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Motivations and purpose of this talk

Random Tensor Models have been revived in recent years, as a programme towards the
definition of random geometries and/or quantum gravity theories in dimension d ≥ 3.

[Gurau ’09 ’10...]

Key insights from combinatorics have unlocked many new developments in increasingly
complicated settings : i.i.d. random tensor models → tensorial field theories → group
field theories... [Gurau, Rivasseau, Bonzom, Tanasa, Lionni, Benedetti...]

Objectives:

Introduce a new class of i.i.d. random tensor models, based on a O(N) invariant,
which generalize U(N) invariant and multi-orientable ones [Tanasa...].

Give an illustration of the role of combinatorics in this simple setting:

perturbative expansion indexed by colored graphs, and organized according to a
combinatorial quantity called degree;

critical properties of the models from analytic combinatorics.
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O(N) random tensors and colored graphs

1 O(N) random tensors and colored graphs

2 1/N expansion

3 Quartic model: combinatorial characterization of leading order graphs

4 Quartic model: critical behaviour at leading order

5 Conclusion and outlook
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O(N) invariant tensor models

Random variable: real tensor Ti1 i2 i3 , 1 ≤ ik ≤ N ∈ N∗

Probability measure defined by

dµN(T ) =
1

ZN
exp

(
−N3/2SN(T )

)
dT ,

where
dT is the Lebesgue measure on N3;
the action SN is polynomial in T ;
ZN is a normalization factor, known as the partition function.

We require the action to be invariant under O(N)⊗3:

Ti1 i2 i3 →
∑
j1,j2,j3

O
(1)
i1j1

O
(2)
i2j2

O
(3)
i3j3

Tj1j2j3

⇒ SN(T ) is a sum of products of trace invariants, which are indexed by
(connected) colored graphs.
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Colored graphs

�



�
	Definition: A k-colored graph is a k-regular edge-colored graph. The color of an

edge is a label ` ∈ {1, . . . , k}

Examples. We will be interested in 3-colored graphs, also called bubbles

· · ·
1

2

3

Remark. Multiple edges, as well as non-bipartite diagrams are allowed.

Definition. A bicolored cycle is called a face. We call Fb the number of faces of the
bubble b. The notion of face allows to interpret bubbles as representing 2d manifolds,
but possibly non-orientable ones.

Fb = 3 Fb = 3
Fb = 4 Fb = 3

sphere projective plane
sphere torus
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O(N) trace invariants

Trace invariants are labelled by the bubbles:
1

2

3

Trb(T ) =
∑
i1,i2,i3

Ti1 i2 i3Ti1 i2 i3

Trb(T ) =
∑

i1,...,i6

Ti6 i2 i3Ti1 i2 i3

×Ti6 i4 i5Ti1 i4 i5

Trb(T ) =
∑

i1,...,i6

Ti6 i2 i3Ti1 i4 i3

×Ti6 i4 i5Ti1 i2 i5

The action is in general a sum of not necessarily connected invariants, but we
assume connectedness.

SN(T ) =
1

2
Tr (T ) +

∑
b∈B

tb N
−ρ(b) Trb(T ) ,

where B is a finite set of connected bubbles with number of nodes Nb > 2.
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Perturbative expansion

One can perform a formal expansion of the full measure in terms of the coupling
constants tb.

Decompose the measure into a Gaussian part plus perturbations:

ZN =

∫
dT exp

(
−N3/2

2
Tr (T )

)
exp

(
−
∑
b∈B

tb N
3/2−ρ(b) Trb(T )

)

=
∑
{nb}

∫
dT exp

(
−N3/2

2
Tr (T )

) ∏
b∈B

(−tbN3/2−ρ(b))nb

nb!
(Trb(T ))nb

Use Wick’s theorem which allows to compute the moment of the Gaussian measure
⇒ sum over Feynman diagrams G:

ZN =
∑
G

(∏
b∈B

(−tb)nb(G)

)
AG ,

where
Feynman diagrams are 4-colored graphs;
up to a combinatorial factor (that we ignore for now), the amplitude AG is contraction
of tensor indices following the pattern of G.
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Evaluation of Feynman amplitudes

The Feynman diagrams are 4-colored graphs, and are weighted by amplitudes AG
i1

i2

i3
=

∑
i1,i2,i3

. . .

