Dendric words and dendric subshifts

Paulina CECCHI B.
(Joint work with Valérie Berthé)

Institute de Recherche en Informatique Fondamentale
Université Paris Diderot - Paris 7

Departamento de Matemática y Ciencia de la Computación
Facultad de Ciencia. Universidad de Santiago de Chile

Séminaire CALIN, Paris, July 2018
Let \mathcal{A} be a finite alphabet and consider $x \in \mathcal{A}^\mathbb{N}$,

$$x = x_0x_1x_2x_3 \cdots$$
Let A be a finite alphabet and consider $x \in A^\mathbb{N}$,

$$x = x_0x_1x_2x_3 \cdots$$

The language $\mathcal{L}(x)$ of x is its set of finite subwords or factors.

Given a factor w of x, a right extension of w is a letter $a \in A$ such that $aw \in \mathcal{L}(x)$. We define analogously a left extension ($wb \in \mathcal{L}(x)$) and a biextension ($awb \in \mathcal{L}(x)$). We are interested in a family of words with linear complexity and some restrictions on the possible extensions of their factors.
Let \mathcal{A} be a finite alphabet and consider $x \in \mathcal{A}^\mathbb{N}$,

$$x = x_0x_1x_2x_3 \cdots$$

The language $\mathcal{L}(x)$ of x is its set of finite subwords or factors.

The factor complexity of a x is the map $p_x : \mathbb{N} \to \mathbb{N}$ defined by

$$p_x(n) = |\mathcal{L}(x) \cap \mathcal{A}^n|.$$
Let \mathcal{A} be a finite alphabet and consider $x \in \mathcal{A}^\mathbb{N}$,

$$x = x_0x_1x_2x_3 \cdots$$

The language $\mathcal{L}(x)$ of x is its set of finite subwords or factors.

The factor complexity of x is the map $p_x : \mathbb{N} \to \mathbb{N}$ defined by

$$p_x(n) = |\mathcal{L}(x) \cap \mathcal{A}^n|.$$

Given a factor w of x, a right extension of w is a letter $a \in \mathcal{A}$ such that $aw \in \mathcal{L}(x)$. We define analogously a left extension ($wb \in \mathcal{L}(x)$) and a biextension ($awb \in \mathcal{L}(x)$) of w.
Let \mathcal{A} be a finite alphabet and consider $x \in \mathcal{A}^\mathbb{N}$,

$$x = x_0 x_1 x_2 x_3 \cdots$$

The language $\mathcal{L}(x)$ of x is its set of finite subwords or factors.

The factor complexity of a x is the map $p_x : \mathbb{N} \to \mathbb{N}$ defined by

$$p_x(n) = |\mathcal{L}(x) \cap \mathcal{A}^n|.$$

Given a factor w of x, a right extension of w is a letter $a \in \mathcal{A}$ such that $aw \in \mathcal{L}(x)$. We define analogously a left extension ($wb \in \mathcal{L}(x)$) and a biextension ($awb \in \mathcal{L}(x)$) of w.

We are interested in a family of words with linear complexity and some restrictions on the possible extensions of their factors.
Outline

- Dendric words.
- Dendric subshifts (symbolic dynamical systems).
- Exploiting properties of extension graphs.
 - Balance in dendric words.
 - Invariant measures and orbit equivalence.
Dendric words
Dendric words

Let \mathcal{A} be a finite non-empty alphabet and $x \in \mathcal{A}^N$ or $\mathcal{A}^\mathbb{Z}$. For $w \in \mathcal{L}(x)$, the extensions of w are the following sets,

\[
\begin{align*}
L(w) &= \{a \in \mathcal{A} \mid aw \in \mathcal{L}(x)\} \\
R(w) &= \{a \in \mathcal{A} \mid wa \in \mathcal{L}(x)\} \\
B(w) &= \{(a, b) \in \mathcal{A} \times \mathcal{A} \mid awb \in \mathcal{L}(x)\}.
\end{align*}
\]
Dendric words

- Let \mathcal{A} be a finite non-empty alphabet and $x \in \mathcal{A}^\mathbb{N}$ or $\mathcal{A}^\mathbb{Z}$. For $w \in \mathcal{L}(x)$, the extensions of w are the following sets,

\[
\begin{align*}
L(w) &= \{ a \in \mathcal{A} \mid aw \in \mathcal{L}(x) \} \\
R(w) &= \{ a \in \mathcal{A} \mid wa \in \mathcal{L}(x) \} \\
B(w) &= \{ (a, b) \in \mathcal{A} \times \mathcal{A} \mid awb \in \mathcal{L}(x) \}.
\end{align*}
\]

- The extension graph $\mathcal{E}_x(w)$ of w is the undirected bipartite graph whose set of vertices is the disjoint union of $L(w)$ and $R(w)$ and whose edges are the pairs $(a, b) \in B(w)$.
Dendric words

- Example: Consider the Fibonacci word in \(\{a, b\} \)

\[
x = abaababaabaababaabaababa \cdots
\]

produced by the substitution \(\varphi : a \mapsto ab, b \mapsto a \) \((x = \varphi^\omega(a)) \).
Dendric words

Example: Consider the Fibonacci word in \(\{a, b\} \)

\[x = abaababaababaababaababaababa \cdots \]

produced by the substitution \(\varphi : a \mapsto ab, b \mapsto a \) \((x = \varphi^\omega(a)). \)

The extension graphs of \(a \) and \(b \) are

\[\mathcal{E}_x(a) \]

\[\mathcal{E}_x(b) \]

\[\mathcal{L}_3(x) = \{aba, baa, aab, bab\}. \]
Dendric words

- Example: Consider the Fibonacci word in \(\{a, b\} \)

\[
x = abaababaababaababaababa \cdots
\]

produced by the substitution \(\varphi : a \mapsto ab, b \mapsto a \).

