Flip Graphs and Matroids

Outline

Flip Graphs
Problems

Matroids

Polymatroids
Hypergraphic polytopes
Graph associahedra
References

Table of Contents

Flip Graphs

Problems

Matroids
Polymatroids
Hypergraphic polytopes
Graph associahedra
References

Flip Graphs

Graph on a set of combinatorial objects, such that two adjacent objects differ by a single, reversible, exchange operation between elements composing the structure.

Flip Graphs

Graph on a set of combinatorial objects, such that two adjacent objects differ by a single, reversible, exchange operation between elements composing the structure.

Spanning trees

Permutations

Acyclic orientations

(D. Eppstein, Wikimedia commons)

Triangulations

(Fomin, Zelevinsky)

Perfect matchings

Table of Contents

Flip Graphs

Problems

Matroids

Polymatroids
Hypergraphic polytopes
Graph associahedra
References

Polytopal flip graphs

Many flip graphs are skeletons of polytopes:

Polytopal flip graphs

Many flip graphs are skeletons of polytopes:
Spanning trees Spannning tree polytopes

Polytopal flip graphs

Many flip graphs are skeletons of polytopes:
Spanning trees Spannning tree polytopes
Edmonds 1971
Permutations Permutohedra Schoute 1911, Guilbaud-Rosenstiehl 1963

Polytopal flip graphs

Many flip graphs are skeletons of polytopes:
Spanning trees Spannning tree polytopes
Edmonds 1971
Permutations Permutohedra Schoute 1911, Guilbaud-Rosenstiehl 1963
Acyclic orientations Graphical zonotopes
Greene 1977, Greene-Zaslavsky 1983

Polytopal flip graphs

Many flip graphs are skeletons of polytopes:
Spanning trees Spannning tree polytopes
Edmonds 1971
Permutations Permutohedra Schoute 1911, Guilbaud-Rosenstiehl 1963
Acyclic orientations Graphical zonotopes
Greene 1977, Greene-Zaslavsky 1983
Triangulations Associahedra Tamari 1951, Stasheff 1963, Loday 2004

Polytopal flip graphs

Many flip graphs are skeletons of polytopes:
Spanning trees Spannning tree polytopes
Edmonds 1971
Permutations Permutohedra Schoute 1911, Guilbaud-Rosenstiehl 1963 Acyclic orientations Graphical zonotopes

Greene 1977, Greene-Zaslavsky 1983
Triangulations Associahedra Tamari 1951, Stasheff 1963, Loday 2004
Perfect matchings Perfect matching polytope
Chvátal 1972

Polymatroidal flip graphs

Flip graphs are skeletons of (poly)matroid polytopes:

Polymatroidal flip graphs

Flip graphs are skeletons of (poly)matroid polytopes:

Polymatroidal flip graphs

Flip graphs are skeletons of (poly)matroid polytopes:

Spanning tree polytopes	Matroids
Permutohedra	Polymatroids
Associahedra	
Graphical zonotopes	

Polymatroidal flip graphs

Flip graphs are skeletons of (poly)matroid polytopes:

Spanning tree polytopes	Matroids
Permutohedra	Polymatroids
Associahedra	
Graphical zonotopes	
Perfect matching polytope	Matroid intersections

Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently compute the flip distance between them?

Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently compute the flip distance between them?

Geodesics vs. Combinatorial reconfiguration formulation

Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently compute the flip distance between them?

Geodesics vs. Combinatorial reconfiguration formulation https://reconf.wikidot.com/

Flip distances

Given two vertices of the polytope, can we efficiently compute the shortest path between them, on the skeleton of the polytope?

Given two combinatorial objects of the same size, can we efficiently compute the flip distance between them?

Geodesics vs. Combinatorial reconfiguration formulation
https://reconf.wikidot.com/
What is the complexity of computing the rotation distance between two binary trees?

Diameter

What is the diameter of the polytope?

Diameter

What is the diameter of the polytope?
What is the largest flip distance between any two combinatorial objects of some size?

