# Dendric words and dendric subshifts 

Paulina CECCHI B.<br>(Joint work with Valérie Berthé)

Institute de Recherche en Informatique Fondamentale Université Paris Diderot - Paris 7

Departamento de Matemática y Ciencia de la Computación
Facultad de Ciencia. Universidad de Santiago de Chile

Séminaire CALIN, Paris, July 2018

Let $\mathcal{A}$ be a finite alphabet and consider $x \in \mathcal{A}^{\mathbb{N}}$,

$$
x=x_{0} x_{1} x_{2} x_{3} \cdots
$$

Let $\mathcal{A}$ be a finite alphabet and consider $x \in \mathcal{A}^{\mathbb{N}}$,

$$
x=x_{0} x_{1} x_{2} x_{3} \cdots
$$

The language $\mathcal{L}(x)$ of $x$ is it set of finite subwords or factors.

Let $\mathcal{A}$ be a finite alphabet and consider $x \in \mathcal{A}^{\mathbb{N}}$,

$$
x=x_{0} x_{1} x_{2} x_{3} \cdots
$$

The language $\mathcal{L}(x)$ of $x$ is it set of finite subwords or factors.
The factor complexity of a $x$ is the map $p_{x}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
p_{x}(n)=\left|\mathcal{L}(x) \cap \mathcal{A}^{n}\right|
$$

Let $\mathcal{A}$ be a finite alphabet and consider $x \in \mathcal{A}^{\mathbb{N}}$,

$$
x=x_{0} x_{1} x_{2} x_{3} \cdots
$$

The language $\mathcal{L}(x)$ of $x$ is it set of finite subwords or factors.
The factor complexity of a $x$ is the map $p_{x}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
p_{x}(n)=\left|\mathcal{L}(x) \cap \mathcal{A}^{n}\right|
$$

Given a factor $w$ of $x$, a right extension of $w$ is a letter $a \in \mathcal{A}$ such that $a w \in \mathcal{L}(x)$. We define analogously a left extension $(w b \in \mathcal{L}(x))$ and a biextension $(a w b \in \mathcal{L}(x))$ of $w$.

Let $\mathcal{A}$ be a finite alphabet and consider $x \in \mathcal{A}^{\mathbb{N}}$,

$$
x=x_{0} x_{1} x_{2} x_{3} \cdots
$$

The language $\mathcal{L}(x)$ of $x$ is it set of finite subwords or factors.
The factor complexity of a $x$ is the map $p_{x}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
p_{x}(n)=\left|\mathcal{L}(x) \cap \mathcal{A}^{n}\right|
$$

Given a factor $w$ of $x$, a right extension of $w$ is a letter $a \in \mathcal{A}$ such that $a w \in \mathcal{L}(x)$. We define analogously a left extension $(w b \in \mathcal{L}(x))$ and a biextension $(a w b \in \mathcal{L}(x))$ of $w$.

We are interested in a family of words with linear complexity and some restrictions on the possible extensions of their factors.

## Outline

- Dendric words.
- Dendric subshifts (symbolic dynamical systems).
- Exploting properties of extension graphs.
- Balance in dendric words.
- Invariant measures and orbit equivalence.


## Dendric words

## Dendric words

- Let $\mathcal{A}$ be a finite non-empty alphabet and $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$. For $w \in \mathcal{L}(x)$, the extensions of $w$ are the following sets,

$$
\begin{aligned}
& L(w)=\{a \in \mathcal{A} \mid a w \in \mathcal{L}(x)\} \\
& R(w)=\{a \in \mathcal{A} \mid w a \in \mathcal{L}(x)\} \\
& B(w)=\{(a, b) \in \mathcal{A} \times \mathcal{A} \mid a w b \in \mathcal{L}(x)\}
\end{aligned}
$$

## Dendric words

- Let $\mathcal{A}$ be a finite non-empty alphabet and $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$. For $w \in \mathcal{L}(x)$, the extensions of $w$ are the following sets,

$$
\begin{aligned}
& L(w)=\{a \in \mathcal{A} \mid a w \in \mathcal{L}(x)\} \\
& R(w)=\{a \in \mathcal{A} \mid w a \in \mathcal{L}(x)\} \\
& B(w)=\{(a, b) \in \mathcal{A} \times \mathcal{A} \mid a w b \in \mathcal{L}(x)\} .
\end{aligned}
$$

- The extension graph $\mathcal{E}_{x}(w)$ of $w$ is the undirected bipartite graph whose set of vertices is the disjoint union of $L(w)$ and $R(w)$ and whose edges are the pairs $(a, b) \in B(w)$.


## Dendric words

- Example: Consider the Fibonacci word in $\{a, b\}$

$$
x=\text { abaababaabaababaababa... }
$$

produced by the substitution $\varphi: a \mapsto a b, b \mapsto a\left(x=\varphi^{\omega}(a)\right)$.

## Dendric words

- Example: Consider the Fibonacci word in $\{a, b\}$

$$
x=\text { abaababaabaababaababa... }
$$

produced by the substitution $\varphi: a \mapsto a b, b \mapsto a\left(x=\varphi^{\omega}(a)\right)$.

- The extension graphs of $a$ and $b$ are

$$
\begin{equation*}
\mathcal{E}_{x}(a) \tag{x}
\end{equation*}
$$


(a)

$$
\mathcal{L}_{3}(x)=\{a b a, b a a, a a b, b a b\} .
$$

## Dendric words

- Example: Consider the Fibonacci word in $\{a, b\}$

$$
x=\text { abaababaabaababaababa... }
$$

produced by the substitution $\varphi: a \mapsto a b, b \mapsto a$.