= δij
i j

i1 j1
i2

i3 j3

j2 = δi1j1δi2j2δi3j3

In a Feynman diagram, a face of color ` is a cycle formed by dashed lines and
color-` edges. Each face contributes with a sum of the form:

∑
i1,...,ik

δi1,i2δi2 i3 . . . δik−1,ik δik ,i1 =
N∑

i1=1

δi1,i1 = N

We have moreover: a factor N3/2−ρ(b) per bubble of type b; and a factor N3/2 per
dashed line.

⇒ AG ∝ N3−ω(G) with ω = 3 +
3

2
L−

∑
b

(
3

2
− ρ
)
nb − F .
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1/N expansion

1 O(N) random tensors and colored graphs

2 1/N expansion

3 Quartic model: combinatorial characterization of leading order graphs

4 Quartic model: critical behaviour at leading order

5 Conclusion and outlook
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Purpose

We know that the Feynman diagrams are weighted by AG ∝ N3−ω(G), where

ω = 3 +
3

2
L−

∑
b

(
3

2
− ρ
)
nb − F

is called the degree.

We now look for a definition of ρ such that:

ω is bounded from below;

the family of leading order diagrams (in N) is infinite.

To this effect, one needs to count the number of faces in a given Feynman diagram.
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Counting faces: jackets

Definition. Given a graph G, its jacket of color ` is obtained by deleting all edges of
color `.

2 1

1 2

3

1 2

2 1

3
3 3 7−→

2 1

1 2

1 2

2 1

Jackets define ribbon graphs and therefore
carry a canonical notion of (non-orientable)
genus k ∈ N.

←→

2F (G) =
3∑
`=1

∑
connected

components i

f (J
(i)
` ) =

(Euler)

3∑
`=1

∑
connected

components i

(2 + e − v − k) (J
(i)
` )
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Degree and genera of jackets

The degree ω can be reexpressed in term of the genera of the jackets and other
combinatorial quantities:

ω(G) =
1

2

∑
` ; i

k(J
(i)
` ) +

∑
b∈B

nb

(
ρ(b) +

Fb − 3

2

)
−
∑
`

(|J`| − 1)

One can furthermore prove the inequality∑
b∈B

nb (Fb − 3) ≥
∑
`

(|J`| − 1) ,

which is furthermore saturated. Hence we define

ρ(b) :=
Fb − 3

2
.

#

"

 

!

Proposition: The degree ω may be expressed as

ω =
1

2

∑
` ; i

k(J
(i)
` )︸ ︷︷ ︸

∈N/2

+
∑
b∈B

nb (Fb − 3)−
∑
`

(|J`| − 1)︸ ︷︷ ︸
∈N

∈ N
2
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Large N expansion

According to the previous discussion, the partition function can be organized in
powers of N:

ZN =
∑
ω∈N

2

N3−ω Zω(tb) .

Leading order (ω = 0) characterized by:
All jackets are planar (k = 0) ,∑

b∈B

nb (Fb − 3) =
∑
`

(|J`| − 1) .

Next-to-leading order (ω = 1/2) characterized by:
∃! (`, i) s.t. k(J

(i)
` ) = 1/2 ,

All other jackets are planar (k = 0) ,∑
b∈B

nb (Fb − 3) =
∑
`

(|J`| − 1) .
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Quartic model: combinatorial characterization of leading order graphs

1 O(N) random tensors and colored graphs
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4 Quartic model: critical behaviour at leading order
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Model and melonic moves

The most general quartic action also invariant under color permutations is of the
form

SN =
1

2
+
λ1

4
+

λ2

12
√
N

(
+ +

)
.