Diameter

What is the diameter of the polytope?
What is the largest flip distance between any two combinatorial objects of some size?

Two questions:
Combinatorial What are the best upper and lower bounds?
Computational Can we compute the diameter efficiently?

Diameter

What is the diameter of the polytope?
What is the largest flip distance between any two combinatorial objects of some size?

Two questions:
Combinatorial What are the best upper and lower bounds?
Computational Can we compute the diameter efficiently?
Hirsch conjecture: The diameter of dimension n polytopes with f faces is at most $f-n$.

Diameter

What is the diameter of the polytope?
What is the largest flip distance between any two combinatorial objects of some size?

Two questions:
Combinatorial What are the best upper and lower bounds?
Computational Can we compute the diameter efficiently?
Hirsch conjecture: The diameter of dimension n polytopes with f faces is at most $f-n$.

Santos 2012
Polynomial Hirsch conjecture: The diameter of dimension n polytopes with f faces is at most some polynomial in n and f.

Hamiltonicity

Is the skeleton of the polytope Hamiltonian?
Hamilton 1856

Hamiltonicity

Is the skeleton of the polytope Hamiltonian?
Hamilton 1856 Is there a Gray code for the combinatorial objects?

Hamiltonicity

Is the skeleton of the polytope Hamiltonian?
Hamilton 1856
Is there a Gray code for the combinatorial objects?
Again, two versions:
Combinatorial Does there always exist a Hamiltonian cycle?
Computational Can we compute it efficiently, say with bounded delay?

Table of Contents

Flip Graphs
Problems
Matroids
Polymatroids
Hypergraphic polytopes
Graph associahedra
References

Matroids

A matroid can also be defined as $M=(E, \mathcal{B})$, where \mathcal{B} is a set of bases, satisfying the basis exchange axiom:

Matroids

A matroid can also be defined as $M=(E, \mathcal{B})$, where \mathcal{B} is a set of bases, satisfying the basis exchange axiom:

If A and B are two distinct bases, then for any element $a \in A \backslash B$, there exists an element $b \in B \backslash A$ such that $A \backslash\{a\} \cup\{b\} \in \mathcal{B}$. Whitney 1935, Nakasawa 1935-38, McLane 1936, Rado 1940s, Tutte 1950s

Bases

The bases of M are its maximal independent sets.

Bases

Matroid polytopes

The polytope of M is the convex hull of the indicator vectors of the bases of M :

$$
P_{M}=\operatorname{conv}\left\{e_{B}: B \in \mathcal{B}\right\}
$$

Matroid polytopes

The polytope of M is the convex hull of the indicator vectors of the bases of M :

$$
P_{M}=\operatorname{conv}\left\{e_{B}: B \in \mathcal{B}\right\}
$$

Theorem

A 0/1 polytope P is the polytope of a matroid if and only if:

- every edge of P is a translate of $e_{i}-e_{j}$, for some i, j,
- there exists a submodular rank function $r: 2^{E} \mapsto \mathbb{N}$ s.t.:

$$
P=P_{r}:=\left\{x \in \mathbb{R}^{E}: \sum_{i \in U} x_{i} \leq r(U) \forall U \subset E \wedge \sum_{i \in E} x_{i}=r(E)\right\}
$$

Distances and Hamiltonicity

- From the basis exchange axiom, the distance between two bases A and B is exactly $|A \Delta B| / 2$.

Distances and Hamiltonicity

- From the basis exchange axiom, the distance between two bases A and B is exactly $|A \Delta B| / 2$.
- The diameter $\delta\left(P_{M}\right)$ is therefore (half) the maximum symmetric difference between two bases.

Distances and Hamiltonicity

- From the basis exchange axiom, the distance between two bases A and B is exactly $|A \Delta B| / 2$.
- The diameter $\delta\left(P_{M}\right)$ is therefore (half) the maximum symmetric difference between two bases.
- Can be computed in polynomial time using the Matroid Union theorem and Edmonds' Matroid partition algorithm.