- The extension graphs of \(aa, ab, ba \) are

\[
E_x(aa) = b \xrightarrow{} b \\
E_x(ab) = a \xrightarrow{} a \\
E_x(ba) = a \xrightarrow{} a
\]

\[
\mathcal{L}_4(x) = \{aba, baab, aaba, abab, baba\}.
\]
Dendric words

- If for all $w \in \mathcal{L}(x)$ the graph $\mathcal{E}_x(w)$ is a tree, x is said to be dendric.
Dendric words

- If for all \(w \in \mathcal{L}(x) \) the graph \(E_x(w) \) is a tree, \(x \) is said to be dendric.
- The Fibonacci word is a dendric word.
Dendric words

- If for all $w \in \mathcal{L}(x)$ the graph $\mathcal{E}_x(w)$ is a tree, x is said to be dendric.
- The Fibonacci word is a dendric word.
- Consider the Thue-Morse word in $\{a, b\}$ given by

$$y = abbabaabbaababba \cdots$$

produced by the Thue-Morse substitution $\sigma : a \mapsto ab, b \mapsto ba$.

This word is not dendric. The extension graph of ϵ is

$$\mathcal{E}_y(\epsilon)$$

$$\mathcal{L}_2(y) = \{aa, ab, ba, bb\}.$$
Dendric words: examples
Dendric words: examples

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_x(n) = n + 1$.

Dendric words: examples

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_x(n) = n + 1$.

- Arnoux-Rauzy words. Consider the alphabet $\mathcal{A} = \{1, 2, \ldots, d\}$, $x \in \mathcal{A}^\mathbb{N}$ or $\mathcal{A}^\mathbb{Z}$ is an Arnoux-Rauzy word if every factor appears infinitely often; for all n,

$$p_n(x) = (d - 1)n + 1,$$
Dendric words: examples

- Sturmian words: aperiodic (bi)infinite words with factor complexity \(p_x(n) = n + 1 \).

- Arnoux-Rauzy words. Consider the alphabet \(\mathcal{A} = \{1, 2, \cdots, d\} \), \(x \in \mathcal{A}^\mathbb{N} \) or \(\mathcal{A}^\mathbb{Z} \) is an Arnoux-Rauzy word if every factor appears infinitely often; for all \(n \),

 \[
 p_n(x) = (d - 1)n + 1,
 \]

 and there exists exactly one left special factor \((L(w) \geq 2) \) and one right special factor \((R(v) \geq 2) \) of each given length.
Dendric words: examples

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_x(n) = n + 1$.

- Arnoux-Rauzy words. Consider the alphabet $\mathcal{A} = \{1, 2, \cdots, d\}$, $x \in \mathcal{A}^\mathbb{N}$ or $\mathcal{A}^\mathbb{Z}$ is an Arnoux-Rauzy word if every factor appears infinitely often; for all n,

$$p_n(x) = (d - 1)n + 1,$$

and there exists exactly one left special factor ($L(w) \geq 2$) and one right special factor ($R(v) \geq 2$) of each given length.

- Sturmian words are Arnoux-Rauzy words for $d = 2$.
Dendric words: examples

- Codings of regular interval exchanges.

\[I \xrightarrow{\cdots} \text{abbacb} \cdots \xrightarrow{\cdots} \text{bacbbacbba} \cdots \]

Regular means that the orbits of nonzero separation points are infinite and disjoint.
Codings of regular interval exchanges.

Regular means that the orbits of nonzero separation points are infinite and disjoint.
Dendric words: examples

- Codings of regular interval exchanges.

```
\[ I(\cdot) \]
```

Regular means that the orbits of nonzero separation points are infinite and disjoint.

\[x_p = \cdots abbac \cdot bacbbacbbba \cdots \]
Dendric subshifts
Dendric subshifts

- The set $\mathcal{A}^\mathbb{Z}$ equipped with the product topology of the discrete topology is a Cantor space.
Dendric subshifts

- The set $\mathcal{A}^\mathbb{Z}$ equipped with the product topology of the discrete topology is a **Cantor space**.

- The shift map T acts on $\mathcal{A}^\mathbb{Z}$ as $T((x_n)_{n \in \mathbb{Z}}) = (x_{n+1})_{n \in \mathbb{Z}}$.
Dendric subshifts

- The set $\mathcal{A}^\mathbb{Z}$ equipped with the product topology of the discrete topology is a **Cantor space**.

- The shift map T acts on $\mathcal{A}^\mathbb{Z}$ as $T((x_n)_{n \in \mathbb{Z}}) = (x_{n+1})_{n \in \mathbb{Z}}$.

- A **subshift** is a dynamical system (X, T) where X is a closed shift-invariant subset of $\mathcal{A}^\mathbb{Z}$. The language \mathcal{L}_X of the subshift is defined as the union of the language of its elements.
Dendric subshifts

- The set $A^\mathbb{Z}$ equipped with the product topology of the discrete topology is a **Cantor space**.