The so-called melonic moves can be shown to conserve the degree:

`1 `2

`2 `1

`3

`2 `1

`1 `2

`3 ←→

(a) Melonic move of type I.

←→` `

(b) Melonic move of type II.

Hence one can generate an infinite family of leading order graphs – the melonic
graphs –, by melonic insertions into a degree-0 graph such as
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Characterization of degree 0 graphs

Question: Are there other degree 0 graphs apart from melonic ones ?

�� ��Proposition: If ω(G) = 0 then G is melonic.

Idea of proof. Induction on p = bn /2 + n c. Works because of the following facts:

1 If n (G) 6= 0 then G =
G̃1 G̃2

`

`

2 If n (G) = 0 then G =

G̃

`1

`2`2

`1

`3

`1

`2`2

`1

`3

3 7−→ `2 `2

`1

`2`2

`1

`3

`1

`2`2

`1

`3 conserves the degree.
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Characterization of degree 0 graphs

More details about second observation: one needs to show that F2 ≥ 1 (where Fk is the
number of faces of length k).

First:
∑
p≥1

Fp = F =
ω=0

3 +
3

4
L

∑
p≥1

p Fp = 3L
⇒
∑
p

(4− p)Fp = 12 ⇒ F1 + 2F2 + 3F3 > 0

Second: F1 ≥ 1 ⇒
`2 `1

`1 `2

`3 ⇒ ω ≥ 1/2 ; hence F1 = 0.

Third: F3 ≥ 1 ⇒ ∃ non-orientable jacket ⇒ ω ≥ 1/2 ; hence F3 = 0.
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Characterization of degree 0 graphs

Graphical proof of existence of non-orientable jacket when F3 ≥ 1:

`2

`2

`3

`2

`2

`3

`2 `2
`3

'

`2

`2

`3

`3

`2

`2

`3

`3

`3

`3

`2

`2

`2

`1

`1

`2

`3

`2 `1

`1 `2

`3

`2

`1

`1

`2
`3

`2

`2`3

`3 `2

`2`3

`3

`2

`2

`3

`3
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Quartic model: critical behaviour at leading order
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2-point function at leading order

Physically, one is interested in correlation functions, such as the 2-point function:

N3/2

ZN

∫
[dT ]Ti1 i2 i3Tj1j2j3 exp (−SN(T )) =

(
GLO + N−1/2 GNLO + . . .

) 3∏
`=1

δi`j` .

GLO can be evaluated as a sum over 2-point melonic graphs. More precisely, defining

g := λ1
2 , µ :=

−λ2

λ1

one obtains
GLO(g , µ) =

∑
p,q∈N

Cp,q g
p+q µq

where Cp,q is the number of 2-point melonic graphs with p melons of type I and q
melons of type II.

g parametrizes the total number of melons. From a physics point of view, one is
therefore interested in the behaviours of GLO on the boundary of its domain of
convergence:

|g | → gc(µ) > 0 .
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Explicit evaluation of Cp,q

Melonic 2-point graphs can be mapped to rooted binary–quarternary plane trees:

1 2

2 1

3

2 1

1 2

3 ←→02

1

3

0

1 2

3

0

1

←→
0 1

By Cayley’s theorem, this provides the explicit evaluation:

Cp,q =
[4p + 2q]!

p!q!(3p + q + 1)!

This is nice but not very helpful for our purpose, since:

GLO(g , µ) =
∑
n∈N

(
n∑

q=0

µq (4n − 2q)!

q!(n − q)!(3n − 2q + 1)!

)
gn
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Algebraic equation for GLO

In view of the tree structure of melonic graphs, their generating function verifies:

GLO = 1 + g GLO
2
(
GLO

2 + µ
)
.

