
3. MTA are not closed under complementation.

## Proof:

1. Straightforward
2. Language of unary-binary trees with exactly one $\downarrow$ unary node
non-deterministic!


## Closure properties of the tree languages

## Theorem

1. MTA are closed under union and concatenation.
2. Non-deterministic MTA are strictly more powerful than deterministic ones.
3. MTA are not closed under complementation.

## Proof:

1. Straightforward
2. Language of unary-binary trees with exactly one unary node non-deterministic!


## Yield of a MTA

Def [Yield of an MTA $\mathcal{A}$ ]:
Word language $\operatorname{Yield}(\mathcal{A})=\left\{\operatorname{border}(T): T \in \mathcal{L}_{\mathcal{A}}\right\}$


$$
\operatorname{border}(T)=\text { aeeafa }
$$

## Theorem

Yield(MTA) are equivalent to LCFRS languages.
Context-free $\subset$ Mildly context-sensitive $\subset$ Context-sensitive Linear Context-Free Rewriting Systems

Conjecture: MTA are closed under intersection.
$\rightarrow$ Semi-algorithm by computing joint dependences, believed to terminate eventually...

Conjecture: MTA are closed under intersection.
$\rightarrow$ Semi-algorithm by computing joint dependences, believed to terminate eventually...

What about Bottom-up MTA?
$\rightarrow$ useful for parsing
$\rightarrow$ more expressive in Deterministic Regular TA

Conjecture: MTA are closed under intersection.
$\rightarrow$ Semi-algorithm by computing joint dependences, believed to terminate eventually...

What about Bottom-up MTA?
$\rightarrow$ useful for parsing
$\rightarrow$ more expressive in Deterministic Regular TA
Characterize the tree languages recognized by MTA
$\rightarrow$ Regular TL $\subset$ Multiple TL $\subset$ Context-free TL
$\rightarrow$ Pumping lemma, swapping lemma, other tools?



## Thank you!