Edmonds 1965

Distances and Hamiltonicity

- From the basis exchange axiom, the distance between two bases A and B is exactly $|A \Delta B| / 2$.
- The diameter $\delta\left(P_{M}\right)$ is therefore (half) the maximum symmetric difference between two bases.
- Can be computed in polynomial time using the Matroid Union theorem and Edmonds' Matroid partition algorithm.

Edmonds 1965

- It is known that any $0 / 1$ polytope is Hamilton-connected Naddef-Pulleyblank 1984
- Efficient Gray codes using linear optimization as a black box Merino-Mütze 2023

Table of Contents

Flip Graphs

Problems

Matroids
Polymatroids
Hypergraphic polytopes
Graph associahedra
References

Polymatroids

Theorem

A polytope P is a polymatroid if and only if:

- every edge of P is parallel to $e_{i}-e_{j}$, for some i, j,
- there exists a submodular function $f: 2^{E} \mapsto \mathbb{R}$ s.t.:

$$
P=P_{f}:=\left\{x \in \mathbb{R}^{E}: \sum_{i \in U} x_{i} \leq f(U) \forall U \subset E \wedge \sum_{i \in E} x_{i}=f(E)\right\}
$$

Polymatroids

Theorem

A polytope P is a polymatroid if and only if:

- every edge of P is parallel to $e_{i}-e_{j}$, for some i, j,
- there exists a submodular function $f: 2^{E} \mapsto \mathbb{R}$ s.t.:

$$
P=P_{f}:=\left\{x \in \mathbb{R}^{E}: \sum_{i \in U} x_{i} \leq f(U) \forall U \subset E \wedge \sum_{i \in E} x_{i}=f(E)\right\}
$$

- Greedy optimization algorithm
- Aka generalized permutahedra, or submodular polyhedra

Table of Contents

Flip Graphs
 Problems
 Matroids
 Polymatroids

Hypergraphic polytopes
Graph associahedra
References

Acyclic orientations and graphical zonotopes

Given a simple, connected graph $G=([n], E)$, let $f: 2^{[n]} \rightarrow \mathbb{N}$,

$$
f(U)=|\{e \in E: e \cap U \neq \emptyset\}| .
$$

Acyclic orientations and graphical zonotopes

Given a simple, connected graph $G=([n], E)$, let $f: 2^{[n]} \rightarrow \mathbb{N}$,

$$
f(U)=|\{e \in E: e \cap U \neq \emptyset\}| .
$$

- P_{f} is the Graphical zonotope of G.

Greene 1977, Greene-Zaslavsky 1983

- P_{f} is also the Minkowski sum of segments $\operatorname{conv}\left\{e_{i}, e_{j}\right\}, \quad i j \in E$.

Acyclic orientations and graphical zonotopes
Given a simple, connected graph $G=([n], E)$, let $f: 2^{[n]} \rightarrow \mathbb{N}$,

$$
f(U)=|\{e \in E: e \cap U \neq \emptyset\}| .
$$

- P_{f} is the Graphical zonotope of G.

Greene 1977, Greene-Zaslavsky 1983

- P_{f} is also the Minkowski sum of segments $\operatorname{conv}\left\{e_{i}, e_{j}\right\}, \quad i j \in E$.
- The skeleton of P_{f} is the flip graph on acyclic orientations of G.

Acyclic orientations and graphical zonotopes
Given a simple, connected graph $G=([n], E)$, let $f: 2^{[n]} \rightarrow \mathbb{N}$,

$$
f(U)=|\{e \in E: e \cap U \neq \emptyset\}| .
$$

- P_{f} is the Graphical zonotope of G.

Greene 1977, Greene-Zaslavsky 1983

- P_{f} is also the Minkowski sum of segments $\operatorname{conv}\left\{e_{i}, e_{j}\right\}, \quad i j \in E$.
- The skeleton of P_{f} is the flip graph on acyclic orientations of G.
- Distances and diameter: Easy.
- Hamiltonicity: not always. When exactly is an open problem.