- The shift map T acts on $A^\mathbb{Z}$ as $T((x_n)_{n \in \mathbb{Z}}) = (x_{n+1})_{n \in \mathbb{Z}}$.

- A **subshift** is a dynamical system (X, T) where X is a closed shift-invariant subset of $A^\mathbb{Z}$. The language L_X of the subshift is defined as the union of the language of its elements.

- For all $w \in L_X$, define the **cylinder** w as

 $$[w] = \{ x \in X : x_0 \cdots x_{|w|-1} = w \}.$$

 The set of all cylinders is a basis of the topology of X.

Dendric subshifts

- \((X, T)\) is **minimal** if it admits no non-trivial closed and shift-invariant subset: every infinite word \(x \in X\) is **uniformly recurrent**: every word occurring in \(x\) occurs infinitely often with bounded gaps, every \(x \in X\) has the same language.

- If for all \(w \in L_X\), the extension graph of \(w\) is a tree, \(X\) is called a dendric subshift.

- Equivalently, \(X = \{y \in A^\mathbb{Z} : L(y) \subseteq L(x)\}\).
Dendric subshifts

- (X, T) is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in x occurs infinitely often with bounded gaps, every $x \in X$ has the same language.

- If for all $w \in \mathcal{L}_X$, the extension graph of w is a tree, X is called a dendric subshift.
Dendric subshifts

- \mathcal{X} is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in \mathcal{X}$ is uniformly recurrent: every word occurring in x occurs infinitely often with bounded gaps, every $x \in \mathcal{X}$ has the same language.

- If for all $w \in \mathcal{L}_\mathcal{X}$, the extension graph of w is a tree, \mathcal{X} is called a dendric subshift.

- We focus on minimal dendric subshifts. This is the case when there is a dendric word $x = (x_n)_{n \in \mathbb{Z}}$ such that the subshift $\mathcal{X} \subseteq A^\mathbb{Z}$ can be obtained as

$$\mathcal{X} = \{ T^k ((x_n)_{n \in \mathbb{Z}}) : k \in \mathbb{Z} \}.$$
Dendric subshifts

- \((X, T)\) is **minimal** if it admits no non-trivial closed and shift-invariant subset: every infinite word \(x \in X\) is **uniformly recurrent**: every word occurring in \(x\) occurs infinitely often with bounded gaps, every \(x \in X\) has the same language.

- If for all \(w \in \mathcal{L}_X\), the extension graph of \(w\) is a tree, \(X\) is called a **dendric subshift**.

- We focus on **minimal** dendric subshifts. This is the case when there is a dendric word \(x = (x_n)_{n \in \mathbb{Z}}\) such that the subshift \(X \subseteq \mathcal{A}^\mathbb{Z}\) can be obtained as

\[
X = \left\{ T^k \left((x_n)_{n \in \mathbb{Z}} \right) : k \in \mathbb{Z} \right\}.
\]

- Equivalently, \(X = \{ y \in \mathcal{A}^\mathbb{Z} : \mathcal{L}(y) \subseteq \mathcal{L}(x) \}\).
Exploiting properties of extension graphs.
Lemma (∗)

Let \mathcal{T} be a finite tree, with a bipartition X and Y of its set of vertices, with $|X|, |Y| \geq 2$. Let E be its set of edges. For all $x \in X$, $y \in Y$, define

$$Y_x := \{y \in Y : (x, y) \in E\} \quad X_y := \{x \in X : (x, y) \in E\}.$$

Let $(G, +)$ be an abelian group and H a subgroup of G. Suppose that there exists a function $g : X \cup Y \cup E \to G$ satisfying the following conditions:

1. $g(X \cup Y) \subseteq H$;
2. for all $x \in X$, $g(x) = \sum_{y \in Y_x} g(x, y)$, and for all $y \in Y$, $g(y) = \sum_{x \in X_y} g(x, y)$.

Then, for all $(x, y) \in E$, $g(x, y) \in H$.

Paulina CECCHI B. (IRIF/USACh) Dendric words and dendric subshifts LIPN, July 2018 15 / 35
Proof ideas.

Extension graph

Conditions (1) and (2) imply that the image under g of any edge connected to a leaf belongs to H. Let $k := \max\{|X|, |Y|\}$. If $k = 2$, there is only one possibility for T (modulo relabeling the vertices), since T is connected and has no cycles, which is $x_1x_2y_1y_2l$. Both $g(x_1, y_1)$ and $g(x_2, y_2)$ are in H because x_1 and y_2 are leaves.
Proof ideas.

Conditions (1) and (2) imply that the image under g of any edge connected to a leaf belongs to H.
Conditions (1) and (2) imply that the image under g of any edge connected to a leaf belongs to H.

Let $k := \max\{|X|, |Y|\}$. If $k = 2$, there is only one possibility for T (modulo relabeling the vertices), since T is connected and has no cycles, which is

![Diagram](attachment://extension_graph.png)
Proof ideas.

- Conditions (1) and (2) imply that the image under g of any edge connected to a leaf belongs to H.

- Let $k := \max\{|X|, |Y|\}$. If $k = 2$, there is only one possibility for \mathcal{T} (modulo relabeling the vertices), since \mathcal{T} is connected and has no cycles, which is

![Diagram]

- Both $g(x_1, y_1)$ and $g(x_2, y_2)$ are in H because x_1 and y_2 are leaves.
By Condition (2), one has $g(x_2) = g(x_2, y_1) + g(x_2, y_2)$, and then $g(x_2, y_1) = g(x_2) - g(x_2, y_2)$.
By Condition (2), one has \(g(x_2) = g(x_2, y_1) + g(x_2, y_2) \), and then \(g(x_2, y_1) = g(x_2) - g(x_2, y_2) \).