- The extension graphs of $a a, a b, b a$ are

$$
\mathcal{E}_{x}(a a)
$$

$\mathcal{E}_{x}(a b)$
$\mathcal{E}_{x}(b a)$

$\mathcal{L}_{4}(x)=\{a b a a$, baab, aaba, abab, baba $\}$.

## Dendric words

- If for all $w \in \mathcal{L}(x)$ the graph $\mathcal{E}_{x}(w)$ is a tree, $x$ is said to be dendric.


## Dendric words

- If for all $w \in \mathcal{L}(x)$ the graph $\mathcal{E}_{x}(w)$ is a tree, $x$ is said to be dendric.
- The Fibonacci word is a dendric word.


## Dendric words

- If for all $w \in \mathcal{L}(x)$ the graph $\mathcal{E}_{x}(w)$ is a tree, $x$ is said to be dendric.
- The Fibonacci word is a dendric word.
- Consider the Thue-Morse word in $\{a, b\}$ given by

$$
y=a b b a b a a b b a a b a b b a \cdots
$$

produced by the Thue-Morse substitution $\sigma: a \mapsto a b, b \mapsto b a$.
This word is not dendric. The extension graph of $\epsilon$ is

$$
\mathcal{E}_{y}(\epsilon)
$$



$$
\mathcal{L}_{2}(y)=\{a a, a b, b a, b b\}
$$

## Dendric words: examples

## Dendric words: examples

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_{x}(n)=n+1$.


## Dendric words: examples

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_{x}(n)=n+1$.
- Arnoux-Rauzy words. Consider the alphabet $\mathcal{A}=\{1,2, \cdots, d\}$, $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if every factor appears infinitely often; for all $n$,

$$
p_{n}(x)=(d-1) n+1
$$

## Dendric words: examples

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_{x}(n)=n+1$.
- Arnoux-Rauzy words. Consider the alphabet $\mathcal{A}=\{1,2, \cdots, d\}$, $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if every factor appears infinitely often; for all $n$,

$$
p_{n}(x)=(d-1) n+1,
$$

and there exists exactly one left special factor $(L(w) \geq 2)$ and one rigth special factor $(R(v) \geq 2)$ of each given length.

## Dendric words: examples

- Sturmian words: aperiodic (bi)infinite words with factor complexity $p_{x}(n)=n+1$.
- Arnoux-Rauzy words. Consider the alphabet $\mathcal{A}=\{1,2, \cdots, d\}$, $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is an Arnoux-Rauzy word if every factor appears infinitely often; for all $n$,

$$
p_{n}(x)=(d-1) n+1,
$$

and there exists exactly one left special factor $(L(w) \geq 2)$ and one rigth special factor $(R(v) \geq 2)$ of each given length.

- Sturmian words are Arnoux-Rauzy words for $d=2$.


## Dendric words: examples

- Codings of regular interval exchanges.



## Dendric words: examples

- Codings of regular interval exchanges.

$\rightsquigarrow$ Regular means that the orbits of nonzero separation points are infinite and disjoint.


## Dendric words: examples

- Codings of regular interval exchanges.

$\rightsquigarrow$ Regular means that the orbits of nonzero separation points are infinite and disjoint.

$$
x_{p}=\cdots a b b a c b \cdot b a c b b a c b b a \cdots
$$

## Dendric subshifts

## Dendric subshifts

- The set $\mathcal{A}^{\mathbb{Z}}$ equipped with the product topology of the discrete topology is a Cantor space.


## Dendric subshifts

- The set $\mathcal{A}^{\mathbb{Z}}$ equipped with the product topology of the discrete topology is a Cantor space.
- The shift map $T$ acts on $\mathcal{A}^{\mathbb{Z}}$ as $T\left(\left(x_{n}\right)_{n \in \mathbb{Z}}\right)=\left(x_{n+1}\right)_{n \in \mathbb{Z}}$.


## Dendric subshifts

- The set $\mathcal{A}^{\mathbb{Z}}$ equipped with the product topology of the discrete topology is a Cantor space.
- The shift map $T$ acts on $\mathcal{A}^{\mathbb{Z}}$ as $T\left(\left(x_{n}\right)_{n \in \mathbb{Z}}\right)=\left(x_{n+1}\right)_{n \in \mathbb{Z}}$.
- A subshift is a dynamical system $(X, T)$ where $X$ is a closed shift-invariant subset of $\mathcal{A}^{\mathbb{Z}}$. The language $\mathcal{L}_{X}$ of the subshift is defined as the union of the languaje of its elements.


## Dendric subshifts

- The set $\mathcal{A}^{\mathbb{Z}}$ equipped with the product topology of the discrete topology is a Cantor space.
- The shift map $T$ acts on $\mathcal{A}^{\mathbb{Z}}$ as $T\left(\left(x_{n}\right)_{n \in \mathbb{Z}}\right)=\left(x_{n+1}\right)_{n \in \mathbb{Z}}$.
- A subshift is a dynamical system $(X, T)$ where $X$ is a closed shift-invariant subset of $\mathcal{A}^{\mathbb{Z}}$. The language $\mathcal{L}_{X}$ of the subshift is defined as the union of the languaje of its elements.
- For all $w \in \mathcal{L}_{X}$, define the cylinder $w$ as

$$
[w]=\left\{x \in X: x_{0} \cdots x_{|w|-1}=w\right\} .
$$

The set of all cylinders is a basis of the topology of $X$.

