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Introduction to automata: definitions and motivation

Outline

Description of the model: Multiple Tree Automata
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Closure properties

Yield of a MTA: Link with language theory
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Introduction: Regular Word Automata

A = (Σ, Q, I, F, δ)

Finite alphabet: a, b, c...

Finite set of states: initial, final...

Set of transitions: ∆ ⊂ Q× Σ×Q

i

q r

a b c

a

s

b

LA = (bc)?(1 + a+b)

i ∈ I, r, s ∈ F
(i, b, r), (q, a, q), . . . ∈ ∆

e.g.: bcaaab ∈ LA



Introduction: Regular Tree Automata

A = (Σ= ∪k≥0Σk, Q, I,∆)

Finite ranked alphabet: a(0), b(1), c(1), d(2)...

Finite set of states: initial, final...

Set of transitions:

i

q r

d b c

LA = (b(c(. . . b(c(d(a, d(a, a)))))))

i ∈ I
(i, b, r), (q, a, ε), (s, d, (q, q)), . . . ∈ ∆

∆ ⊂ ∪k≥0Q× Σk ×Qk
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a d

a ∈ Σ0 (leaf), b, c ∈ Σ1, d ∈ Σ2

?

e.g.:

b
c
d
da
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∈ LA
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Introduction: Regular Tree Automata

A = (Σ= ∪k≥0Σk, Q, I,∆)

Finite ranked alphabet: a(0), b(1), c(1), d(2)...

Finite set of states: initial, final...

Set of transitions:

i

q r

d b c

s

a d
Independance

What if we could handle

dependencies between children?

∆ ⊂ ∪k≥0Q× Σk ×Qk



Introduction: Motivation

Random sampling of trees

controlling the number of occurrences of a given pattern

Pattern

d

b

d

b

d

b

c

d

d

ca

d

b a a

aa

a 2 occurrences



Introduction: Motivation

Random sampling of trees

controlling the number of occurrences of a given pattern

Pattern

d

bd

ba

a

a

When reading the tree top-down:

Dependencies between nodes at a same height

Idea (C., David, Jacquot 2014):

of a given pattern → need to handle dependencies
• Use refined tree automata which count occurrences

• Design a bivariate Boltzmann sampler with the GS

• Translate the associated tree grammar into
a system of equations on generating series



Multiple Tree Automata

A = (Σ = ∪k≥0Σk, Q= ∪`≥1Q`, I,∆)

Finite ranked alphabet: a(0), b(1), c(1), d(2)...

Finite ranked set of states

Set of transitions: ∆ ⊂ ∪`≥1Q` × Σ` × Part×Q?

Initial states ∈ Q1

(q, (a1, . . . , a`), P = (p1, . . . , pr), (q1, . . . , qr))

such that: |P | =
∑`

i=1 rank(ai)

∀1 ≤ j ≤ r, rank(qj) = |pj |

q

q1 q2 q3

(q, ( ), {{2}, {1, 3, 4, 6}, {5, 7}} , (q1, q2, q3))
1 2 3 4 5 6 7

(MTA)



Multiple Tree Automata
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n ≥ 0
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Multiple Tree Automata
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A
LA =

same n: can handle dependencies

nodes at the same height
between a bounded number of

(MTA)

Def [Non-determinism]:

Non-deterministic MTA iff |I| > 1 or ∃q ∈ Qk, (a1, . . . , ak) ∈ Σk,

(q, (a1, . . . , ak), P, ~p) and (q, (a1, . . . , ak), P ′, ~p′) ∈ ∆

Deterministic MTA otherwise.



Minimization: size of a MTA

Size = Number of transitions → Not enough anymore!

i

q1

q2

i

s1

s2r3 r4

i

r1 r2

A1 A2 A3

LA1
= LA2

= LA3
= { Binary trees of height less than 3}

size = 6 size = 7 size = 5

Minimize = Compute the smallest equivalent Deterministic MTA
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Minimize = Compute the smallest equivalent Deterministic MTA



Minimization: splitting

Size = Number of transitions → Not enough anymore!
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transitions + independence = splittable
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Minimization: splitting

Size = Number of transitions → Not enough anymore!

i

q1

q2

A1

size = 12

Size = Total length of transitions

No equivalent states!
New operation: splitting q ∈ Qk

q1 ∈ Qk1

qn ∈ Qkn

...
∑
ki = k

splittable
transitions + independence = splittable

state

q2

i

r1 r2

A2

size = 7

size

Minimize = Compute the smallest equivalent Deterministic MTA



Minimization: minimal DMTA

Size = Total length of transitions

Theorem

A MTA without equivalent or splittable states is minimal.

This minimal automaton can be computed for any DMTA.

Sketch of the minimization algorithm

• Compute and merge any equivalent states.

• Compute and split any splittable states.

• Repeat until a fixpoint is reached.

Minimize = Compute the smallest equivalent Deterministic MTA



Closure properties of the tree languages

Theorem

1. MTA are closed under union and concatenation.

2. MTA are not closed under complementation.

3. Non-deterministic MTA are strictly more powerful
than deterministic ones.

Proof:

1. Straightforward
2. Language of unary-binary trees

with exactly one

non-deterministic!

unary node



Closure properties of the tree languages

Theorem

1. MTA are closed under union and concatenation.

2. MTA are not closed under complementation.

3. Non-deterministic MTA are strictly more powerful
than deterministic ones.

Proof:

1. Straightforward 3...
2. Language of unary-binary trees

with exactly one

non-deterministic!

unary node



Yield of a MTA

Def [Yield of an MTA A]:
Word language Y ield(A) = {border(T ) : T ∈ LA}

d
b

d
b

c

d
d
ca

d
b e a

fe

a border(T ) = aeeafa

T

Theorem

Y ield(MTA) are equivalent to LCFRS languages.

Context-free ⊂ Mildly context-sensitive ⊂ Context-sensitive

Linear Context-Free Rewriting Systems



Further works

Conjecture: MTA are closed under intersection.

→ Semi-algorithm by computing joint dependences,
believed to terminate eventually...
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Further works

Conjecture: MTA are closed under intersection.

→ Semi-algorithm by computing joint dependences,
believed to terminate eventually...

What about Bottom-up MTA?

→ useful for parsing
→ more expressive in Deterministic Regular TA

Characterize the tree languages recognized by MTA

→ Regular TL ⊂ Multiple TL ⊂ Context-free TL
→ Pumping lemma, swapping lemma, other tools?

N ≤ ∈ L ⇒ ∈ L ∈ L



Thank you!