Since \(g(x_2) \in H \) by Condition (1) and \(H \) is a group, then \(g(x_2, y_1) \in H \).
By Condition (2), one has $g(x_2) = g(x_2, y_1) + g(x_2, y_2)$, and then $g(x_2, y_1) = g(x_2) - g(x_2, y_2)$.

Since $g(x_2) \in H$ by Condition (1) and H is a group, then $g(x_2, y_1) \in H$.

We proceed by induction for $k > 2$.
An application: Balance.
A word $x \in \mathcal{A}^\mathbb{N}$ or $\mathcal{A}^\mathbb{Z}$ is **balanced** on the factor $v \in \mathcal{L}(x)$ if there exists a constant C_v such that for every pair of factors u, w in $\mathcal{L}(x)$ with $|u| = |w|$,

$$||u|_v - |w|_v| \leq C_v.$$
A word $x \in \mathcal{A}^\mathbb{N}$ or $\mathcal{A}^\mathbb{Z}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant C_v such that for every pair of factors u, w in $\mathcal{L}(x)$ with $|u| = |w|$,

$$||u|_v - |w|_v| \leq C_v.$$

If $x \in X$ and (X, T) is minimal, balance is a property of the language \mathcal{L}_X.

Sturmian words are exactly the 1-balanced words on the letters.
A word $x \in \mathcal{A}^\mathbb{N}$ or $\mathcal{A}^\mathbb{Z}$ is **balanced** on the factor $v \in \mathcal{L}(x)$ if there exists a constant C_v such that for every pair of factors u, w in $\mathcal{L}(x)$ with $|u| = |w|$,

$$||u|_v - |w|_v| \leq C_v.$$

If $x \in X$ and (X, T) is minimal, balance is a property of the language \mathcal{L}_X.

Sturmian words are exactly the **1-balanced** words on the letters.
Balance

- A word $x \in \mathcal{A}^\mathbb{N}$ or $\mathcal{A}^\mathbb{Z}$ is **balanced** on the factor $v \in \mathcal{L}(x)$ if there exists a constant C_v such that for every pair of factors u, w in $\mathcal{L}(x)$ with $|u| = |w|$, $$||u|_v - |w|_v| \leq C_v.$$

- If $x \in X$ and (X, T) is minimal, balance is a property of the language \mathcal{L}_X.

- Sturmian words are exactly the 1-balanced words on the letters.

- They are moreover C-balanced on factors of any length.
Frequencies

- The **frequency** of a factor \(v \in \mathcal{L}(x) \) in \(x \in \mathcal{A}^\mathbb{Z} \) is defined as the following limit (if it exists),

\[
\lim_{n \to \infty} \frac{|x_{-n} \cdots x_n|_v}{2n + 1}.
\]

Proposition

The language \(\mathcal{L}_X \) is balanced in the factor \(v \) if and only if \(v \) has a frequency \(\mu_v \) and there exists a constant \(B_v \) such that for any factor \(w \in \mathcal{L}_X \), we have \(||w|_v - \mu_v|w|| \leq B_v||\).

- Equivalently, \(v \) has a frequency \(\mu_v \) and there exists \(B_v \) such that for all \(x \in X \) and for all \(n \geq 1 \),

\[
||x_{[0,n]}|_v - \mu_v n| \leq B_v.
\]
Balance

- Balance is a measure of **disorder**: convergence speed of $|x_{[0,n]}|_\nu / n$ towards μ_ν.

Balance in factors of length $(n+1)$ implies balance in factors of length n. However, balance behavior can be different in factors of different lengths. Example: the language of the Thue–Morse word is balanced on letters and it is not balanced on the factors of length ℓ for every $\ell \geq 2$.

Paulina CECCHI B. (IRIF/USACH)
Dendric words and dendric subshifts
LIPN, July 2018
21 / 35
Balance

- Balance is a measure of **disorder**: convergence speed of $|x_{[0,n]}|_\nu/n$ towards μ_ν.

- Balance in factors of length $(n + 1)$ implies balance in factors of length n.

Balance

- Balance is a measure of **disorder**: convergence speed of $|x_{[0,n]}|_\nu/n$ towards μ_ν.

- Balance in factors of length $(n + 1)$ implies balance in factors of length n.

- But balance behaviour can be different in factors of different lengths.

Example: the language of the Thue-Morse word is balanced on letters and it is not balanced on the factors of length ℓ for every $\ell \geq 2$.

Paulina CECCHI B. (IRIF/USACH)
Balance

- Balance is a measure of disorder: convergence speed of $|x_{[0,n]}|_v/n$ towards μ_v.

- Balance in factors of length $(n + 1)$ implies balance in factors of length n.

- But balance behaviour can be different in factors of different lengths.

- Example: the language of the Thue-Morse word is balanced on letters and it is not balanced on the factors of length ℓ for every $\ell \geq 2$.
Balance

Theorem

Let (X, T) be a minimal dendric subshift on a finite alphabet A. Then (X, T) is balanced on the letters if and only if it is balanced on the factors.
Balance

Theorem

Let \((X, T)\) be a minimal dendric subshift on a finite alphabet \(\mathcal{A}\). Then \((X, T)\) is balanced on the letters if and only if it is balanced on the factors.