## Dendric subshifts

- $(X, T)$ is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in $x$ occurs infinitely often with bounded gaps, every $x \in X$ has the same language.


## Dendric subshifts

- $(X, T)$ is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in $x$ occurs infinitely often with bounded gaps, every $x \in X$ has the same language.
- If for all $w \in \mathcal{L}_{X}$, the extension graph of $w$ is a tree, $X$ is called a dendric subshift.


## Dendric subshifts

- $(X, T)$ is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in $x$ occurs infinitely often with bounded gaps, every $x \in X$ has the same language.
- If for all $w \in \mathcal{L}_{X}$, the extension graph of $w$ is a tree, $X$ is called a dendric subshift.
- We focus on minimal dendric subshifts. This is the case when there is a dendric word $x=\left(x_{n}\right)_{n \in \mathbb{Z}}$ such that the subshift $X \subseteq \mathcal{A}^{\mathbb{Z}}$ can be obtained as

$$
X=\overline{\left\{T^{k}\left(\left(x_{n}\right)_{n \in \mathbb{Z}}\right): k \in \mathbb{Z}\right\}}
$$

## Dendric subshifts

- $(X, T)$ is minimal if it admits no non-trivial closed and shift-invariant subset: every infinite word $x \in X$ is uniformly recurrent: every word occurring in $x$ occurs infinitely often with bounded gaps, every $x \in X$ has the same language.
- If for all $w \in \mathcal{L}_{X}$, the extension graph of $w$ is a tree, $X$ is called a dendric subshift.
- We focus on minimal dendric subshifts. This is the case when there is a dendric word $x=\left(x_{n}\right)_{n \in \mathbb{Z}}$ such that the subshift $X \subseteq \mathcal{A}^{\mathbb{Z}}$ can be obtained as

$$
X=\overline{\left\{T^{k}\left(\left(x_{n}\right)_{n \in \mathbb{Z}}\right): k \in \mathbb{Z}\right\}}
$$

- Equivalently, $X=\left\{y \in \mathcal{A}^{\mathbb{Z}}: \mathcal{L}(y) \subseteq \mathcal{L}(x)\right\}$.


## Exploting properties of extension graphs.

## Extension graph

## Lemma ( $\star$ )

Let $\mathcal{T}$ be a finite tree, with a bipartition $X$ and $Y$ of its set of vertices, with $|X|,|Y| \geq 2$. Let $E$ be its set of edges. For all $x \in X$, $y \in Y$, define

$$
Y_{x}:=\{y \in Y:(x, y) \in E\} \quad X_{y}:=\{x \in X:(x, y) \in E\} .
$$

Let $(G,+)$ be an abelian group and $H$ a subgroup of $G$. Suppose that there exists a function $g: X \cup Y \cup E \rightarrow G$ satisfying the following conditions:
(1) $g(X \cup Y) \subseteq H$;
(2) for all $x \in X, g(x)=\sum_{y \in Y_{x}} g(x, y)$, and for all $y \in Y$,

$$
g(y)=\sum_{x \in X_{y}} g(x, y) .
$$

Then, for all $(x, y) \in E, g(x, y) \in H$.

## Extension graph <br> Proof ideas.

## Extension graph <br> Proof ideas.

- Conditions (1) and (2) imply that the image under $g$ of any edge connected to a leaf belongs to $H$.


## Extension graph Proof ideas.

- Conditions (1) and (2) imply that the image under $g$ of any edge connected to a leaf belongs to $H$.
- Let $k:=\max \{|X|,|Y|\}$. If $k=2$, there is only one possibility for $\mathcal{T}$ (modulo relabeling the vertices), since $\mathcal{T}$ is connected and has no cycles, which is



## Extension graph Proof ideas.

- Conditions (1) and (2) imply that the image under $g$ of any edge connected to a leaf belongs to $H$.
- Let $k:=\max \{|X|,|Y|\}$. If $k=2$, there is only one possibility for $\mathcal{T}$ (modulo relabeling the vertices), since $\mathcal{T}$ is connected and has no cycles, which is

- Both $g\left(x_{1}, y_{1}\right)$ and $g\left(x_{2}, y_{2}\right)$ are in $H$ because $x_{1}$ and $y_{2}$ are leaves.


## Extension graph



- By Condition (2), one has $g\left(x_{2}\right)=g\left(x_{2}, y_{1}\right)+g\left(x_{2}, y_{2}\right)$, and then $g\left(x_{2}, y_{1}\right)=g\left(x_{2}\right)-g\left(x_{2}, y_{2}\right)$.


## Extension graph



- By Condition (2), one has $g\left(x_{2}\right)=g\left(x_{2}, y_{1}\right)+g\left(x_{2}, y_{2}\right)$, and then $g\left(x_{2}, y_{1}\right)=g\left(x_{2}\right)-g\left(x_{2}, y_{2}\right)$.
- Since $g\left(x_{2}\right) \in H$ by Condition (1) and $H$ is a group, then $g\left(x_{2}, y_{1}\right) \in H$.


## Extension graph



- By Condition (2), one has $g\left(x_{2}\right)=g\left(x_{2}, y_{1}\right)+g\left(x_{2}, y_{2}\right)$, and then $g\left(x_{2}, y_{1}\right)=g\left(x_{2}\right)-g\left(x_{2}, y_{2}\right)$.
- Since $g\left(x_{2}\right) \in H$ by Condition (1) and $H$ is a group, then $g\left(x_{2}, y_{1}\right) \in H$.
- We proceed by induction for $k>2$.