Graphical derivation:

ΣLO =

GLO

+GLO

GLO

GLO

where GL0 = 1
1−Σ0

and ΣLO is the one particle irreducible 2-point function.
Hence

ΣLO = λ1
2 GLO

3 − λ2 GLO = g GLO
3 + g µGLO

To deduce the critical behaviour of GLO , we rely instead on the structure of its
analytic singularities.
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Critical behaviour from singularity analysis

For any µ ≥ 0, define the quantity

gc(µ) =
Gc(µ)− 1

Gc(µ)2 (Gc(µ)2 + µ
) ,

where Gc(µ) is the unique real solution of the polynomial equation

−3 x3 + 4 x2 − µ x + 2µ = 0 .

�

�

�

�

Proposition: GLO has radius of convergence gc(|µ|). Moreover, for any µ ≥ 0,
there exists a constant K(µ) > 0 such that:

GLO(g , µ) =
g→gc (µ)−

Gc(µ)− K(µ)

√
1− g

gc(µ)

(
1 +O(1− g

gc(µ)
)

)
.
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Critical behaviour from singularity analysis

Idea of proof.
µ ≥ 0 ⇒ singularity at g = radius of convergence (Pringsheim’s theorem).

Look for points where g = GLO−1

GLO
2(G2

LO
+µ)

=: Ψ(GLO − 1) fails to be locally invertible,

that is Ψ′(GLO − 1) = 0. This defines Gc(µ) and gc(µ).

Check that Ψ′′(Gc(µ)− 1) 6= 0 and that therefore

gc(µ)− g ≈
g∼gc (µ)

−Ψ′′(Gc(µ)− 1)

2
(GLO(g , µ)− Gc(µ))2 .

�

Moreover, one can check that their are no other real singularities:
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Critical exponents and asymptotic estimates

In physics, the critical behaviour itself is the main objective. It allows in particular to
compute critical exponents e.g. for the free energy

FN :=
1

N3
lnZN = FLO + N−1/2FNLO + . . .

≈
g∼gc (µ)

K1(µ)

(
1− g

gc(µ)

)3/2

+ K2(µ)

(
1− g

gc(µ)

)1/2

+ . . .

From a combinatorial perspective, one may go one step further and deduce an
estimation of the coefficient αn(µ) of GLO in the large n limit [Flajolet, Sedgewick]

αn(µ) ∼
n→+∞

K(µ) gc(µ)−n

2
√
π n3/2

.

Application. Taking µ = 3, one finds an estimate of the number Mn of melonic
2-point graphs with n elementary melons:

Mn ∼
n→+∞

χβn

n3/2
,

with
χ ≈ 0.111 and β ≈ 14.8 .
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Conclusion and outlook
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Conclusion

We have initiated the study of O(N) rather than U(N) invariant tensor models.

Existence of a large N expansion for arbitrary number of interactions, labelled by
not necessarily bipartite bubbles.

Characterization of leading and next-to-leading order graphs ⇒ colored graphs
with tree-like structure as for U(N) invariant models.

Hence, not surprisingly, one obtains the same type of square-root critical behaviour
as for U(N) invariant models.
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Outlook

O(N) models with tensors of higher rank.

Application to the renormalization of multi-orientable tensorial field theories
(initial motivation for this work).

Application of same combinatorial and analytic methods to more involved tensorial
theories, which we are so far unable to compute the critical exponents of e.g.
so-called Boulatov model (which is related to 3d quantum gravity). Main difficulty:
the amplitudes depend on more involved combinatorial quantities than the mere
number of faces.

Can we get out of the tree–like regime in tensorial theories ? and therefore
define more interesting random spaces ?
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Thank you for your attention

Sylvain Carrozza (Uni. Bordeaux) O(N) Random Tensor Models LIPN, 5/04/2016 29 / 29


	O(N) random tensors and colored graphs
	1/N expansion
	Quartic model: combinatorial characterization of leading order graphs
	Quartic model: critical behaviour at leading order
	Conclusion and outlook