Proof idea: use the following lemma,
Balance

Theorem

Let \((X, T)\) be a minimal dendric subshift on a finite alphabet \(A\). Then \((X, T)\) is balanced on the letters if and only if it is balanced on the factors.

Proof idea: use the following lemma,

Lemma

Let \((X, T)\) be a minimal dendric subshift. Let \(H\) be the following subset of \(C(X, \mathbb{Z})\):

\[
H = \left\{ \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \chi_{T^k([a])} : K_a \subseteq \mathbb{Z}, |K_a| < \infty, \alpha(a, k) \in \mathbb{Z} \right\},
\]

where \(\chi_A\) denotes the characteristic function of the set \(A\), for all \(A \subseteq X\). Then, for all \(v \in \mathcal{L}_X\), \(\chi_{[v]}\) belongs to \(H\).
Balance

Proof.
Balance

Proof.

Given any factor $v \in \mathcal{L}_X$, we want to find, for all $a \in A$ a finite set $K_a \subseteq \mathbb{Z}$ and for all $k \in K_a$ an integer $\alpha(a, k)$ such that

$$
\chi[v] = \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \chi_{T^k([a])}.
$$
Balance

Proof.

Given any factor $v \in \mathcal{L}_X$, we want to find, for all $a \in A$ a finite set $K_a \subseteq \mathbb{Z}$ and for all $k \in K_a$ an integer $\alpha(a, k)$ such that

$$\chi[v] = \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \chi^{T^k([a])}.$$

We proceed by induction on $|v|$. If $|v| = 1$, v is a letter and the conclusion follows.
Balance

Proof.

• Given any factor $v \in \mathcal{L}_X$, we want to find, for all $a \in A$ a finite set $K_a \subseteq \mathbb{Z}$ and for all $k \in K_a$ an integer $\alpha(a, k)$ such that

$$\chi[v] = \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \chi_{T^k([a])}.$$

• We proceed by induction on $|v|$. If $|v| = 1$, v is a letter and the conclusion follows.

• Let $v = v_0 \cdots v_n$,

$$\tilde{v} = v_1 \cdots v_n,$$

$$v' = v_0 \cdots v_{n-1},$$

$$\bar{v} = v_1 \cdots v_n.$$
Balance

Proof.
Balance

Proof.

If $\tilde{v} = v_1 \cdots v_n$ has only one left extension,
Balance

Proof.

If $\tilde{\nu} = \nu_1 \cdots \nu_n$ has only one left extension, for all $x \in X$, $\chi[\nu](x) = \chi[\tilde{\nu}](Tx)$. $\chi[\tilde{\nu}] \in H$ by induction, so for all $x \in X$,

$$
\chi[\nu](x) = \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \chi_{T^k([a])}(Tx)
$$

$$
= \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \chi_{T^{k-1}([a])}(x).
$$
Balance

Proof.

If \(\tilde{v} = v_1 \cdots v_n \) has only one left extension, for all \(x \in X \),
\[
\chi[v](x) = \chi[\tilde{v}](Tx).
\]
\(\chi[v] \in H \) by induction, so for all \(x \in X \),
\[
\chi[v](x) = \sum_{a \in A} \sum_{k \in K} \alpha(a, k) \chi_{T^k([a])}(Tx)
\]
\[
= \sum_{a \in A} \sum_{k \in K} \alpha(a, k) \chi_{T^k([a])}(x).
\]

Defining \(K'_a := \{k - 1 : k \in K_a\} \) for all \(a \in A \), and
\(\beta(a, k) = \alpha(a, k + 1) \) for all \(k \in K'_a \), we conclude
\[
\chi[v](x) = \sum_{a \in A} \sum_{k \in K'_a} \beta(a, k) \chi_{T^k([a])},
\]
and then \(\chi[v] \) belongs to \(H \).
Balance

Proof.

- If $v' = v_0 \cdots v_{n-1}$ has only one right extension,
Balance

Proof.

- If $v' = v_0 \cdots v_{n-1}$ has only one right extension, for all $x \in X$, $\chi[v](x) = \chi[v'](x)$. We conclude by applying the induction hypothesis.
Proof.

If $v' = v_0 \cdots v_{n-1}$ has only one right extension, for all $x \in X$, $\chi[v](x) = \chi[v'](x)$. We conclude by applying the induction hypothesis.

If \tilde{v} has more than one left extension and v' has more than one right extension, let $\mathcal{E}(\tilde{v})$ be the extension graph of

$$\tilde{v} = v_1 \cdots v_{n-1}.$$

It is a tree by definition, each of the sets in its bipartition of vertices has cardinality at least two.
Balance

Proof.

- If \(v' = v_0 \cdots v_{n-1} \) has only one right extension, for all \(x \in X \), \(\chi[v](x) = \chi[v'](x) \). We conclude by applying the induction hypothesis.

- If \(\tilde{v} \) has more than one left extension and \(v' \) has more than one right extension, let \(\mathcal{E}(\tilde{v}) \) be the extension graph of

\[
\tilde{v} = v_1 \cdots v_{n-1}.
\]

- It is a tree by definition, each of the sets in its bipartition of vertices has cardinality at least two.

- Note that \(H \) is a subgroup of \(C(X, \mathbb{Z}) \).
Balance

Proof.

Define $g : L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \to C(X, \mathbb{Z})$ as follows
Balance

Proof.