## An application: Balance.

## Balance

- A word $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant $C_{v}$ such that for every pair of factors $u, w$ in $\mathcal{L}(x)$ with $|u|=|w|$,

$$
\left||u|_{v}-|w|_{v}\right| \leq C_{v} .
$$

## Balance

- A word $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant $C_{v}$ such that for every pair of factors $u, w$ in $\mathcal{L}(x)$ with $|u|=|w|$,

$$
\left||u|_{v}-|w|_{v}\right| \leq C_{v}
$$

- If $x \in X$ and $(X, T)$ is minimal, balance is a property of the language $\mathcal{L}_{X}$.


## Balance

- A word $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant $C_{v}$ such that for every pair of factors $u, w$ in $\mathcal{L}(x)$ with $|u|=|w|$,

$$
\left||u|_{v}-|w|_{v}\right| \leq C_{v}
$$

- If $x \in X$ and $(X, T)$ is minimal, balance is a property of the language $\mathcal{L}_{X}$.
- Sturmian words are exactly the 1-balanced words on the letters.


## Balance

- A word $x \in \mathcal{A}^{\mathbb{N}}$ or $\mathcal{A}^{\mathbb{Z}}$ is balanced on the factor $v \in \mathcal{L}(x)$ if there exists a constant $C_{v}$ such that for every pair of factors $u, w$ in $\mathcal{L}(x)$ with $|u|=|w|$,

$$
\left||u|_{v}-|w|_{v}\right| \leq C_{v}
$$

- If $x \in X$ and $(X, T)$ is minimal, balance is a property of the language $\mathcal{L}_{X}$.
- Sturmian words are exactly the 1-balanced words on the letters.
- They are moreover $C$-balanced on factors of any length.


## Frequencies

- The frequency of a factor $v \in \mathcal{L}(x)$ in $x \in \mathcal{A}^{\mathbb{Z}}$ is defined as the following limit (if it exists),

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{-n} \cdots x_{n}\right|_{v}}{2 n+1} .
$$

## Proposition

The language $\mathcal{L}_{X}$ is balanced in the factor $v$ if and only if $v$ has a frequency $\mu_{v}$ and there exists a constant $B_{v}$ such that for any factor $w \in \mathcal{L}_{X}$, we have $\left\|\left.w\right|_{v}-\mu_{v} \mid w\right\| \leq B_{v}$.

- Equivalently, $v$ has a frequency $\mu_{v}$ and there exists $B_{v}$ such that for all $x \in X$ and for all $n \geq 1$,

$$
\left|\left|x_{[0, n)}\right|_{v}-\mu_{v} n\right| \leq B_{v} .
$$

## Balance

- Balance is a mesure of disorder: convergence speed of $\left|x_{[0, n)}\right|_{v} / n$ towards $\mu_{\mathrm{v}}$.


## Balance

- Balance is a mesure of disorder: convergence speed of $\left|x_{[0, n)}\right|_{v} / n$ towards $\mu_{v}$.
- Balance in factors of length $(n+1)$ implies balance in factors of length $n$.


## Balance

- Balance is a mesure of disorder: convergence speed of $\left|x_{[0, n)}\right|_{v} / n$ towards $\mu_{\mathrm{v}}$.
- Balance in factors of length $(n+1)$ implies balance in factors of length $n$.
- But balance behaviour can be different in factors of different lengths.


## Balance

- Balance is a mesure of disorder: convergence speed of $\left|x_{[0, n)}\right|_{v} / n$ towards $\mu_{\mathrm{v}}$.
- Balance in factors of length $(n+1)$ implies balance in factors of length $n$.
- But balance behaviour can be different in factors of different lengths.
- Example: the language of the Thue-Morse word is balanced on letters and it is not balanced on the factors of length $\ell$ for every $\ell \geq 2$.


## Balance

Theorem
Let $(X, T)$ be a minimal dendric subshift on a finite alphabet $\mathcal{A}$. Then $(X, T)$ is balanced on the letters if and only if it is balanced on the factors.

## Balance

Theorem
Let $(X, T)$ be a minimal dendric subshift on a finite alphabet $\mathcal{A}$. Then $(X, T)$ is balanced on the letters if and only if it is balanced on the factors.

- Proof idea: use the following lemma,


## Balance

## Theorem

Let $(X, T)$ be a minimal dendric subshift on a finite alphabet $\mathcal{A}$. Then $(X, T)$ is balanced on the letters if and only if it is balanced on the factors.

- Proof idea: use the following lemma,


## Lemma

Let $(X, T)$ be a minimal dendric subshift. Let $H$ be the following subset of $C(X, \mathbb{Z})$ :

$$
H=\left\{\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k) \chi_{T^{k}([a])}: K_{a} \subseteq \mathbb{Z},\left|K_{a}\right|<\infty, \alpha(a, k) \in \mathbb{Z}\right\},
$$

where $\chi_{A}$ denotes the characteristic function of the set $A$, for all $A \subseteq X$. Then, for all $v \in \mathcal{L}_{X}, \chi_{[v]}$ belongs to $H$.