- Define $g : L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \to C(X, \mathbb{Z})$ as follows
 - For $a \in L(\bar{v})$, $g(a) = \chi_{[a\bar{v}]}$.
 - For $b \in R(\bar{v})$, $g(b) = \chi_{T^{-1}[\bar{v}b]}$.
 - For $(a, b) \in E(\bar{v})$, $g(a, b) = \chi_{[a\bar{v}b]}$.

Balance

Proof.

- Define $g : L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z})$ as follows
 - For $a \in L(\bar{v})$, $g(a) = \chi_{[a\bar{v}]}$.
 - For $b \in R(\bar{v})$, $g(b) = \chi_{T^{-1}[\bar{v}b]}$.
 - For $(a, b) \in E(\bar{v})$, $g(a, b) = \chi_{[a\bar{v}b]}$.

- Condition (1) of Lemma (\star) holds by induction hypothesis.
Balance

Proof.

- Define \(g : L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z}) \) as follows:

 For \(a \in L(\bar{v}) \), \(g(a) = \chi_{[a\bar{v}]} \).

 For \(b \in R(\bar{v}) \), \(g(b) = \chi_{T^{-1}[\bar{v}b]} \).

 For \((a, b) \in E(\bar{v}) \), \(g(a, b) = \chi_{[a\bar{v}b]} \).

- Condition (1) of Lemma (\(\star \)) holds by induction hypothesis.

- For the second condition, let \(a \in L(\bar{v}) \). One has

\[
\chi_{[a\bar{v}]} = \sum_{b \in R(\bar{v}), (a, b) \in E(\bar{v})} \chi_{[a\bar{v}b]}(x)
\]

and thus

\[
g(a) = \sum_{b \in R(\bar{v}), (a, b) \in E(\bar{v})} g(a, b).
\]
Similarly, for \(b \in R(\bar{v}) \) and \(x \in X \), one has

\[
\chi_{T^{-1}[\bar{v}b]}(x) = \chi[\bar{v}b](Tx) = \sum_{a \in L(\bar{v}), (a, b) \in E(\bar{v})} \chi[a\bar{v}b](x).
\]

We conclude that for all \(b \in R(\bar{v}) \),

\[
g(b) = \sum_{a \in L(\bar{v}), (a, b) \in E(\bar{v})} g(a, b).
\]
Balance

Proof.

Similarly, for $b \in R(\bar{v})$ and $x \in X$, one has

$$\chi_{T^{-1}[\bar{v}b]}(x) = \chi_{[\bar{v}b]}(Tx) = \sum_{a \in L(\bar{v}), (a,b) \in E(\bar{v})} \chi_{[a\bar{v}b]}(x).$$

We conclude that for all $b \in R(\bar{v})$,

$$g(b) = \sum_{a \in L(\bar{v}), (a,b) \in E(\bar{v})} g(a, b).$$

Thanks to Lemma (\star), every $g(a, b)$ belongs to H. In particular, $g(v_0, v_n) = \chi_{[v]} \in H$.

Paulina CECCHI B. (IRIF/USACIn) Dendric words and dendric subshifts LIPN, July 2018 27 / 35
Proof of the theorem.

Suppose (X, T) is balance on every letter. Let C be a constant of balance on the letters.
Balance

Proof of the theorem.

Suppose \((X, T)\) is balance on every letter. Let \(C\) be a constant of balance on the letters.

Let \(v \in \mathcal{L}_X\). Let \(n \geq 3\) and let \(u, w\) be two factors of \(\mathcal{L}_X\) of length \(n - 1\) with \(n - 1 > |v|\). Pick a bi-infinite word \(x \in X\) such that \(u = x_{[i, i+n)}\) and \(w = x_{[j, j+n)}\) for some indices \(i, j \in \mathbb{Z}\). We have

\[
||u|_v - |w|_v|| = \left| \sum_{\ell = i}^{i+n-1-|v|} \chi_v(T^\ell x) - \sum_{\ell = j}^{j+n-1-|v|} \chi_v(T^\ell x) \right|.
\]
Balance

Proof of the theorem.

$$||u|_v - |w|_v|| = \left| \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \left(\sum_{\ell=i}^{i+n-1} \chi T^k[a](T^\ell x) - \sum_{\ell=j}^{j+n-1} \chi T^k[a](T^\ell x) \right) \right|$$
Proof of the theorem.

\[
\|u_\nu - w_\nu\| = \left| \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \left(\sum_{\ell = i}^{i+n-1-|\nu|} \chi_{T_k[a]}(T^\ell x) - \sum_{\ell = j}^{j+n-1-|\nu|} \chi_{T_k[a]}(T^\ell x) \right) \right| \\
\leq \sum_{a \in A} \sum_{k \in K_a} |\alpha(a, k)| \left| \sum_{\ell = i}^{i+n-1-|\nu|} \chi_{T_k[a]}(T^\ell x) - \sum_{\ell = j}^{j+n-1-|\nu|} \chi_{T_k[a]}(T^\ell x) \right|
\]
Balance

Proof of the theorem.