## Balance <br> Proof.

## Balance

## Proof.

- Given any factor $v \in \mathcal{L}_{X}$, we want to find, for all $a \in \mathcal{A}$ a finite set $K_{a} \subseteq \mathbb{Z}$ and for all $k \in K_{a}$ an integer $\alpha(a, k)$ such that

$$
\chi_{[v]}=\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k) \chi_{T^{k}([a])} .
$$

## Balance

## Proof.

- Given any factor $v \in \mathcal{L}_{X}$, we want to find, for all $a \in \mathcal{A}$ a finite set $K_{a} \subseteq \mathbb{Z}$ and for all $k \in K_{a}$ an integer $\alpha(a, k)$ such that

$$
\chi_{[r]}=\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k) \chi_{T^{k}([a])} .
$$

- We procced by induction on $|v|$. If $|v|=1, v$ is a letter and the conclusion follows.


## Balance

## Proof.

- Given any factor $v \in \mathcal{L}_{X}$, we want to find, for all $a \in \mathcal{A}$ a finite set $K_{a} \subseteq \mathbb{Z}$ and for all $k \in K_{a}$ an integer $\alpha(a, k)$ such that

$$
\chi_{[r]}=\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k) \chi_{T^{k}([a])} .
$$

- We procced by induction on $|v|$. If $|v|=1, v$ is a letter and the conclusion follows.
- Let $v=v_{0} \cdots v_{n}$,

$$
\begin{gathered}
\widetilde{v}=v_{1} \cdots v_{n} \\
v^{\prime}=v_{0} \cdots v_{n-1} \\
\bar{v}=v_{1} \cdots v_{n}
\end{gathered}
$$

## Balance <br> Proof.

## Balance

Proof.

- If $\widetilde{v}=v_{1} \cdots v_{n}$ has only one left extension,


## Balance

## Proof.

- If $\widetilde{v}=v_{1} \cdots v_{n}$ has only one left extension, for all $x \in X$, $\chi_{[v]}(x)=\chi_{[\tilde{v}]}(T x) . \chi_{[\tilde{v}]} \in H$ by induction, so for all $x \in X$,

$$
\begin{aligned}
\chi_{[v]}(x) & =\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k) \chi_{T^{k}([a])}(T x) \\
& =\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k) \chi_{T^{k-1}([a])}(x) .
\end{aligned}
$$

## Balance

## Proof.

- If $\widetilde{v}=v_{1} \cdots v_{n}$ has only one left extension, for all $x \in X$, $\chi_{[v]}(x)=\chi_{[\tilde{v}]}(T x) . \chi_{[\tilde{v}]} \in H$ by induction, so for all $x \in X$,

$$
\begin{aligned}
\chi_{[v]}(x) & =\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k) \chi_{T^{k}([a])}(T x) \\
& =\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k) \chi_{T^{k-1}([a])}(x) .
\end{aligned}
$$

Defining $K_{a}^{\prime}:=\left\{k-1: k \in K_{a}\right\}$ for all $a \in \mathcal{A}$, and $\beta(a, k)=\alpha(a, k+1)$ for all $k \in K_{a}^{\prime}$, we conclude

$$
\chi_{[v]}(x)=\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}^{\prime}} \beta(a, k) \chi_{T^{\star}([a])},
$$

and then $\chi_{[v]}$ belongs to $H$.

## Balance

Proof.

- If $v^{\prime}=v_{0} \cdots v_{n-1}$ has only one right extension,


## Balance

## Proof.

- If $v^{\prime}=v_{0} \cdots v_{n-1}$ has only one right extension, for all $x \in X$, $\chi_{[v]}(x)=\chi_{\left[v^{\prime}\right]}(x)$. We conclude by applying the induction hypothesis.


## Balance

## Proof.

- If $v^{\prime}=v_{0} \cdots v_{n-1}$ has only one right extension, for all $x \in X$, $\chi_{[v]}(x)=\chi_{\left[v^{\prime}\right]}(x)$. We conclude by applying the induction hypothesis.
- If $\widetilde{v}$ has more than one left extension and $v^{\prime}$ has more than one right extension, let $\mathcal{E}(\bar{v})$ be the extension graph of

$$
\bar{v}=v_{1} \cdots v_{n-1} .
$$

- It is a tree by definition, each of the sets in its bipartition of vertices has cardinality at least two.


## Balance

- If $v^{\prime}=v_{0} \cdots v_{n-1}$ has only one right extension, for all $x \in X$, $\chi_{[v]}(x)=\chi_{\left[v^{\prime}\right]}(x)$. We conclude by applying the induction hypothesis.
- If $\widetilde{v}$ has more than one left extension and $v^{\prime}$ has more than one right extension, let $\mathcal{E}(\bar{v})$ be the extension graph of

$$
\bar{v}=v_{1} \cdots v_{n-1} .
$$

- It is a tree by definition, each of the sets in its bipartition of vertices has cardinality at least two.
- Note that $H$ is a subgroup of $C(X, \mathbb{Z})$.


## Balance

Proof.

- Define $g: L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z})$ as follows


## Balance

## Proof.

- Define $g: L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z})$ as follows For $a \in L(\bar{v}), g(a)=\chi_{[a \bar{v}]}$.
For $b \in R(\bar{v}), g(b)=\chi_{T^{-1}[\bar{v} b]}$.
For $(a, b) \in E(\bar{v}), g(a, b)=\chi_{[a \bar{v} b]}$.


## Balance

## Proof.

- Define $g: L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z})$ as follows For $a \in L(\bar{v}), g(a)=\chi_{[a \bar{v}]}$.
For $b \in R(\bar{v}), g(b)=\chi_{T^{-1}[\bar{v} b]}$.
For $(a, b) \in E(\bar{v}), g(a, b)=\chi_{[a \bar{v} b]}$.
- Condition (1) of Lemma ( $\star$ ) holds by induction hypothesis.


## Balance

## Proof.

- Define $g: L(\bar{v}) \cup R(\bar{v}) \cup E(\bar{v}) \rightarrow C(X, \mathbb{Z})$ as follows For $a \in L(\bar{v}), g(a)=\chi_{[a \bar{v}]}$.
For $b \in R(\bar{v}), g(b)=\chi_{T^{-1}[\bar{v} b]}$.
For $(a, b) \in E(\bar{v}), g(a, b)=\chi_{[a \bar{v} b]}$.
- Condition (1) of Lemma ( $\star$ ) holds by induction hypothesis.
- For the second condition, let $a \in L(\bar{v})$. One has

$$
\chi_{[a \bar{v}]}=\sum_{b \in R(\bar{v}),(a, b) \in E(\bar{v})} \chi_{[a \bar{v} b]}(x)
$$

and thus

$$
g(a)=\sum_{b \in R(\bar{v}),(a, b) \in E(\bar{v})} g(a, b)
$$

## Balance

## Proof.

- Similarly, for $b \in R(\bar{v})$ and $x \in X$, one has

$$
\chi_{\left.T^{-1}[\overline{\bar{v}}]\right]}(x)=\chi_{[\overline{[ } b]}(T x)=\sum_{a \in L(\bar{v}),(a, b) \in E(\bar{v})} \chi_{[a \bar{v} b]}(x) .
$$

We conclude that for all $b \in R(\bar{v})$,

$$
g(b)=\sum_{a \in L(\bar{v}),(a, b) \in E(\overline{\bar{v}})} g(a, b) .
$$

## Balance

## Proof.

- Similarly, for $b \in R(\bar{v})$ and $x \in X$, one has

$$
\chi_{T^{-1}[\overline{\bar{v}} b]}(x)=\chi_{[\overline{\bar{b}}]}(T x)=\sum_{a \in L \overline{\bar{v}}),(a, b) \in E(\overline{\bar{v}})} \chi_{[a \bar{v} b]}(x) .
$$

We conclude that for all $b \in R(\bar{v})$,

$$
g(b)=\sum_{a \in L(\bar{v}),(a, b) \in E(\bar{v})} g(a, b) .
$$

- Thanks to Lemma $(\star)$, every $g(a, b)$ belongs to $H$. In particular, $g\left(v_{0}, v_{n}\right)=\chi_{[v]} \in H$.


## Balance

## Proof of the theorem.

- Suppose $(X, T)$ is balance on every letter. Let $C$ be a constant of balance on the letters.


## Balance

## Proof of the theorem.

- Suppose $(X, T)$ is balance on every letter. Let $C$ be a constant of balance on the letters.
- Let $v \in \mathcal{L}_{X}$. Let $n \geq 3$ and let $u, w$ be two factors of $\mathcal{L}_{X}$ of length $n-1$ with $n-1>|v|$. Pick a bi-infinite word $x \in X$ such that $u=x_{[i, i+n)}$ and $w=x_{[j, j+n)}$ for some indices $i, j \in \mathbb{Z}$. We have

$$
\left||u|_{v}-|w|_{v}\right|=\left|\sum_{\ell=i}^{i+n-1-|v|} \chi_{[v]}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{[v]}\left(T^{\ell} x\right)\right|
$$

## Balance

## Proof of the theorem.

$$
\|\left. u\right|_{v}-|w|_{v}|=| \sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k)\left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{\kappa}[a]}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}\left(T^{\ell} x\right)\right)
$$

## Balance

## Proof of the theorem.

$$
\begin{aligned}
\|\left. u\right|_{v}-|w| v \mid & =\mid \sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k)\left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{\kappa}[a]}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{\kappa}[a]}\left(T^{\ell} x\right)\right. \\
& \leq \sum_{a \in \mathcal{A}} \sum_{k \in K_{a}}|\alpha(a, k)| \sum_{\ell=i}^{i+n-1-|v|} \chi_{\left.T^{\kappa}[]\right]}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{\kappa}[a]}\left(T^{\ell} x\right) \mid
\end{aligned}
$$

## Balance

## Proof of the theorem.

$$
\begin{aligned}
& \|\left. u\right|_{v}-|w|_{v} \mid=\mid \sum_{a \in \mathcal{A}} \sum_{k \in K_{a}} \alpha(a, k)\left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{\kappa}[a]}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{\ell}[a]}\left(T^{\ell} x\right)\right. \\
& \leq \sum_{a \in \mathcal{A}} \sum_{k \in K_{a}}|\alpha(a, k)| \sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{\kappa}[a]}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}\left(T^{\ell} x\right) \mid \\
&=\sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}}|\alpha(a, k)|\left|\sum_{\ell=i}^{i+n-1-|v|} \chi_{[a]}\left(T^{\ell}\left(T^{-k} x\right)\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{[a]}\left(T^{\ell}\left(T^{-k} x\right)\right)\right|
\end{aligned}
$$