\[||u||_v - ||w||_v| = \left| \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_a} \alpha(a, k) \left(\sum_{\ell = i}^{i+n-1-|v|} \chi_{T^k[a]}(T^{\ell}x) - \sum_{\ell = j}^{j+n-1-|v|} \chi_{T^k[a]}(T^{\ell}x) \right) \right| \]

\[\leq \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_a} |\alpha(a, k)| \left| \sum_{\ell = i}^{i+n-1-|v|} \chi_{T^k[a]}(T^{\ell}x) - \sum_{\ell = j}^{j+n-1-|v|} \chi_{T^k[a]}(T^{\ell}x) \right| \]

\[= \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_a} |\alpha(a, k)| \left| \sum_{\ell = i}^{i+n-1-|v|} \chi[a](T^{\ell}(T^{-k}x)) - \sum_{\ell = j}^{j+n-1-|v|} \chi[a](T^{\ell}(T^{-k}x)) \right| \]
Balance

Proof of the theorem.

\[
\begin{align*}
||u||_v - ||w||_v &= \left| \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \left(\sum_{\ell=i}^{i+n-1-|v|} \chi T^k[a](T^\ell x) - \sum_{\ell=j}^{j+n-1-|v|} \chi T^k[a](T^\ell x) \right) \right| \\
&\leq \left| \sum_{a \in A} \sum_{k \in K_a} |\alpha(a, k)| \left(\sum_{\ell=i}^{i+n-1-|v|} \chi T^k[a](T^\ell x) - \sum_{\ell=j}^{j+n-1-|v|} \chi T^k[a](T^\ell x) \right) \right| \\
&= \sum_{a \in A} \sum_{k \in K_a} |\alpha(a, k)| \left| \sum_{\ell=i}^{i+n-1-|v|} \chi [a](T^\ell (T^{-k} x)) - \sum_{\ell=j}^{j+n-1-|v|} \chi [a](T^\ell (T^{-k} x)) \right| \\
&= \sum_{a \in A} \sum_{k \in K_a} |\alpha(a, k)| \cdot \left| (T^{-k} x)_{[i,i+n-|v|]}|a - |(T^{-k} x)_{[j,j+n-|v|]}|a \right|.
\end{align*}
\]

\[\leq C\]
Balance
Proof of the theorem.

\[||u|_v - |w|_v|| = \left| \sum_{a \in A} \sum_{k \in K_a} \alpha(a, k) \left(\sum_{\ell = i}^{i+n-1-|v|} \chi_{T^k[a]}(T^\ell x) - \sum_{\ell = j}^{j+n-1-|v|} \chi_{T^k[a]}(T^\ell x) \right) \right| \]

\[\leq \sum_{a \in A} \sum_{k \in K_a} |\alpha(a, k)| \left| \sum_{\ell = i}^{i+n-1-|v|} \chi[a](T^\ell (T^{-k}x)) - \sum_{\ell = j}^{j+n-1-|v|} \chi[a](T^\ell (T^{-k}x)) \right| \]

\[= \sum_{a \in A} \sum_{k \in K_a} |\alpha(a, k)| \cdot \left| (T^{-k}x)[i, i+n-|v|] - (T^{-k}x)[j, j+n-|v|] \right| \leq C \]

Then, \[||u|_v - |w|_v|| \leq |A|KC, K = \max_{a \in A} \left\{ \sum_{k \in K_a} |\alpha(a, k)| \right\}. \]
Balance

- Let $\mathcal{A} = \{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on \mathcal{A} is $\left\{\sigma_i : i \in \mathcal{A}\right\}$ given by

\[
\sigma_i : \quad i \mapsto i; \quad j \mapsto ji \quad \text{for} \quad i \neq j.
\]
Balance

- Let $\mathcal{A} = \{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on \mathcal{A} is $\{\sigma_i : i \in \mathcal{A}\}$ given by

\[
\sigma_i : \quad i \mapsto i; \quad j \mapsto ji \quad \text{for} \quad i \neq j.
\]

- An Arnoux-Rauzy substitution is a finite product of σ_i's.
Balance

- Let $\mathcal{A} = \{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on \mathcal{A} is $\{\sigma_i : i \in \mathcal{A}\}$ given by

$$
\sigma_i : \quad i \mapsto i; \quad j \mapsto ji \quad \text{for} \quad i \neq j.
$$

- An Arnoux-Rauzy substitution is a finite product of σ_i’s.
- A substitution σ on \mathcal{A} is said to be primitive if there exists a positive integer N such that for every $a, b \in \mathcal{A}$, b appears in $\sigma^N(a)$.
- Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).
Balance

- Let $A = \{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on A is $\{\sigma_i : i \in A\}$ given by

$$\sigma_i : \begin{align*} i &\mapsto i; \quad j &\mapsto ji \quad \text{for} \quad i \neq j. \end{align*}$$

- An Arnoux-Rauzy substitution is a finite product of σ_i’s.
- A substitution σ on A is said to be primitive if there exists a positive integer N such that for every $a, b \in A$, b appears in $\sigma^N(a)$.
- Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).
- We know automatically that they are balanced on all factors.
Balance

Let $\mathcal{A} = \{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on \mathcal{A} is $\{\sigma_i : i \in \mathcal{A}\}$ given by

$$\sigma_i : \quad i \mapsto i; \quad j \mapsto ji \quad \text{for} \quad i \neq j.$$

An Arnoux-Rauzy substitution is a finite product of σ_i’s.

A substitution σ on \mathcal{A} is said to be primitive if there exists a positive integer N such that for every $a, b \in \mathcal{A}$, b appears in $\sigma^N(a)$.

Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).

We know automatically that they are balanced on all factors.