## Balance

## Proof of the theorem.

$$
\begin{aligned}
& \leq \sum_{a \in \mathcal{A} k \in \mathcal{K}_{0}}|\alpha(a, k)|\left|\sum_{\ell=i}^{|+n-1-|| |} \chi_{T^{\kappa} \mid\{\mid\}}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-||l|} \chi_{T^{\ell}\{\mid] \mid}\left(T^{\ell} x\right)\right| \\
& =\sum_{a \in A \in \mathcal{A}_{k \in \kappa_{0}}}|\alpha(a, k)| \sum_{\ell=i}^{|+n-1-|l|} \chi_{[\mid] \mid}\left(T^{\ell}\left(T^{-k} x\right)\right)-\sum_{k=j}^{j+n-1-||| |} \chi_{[0]}\left(T^{\ell}\left(T^{-k} x\right)\right) \mid \\
& =\sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{0}}|\alpha(a, k)| \cdot \underbrace{\|\left.\left(T^{-k} x\right)_{[i, i+n-|v|}\right|_{a}-\left|\left(T^{-k} x\right)_{\mathrm{U}, j+n-|v|)|a|}\right|}_{<c} .
\end{aligned}
$$

## Balance

## Proof of the theorem.

$$
\begin{aligned}
& \|\left. u\right|_{v}-|w|_{v}|=| \sum_{a \in \mathcal{A}} \sum_{k \in \mathcal{K}_{a}} \alpha(a, k)\left(\sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{\ell}[\mid]}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{T^{k}[a]}\left(T^{\ell} x\right)\right) \\
& \leq \sum_{a \in \mathcal{A}} \sum_{k \in K_{0}}|\alpha(a, k)| \sum_{\ell=i}^{i+n-1-|v|} \chi_{T^{\kappa}[a]}\left(T^{\ell} x\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{\left.T^{\kappa}[]\right]}\left(T^{\ell} x\right) \mid \\
& =\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}}|\alpha(a, k)| \sum_{\ell=i}^{i+n-1-|v|} \chi_{[a]}\left(T^{\ell}\left(T^{-k} x\right)\right)-\sum_{\ell=j}^{j+n-1-|v|} \chi_{[a]}\left(T^{\ell}\left(T^{-k} x\right)\right) \mid \\
& =\sum_{a \in \mathcal{A}} \sum_{k \in K_{a}}|\alpha(a, k)| \cdot \underbrace{\|\left.\left(T^{-k} x\right)_{[i, i+n-|v|)}\right|_{a}-\mid\left(T^{-k} x\right)_{[j, j+n-|v|)|a|}}_{\leq C} .
\end{aligned}
$$

Then, $\|\left. u\right|_{v}-|w|_{v}\left|\leq|\mathcal{A}| K C, K=\max _{a \in \mathcal{A}}\left\{\sum_{k \in K_{a}}|\alpha(a, k)|\right\}\right.$.

## Balance

- Let $\mathcal{A}=\{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on $\mathcal{A}$ is $\left\{\sigma_{i}: i \in \mathcal{A}\right\}$ given by

$$
\sigma_{i}: \quad i \mapsto i ; \quad j \mapsto j i \quad \text { for } \quad i \neq j
$$

## Balance

- Let $\mathcal{A}=\{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on $\mathcal{A}$ is $\left\{\sigma_{i}: i \in \mathcal{A}\right\}$ given by

$$
\sigma_{i}: \quad i \mapsto i ; \quad j \mapsto j i \quad \text { for } \quad i \neq j
$$

- An Arnoux-Rauzy substitution is a finite product of $\sigma_{i}$ 's.


## Balance

- Let $\mathcal{A}=\{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on $\mathcal{A}$ is $\left\{\sigma_{i}: i \in \mathcal{A}\right\}$ given by

$$
\sigma_{i}: \quad i \mapsto i ; \quad j \mapsto j i \quad \text { for } \quad i \neq j .
$$

- An Arnoux-Rauzy substitution is a finite product of $\sigma_{i}$ 's.
- A substitution $\sigma$ on $\mathcal{A}$ is said to be primitive if there exists a positive integer $N$ such that for every $a, b \in \mathcal{A}, b$ appears in $\sigma^{N}(a)$.
- Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).


## Balance

- Let $\mathcal{A}=\{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on $\mathcal{A}$ is $\left\{\sigma_{i}: i \in \mathcal{A}\right\}$ given by

$$
\sigma_{i}: \quad i \mapsto i ; \quad j \mapsto j i \quad \text { for } \quad i \neq j .
$$

- An Arnoux-Rauzy substitution is a finite product of $\sigma_{i}$ 's.
- A substitution $\sigma$ on $\mathcal{A}$ is said to be primitive if there exists a positive integer $N$ such that for every $a, b \in \mathcal{A}, b$ appears in $\sigma^{N}(a)$.
- Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).
- We know automatically that they are balanced on all factors.


## Balance

- Let $\mathcal{A}=\{1, \cdots, d\}$. The set of Elementary Arnoux-Rauzy substitutions defined on $\mathcal{A}$ is $\left\{\sigma_{i}: i \in \mathcal{A}\right\}$ given by

$$
\sigma_{i}: \quad i \mapsto i ; \quad j \mapsto j i \quad \text { for } \quad i \neq j
$$

- An Arnoux-Rauzy substitution is a finite product of $\sigma_{i}$ 's.
- A substitution $\sigma$ on $\mathcal{A}$ is said to be primitive if there exists a positive integer $N$ such that for every $a, b \in \mathcal{A}, b$ appears in $\sigma^{N}(a)$.
- Words produced by primitive Arnoux-Rauzy substitutions are known to be balanced on the letters (they are Pisot substitutions).
- We know automatically that they are balanced on all factors.
- Another sufficient conditions exist to guarrantee balance on letters for Arnoux-Rauzy words.


## Another application: Invariant measures and Orbit equivalence.

## Invariant measures

- A probability measure $\mu$ on the compact metric space $X$ is $T$-invariant if for all Borel subset $B$ of $X$,

$$
\mu\left(T^{-1}(B)\right)=\mu(B)
$$

## Invariant measures

- A probability measure $\mu$ on the compact metric space $X$ is $T$-invariant if for all Borel subset $B$ of $X$,

$$
\mu\left(T^{-1}(B)\right)=\mu(B)
$$

- Every dynamical system has invariant measures (Krylov-Bogolyubov's theorem).


## Invariant measures

- A probability measure $\mu$ on the compact metric space $X$ is $T$-invariant if for all Borel subset $B$ of $X$,

$$
\mu\left(T^{-1}(B)\right)=\mu(B)
$$

- Every dynamical system has invariant measures (Krylov-Bogolyubov's theorem).
- $(X, T)$ is said to be uniquely ergodic if there exists only one invariant measure.


## Invariant measures

- A probability measure $\mu$ on the compact metric space $X$ is $T$-invariant if for all Borel subset $B$ of $X$,

$$
\mu\left(T^{-1}(B)\right)=\mu(B)
$$

- Every dynamical system has invariant measures (Krylov-Bogolyubov's theorem).
- $(X, T)$ is said to be uniquely ergodic if there exists only one invariant measure.
- For minimal systems, unique ergodicity is equivalent to having frequencies.


## Invariant measures

- Let $\mathcal{M}(X, T)$ the set of $T$-invariant measures on $X$. The Image subgroup of $(X, T)$ is the following subgroup of $\mathbb{R}$.

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\{\int f d \mu: f \in C(X, \mathbb{Z})\right\}
$$

## Invariant measures

- Let $\mathcal{M}(X, T)$ the set of $T$-invariant measures on $X$. The Image subgroup of $(X, T)$ is the following subgroup of $\mathbb{R}$.

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\{\int f d \mu: f \in C(X, \mathbb{Z})\right\}
$$

- One can show that

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\langle\mu([w]): w \in \mathcal{L}_{X}\right\rangle
$$

## Invariant measures

- Let $\mathcal{M}(X, T)$ the set of $T$-invariant measures on $X$. The Image subgroup of $(X, T)$ is the following subgroup of $\mathbb{R}$.

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\{\int f d \mu: f \in C(X, \mathbb{Z})\right\}
$$

- One can show that

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\langle\mu([w]): w \in \mathcal{L}_{X}\right\rangle
$$

- If $(X, T)$ is uniquely ergodic with measure $\mu$,

$$
I(X, T)=\left\langle\mu([w]): w \in \mathcal{L}_{X}\right\rangle
$$

## Invariant measures

- Let $\mathcal{M}(X, T)$ the set of $T$-invariant measures on $X$. The Image subgroup of $(X, T)$ is the following subgroup of $\mathbb{R}$.

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\{\int f d \mu: f \in C(X, \mathbb{Z})\right\}
$$

- One can show that

$$
I(X, T)=\bigcap_{\mu \in \mathcal{M}(X, T)}\left\langle\mu([w]): w \in \mathcal{L}_{X}\right\rangle
$$

- If $(X, T)$ is uniquely ergodic with measure $\mu$,

$$
I(X, T)=\left\langle\mu([w]): w \in \mathcal{L}_{X}\right\rangle
$$

## Invariant measures

- The triple $\left(I(X, T), I(X, T) \cap \mathbb{R}^{+}, 1\right)$ is an order group with unit.


## Invariant measures

- The triple $\left(I(X, T), I(X, T) \cap \mathbb{R}^{+}, 1\right)$ is an order group with unit.
- $\left(I(X, T), I(X, T) \cap \mathbb{R}^{+}, 1\right)$ is total invariant for Orbit equivalence [Giordano-Putnam-Skau95].
- $(X, T)$ and $(Y, S)$ are orbit equivalent if there is a homeomorphism $h: X \rightarrow Y$ such that for all $x \in X$

$$
h\left(\left\{T^{n}(x): n \in \mathbb{Z}\right\}\right)=\left\{S^{n}(h(x)): n \in \mathbb{Z}\right\},
$$

that is, $h$ sends orbits onto orbits.

## Invariant measures

## Theorem

Let $(X, T)$ a uniquely ergodic dendric subshift over the alphabet $\mathcal{A}$ and $\mu$ its unique invariant measure. Then, the image subgroup of $(X, T)$ is

$$
I(X, T)=\sum_{a \in \mathcal{A}} \mathbb{Z} \mu([a]) .
$$

## Invariant measures

## Theorem

Let $(X, T)$ a uniquely ergodic dendric subshift over the alphabet $\mathcal{A}$ and $\mu$ its unique invariant measure. Then, the image subgroup of $(X, T)$ is

$$
I(X, T)=\sum_{a \in \mathcal{A}} \mathbb{Z} \mu([a])
$$

## Corollary

Two minimal uniquely ergodic dendric subshifts are orbit equivalent if and only if they have the same additive group of letter frequencies.

## Invariant measures

## Theorem

Let $(X, T)$ a uniquely ergodic dendric subshift over the alphabet $\mathcal{A}$ and $\mu$ its unique invariant measure. Then, the image subgroup of $(X, T)$ is

$$
I(X, T)=\sum_{a \in \mathcal{A}} \mathbb{Z} \mu([a]) .
$$

## Corollary

Two minimal uniquely ergodic dendric subshifts are orbit equivalent if and only if they have the same additive group of letter frequencies.

## Corollary

All dendric subshifts over a three-letter alphabet with the same letter frequencies are orbit equivalent.