Another sufficient conditions exist to guarantee balance on letters for Arnoux-Rauzy words.
Another application: Invariant measures and Orbit equivalence.
Invariant measures

A probability measure μ on the compact metric space X is T-invariant if for all Borel subset B of X,

$$\mu(T^{-1}(B)) = \mu(B).$$
Invariant measures

- A probability measure μ on the compact metric space X is T-invariant if for all Borel subset B of X,

$$\mu(T^{-1}(B)) = \mu(B).$$

- Every dynamical system has invariant measures (Krylov-Bogolyubov’s theorem).
Invariant measures

- A probability measure μ on the compact metric space X is T-invariant if for all Borel subset B of X,

 $$\mu(T^{-1}(B)) = \mu(B).$$

- Every dynamical system has invariant measures (Krylov-Bogolyubov’s theorem).

- (X, T) is said to be uniquely ergodic if there exists only one invariant measure.
Invariant measures

- A probability measure μ on the compact metric space X is T-invariant if for all Borel subset B of X,

$$\mu(T^{-1}(B)) = \mu(B).$$

- Every dynamical system has invariant measures (Krylov-Bogolyubov’s theorem).

- (X, T) is said to be uniquely ergodic if there exists only one invariant measure.

- For minimal systems, unique ergodicity is equivalent to having frequencies.
Invariant measures

- Let $\mathcal{M}(X, T)$ the set of T–invariant measures on X. The **Image subgroup** of (X, T) is the following subgroup of \mathbb{R}.

$$I(X, T) = \bigcap_{\mu \in \mathcal{M}(X, T)} \left\{ \int f d\mu : f \in C(X, \mathbb{Z}) \right\}.$$
Invariant measures

- Let $\mathcal{M}(X, T)$ the set of T–invariant measures on X. The Image subgroup of (X, T) is the following subgroup of \mathbb{R}.

$$I(X, T) = \bigcap_{\mu \in \mathcal{M}(X, T)} \left\{ \int fd\mu : f \in C(X, \mathbb{Z}) \right\}.$$

- One can show that

$$I(X, T) = \bigcap_{\mu \in \mathcal{M}(X, T)} \langle \mu([w]) : w \in \mathcal{L}_X \rangle.$$
Invariant measures

- Let $\mathcal{M}(X, T)$ the set of T–invariant measures on X. The image subgroup of (X, T) is the following subgroup of \mathbb{R}.

$$I(X, T) = \bigcap_{\mu \in \mathcal{M}(X, T)} \left\{ \int f d\mu : f \in C(X, \mathbb{Z}) \right\}.$$

- One can show that

$$I(X, T) = \bigcap_{\mu \in \mathcal{M}(X, T)} \langle \mu([w]) : w \in \mathcal{L}_X \rangle.$$

- If (X, T) is uniquely ergodic with measure μ,

$$I(X, T) = \langle \mu([w]) : w \in \mathcal{L}_X \rangle.$$
Invariant measures

- Let $\mathcal{M}(X, T)$ the set of T–invariant measures on X. The **Image subgroup** of (X, T) is the following subgroup of \mathbb{R}.

$$I(X, T) = \bigcap_{\mu \in \mathcal{M}(X, T)} \left\{ \int f d\mu : f \in C(X, \mathbb{Z}) \right\}.$$

- One can show that

$$I(X, T) = \bigcap_{\mu \in \mathcal{M}(X, T)} \langle \mu([w]) : w \in \mathcal{L}_X \rangle.$$

- If (X, T) is uniquely ergodic with measure μ,

$$I(X, T) = \langle \mu([w]) : w \in \mathcal{L}_X \rangle.$$
Invariant measures

- The triple \((I(X, T), I(X, T) \cap \mathbb{R}^+, 1)\) is an order group with unit.
Invariant measures

- The triple $(I(X, T), I(X, T) \cap \mathbb{R}^+, 1)$ is an order group with unit.

- $(I(X, T), I(X, T) \cap \mathbb{R}^+, 1)$ is total invariant for Orbit equivalence [Giordano-Putnam-Skau95].

- (X, T) and (Y, S) are orbit equivalent if there is a homeomorphism $h : X \to Y$ such that for all $x \in X$

 $$h(\{ T^n(x) : n \in \mathbb{Z} \}) = \{ S^n(h(x)) : n \in \mathbb{Z} \},$$

 that is, h sends orbits onto orbits.
Invariant measures

Theorem

Let (X, T) a uniquely ergodic dendric subshift over the alphabet A and μ its unique invariant measure. Then, the image subgroup of (X, T) is

$$I(X, T) = \sum_{a \in A} \mathbb{Z} \mu([a]).$$
Invariant measures

Theorem

Let \((X, T)\) a uniquely ergodic dendric subshift over the alphabet \(A\) and \(\mu\) its unique invariant measure. Then, the image subgroup of \((X, T)\) is

\[
I(X, T) = \sum_{a \in A} \mathbb{Z} \mu([a]).
\]

Corollary

Two minimal uniquely ergodic dendric subshifts are orbit equivalent if and only if they have the same additive group of letter frequencies.
Invariant measures

Theorem

Let (X, T) a uniquely ergodic dendric subshift over the alphabet \mathcal{A} and μ its unique invariant measure. Then, the image subgroup of (X, T) is

$$I(\mathcal{X}, T) = \sum_{a \in \mathcal{A}} \mathbb{Z}\mu([a]).$$

Corollary

Two minimal uniquely ergodic dendric subshifts are orbit equivalent if and only if they have the same additive group of letter frequencies.

Corollary

All dendric subshifts over a three-letter alphabet with the same letter frequencies are orbit equivalent.