Example: Permutahedron

When G is the complete graph, we obtain all permutations.

Example: Bilinski dodecahedron

 When G is a 4 -cycle.

Hypergraphic polytopes

Given a hypergraph $H=(V, \mathcal{E})$, where $\mathcal{E} \subseteq 2^{V} \backslash\{\emptyset\}$, let $f_{H}: 2^{V} \rightarrow \mathbb{N}$ be defined as

$$
f_{H}(U):=|\{e \in \mathcal{E}: e \cap U \neq \emptyset\}| .
$$

Hypergraphic polytopes

Given a hypergraph $H=(V, \mathcal{E})$, where $\mathcal{E} \subseteq 2^{V} \backslash\{\emptyset\}$, let $f_{H}: 2^{V} \rightarrow \mathbb{N}$ be defined as

$$
f_{H}(U):=|\{e \in \mathcal{E}: e \cap U \neq \emptyset\}| .
$$

- Minkowski sum of standard simplices

Hypergraphic polytopes

Given a hypergraph $H=(V, \mathcal{E})$, where $\mathcal{E} \subseteq 2^{V} \backslash\{\emptyset\}$, let $f_{H}: 2^{V} \rightarrow \mathbb{N}$ be defined as

$$
f_{H}(U):=|\{e \in \mathcal{E}: e \cap U \neq \emptyset\}| .
$$

- Minkowski sum of standard simplices
- Vertices \leftrightarrow Acyclic orientations of hypergraphs, edges \leftrightarrow flips Benedetti, Bergeron, Machacek 2018, C., Hoang, Merino, Mička, Mütze 2023

Flip distances in hypergraphic polytopes

Theorem

Computing the flip distance between two acyclic orientations of hypergraph H is APX-hard even when the input hypergraph $H=(V, \mathcal{E})$ is known to have bounded maximum degree and be such that $|e| \leq 3$ for every $e \in \mathcal{E}$.
C., Steiner 2023

Associahedra are hypergraphic

Let $H=([n], \mathcal{E})$ be the set of intervals in $[n]$:

$$
\mathcal{E}:=\{\{i, i+1, \ldots, j\}: 1 \leq i<j \leq n\} .
$$

Then the hypergraphic polytope of H is Loday's associahedron.
Loday 2004

Associahedra are hypergraphic

Let $H=([n], \mathcal{E})$ be the set of intervals in $[n]$:

$$
\mathcal{E}:=\{\{i, i+1, \ldots, j\}: 1 \leq i<j \leq n\} .
$$

Then the hypergraphic polytope of H is Loday's associahedron.
Loday 2004

- Complexity of computing flip distances: wide open!

Associahedra are hypergraphic

Let $H=([n], \mathcal{E})$ be the set of intervals in $[n]$:

$$
\mathcal{E}:=\{\{i, i+1, \ldots, j\}: 1 \leq i<j \leq n\} .
$$

Then the hypergraphic polytope of H is Loday's associahedron.
Loday 2004

- Complexity of computing flip distances: wide open!
- Diameter is exactly $2 n-6$.

Sleator, Tarjan, Thurston 1988, Pournin 2014

Associahedra are hypergraphic

Let $H=([n], \mathcal{E})$ be the set of intervals in $[n]$:

$$
\mathcal{E}:=\{\{i, i+1, \ldots, j\}: 1 \leq i<j \leq n\} .
$$

Then the hypergraphic polytope of H is Loday's associahedron.
Loday 2004

- Complexity of computing flip distances: wide open!
- Diameter is exactly $2 n-6$.

Sleator, Tarjan, Thurston 1988, Pournin 2014

- Hamiltonicity: Yes.

Lucas 1987, Lucas, Roelants van Baronaigien, Ruskey 1993

Table of Contents

Flip Graphs

Problems

Matroids

Polymatroids
Hypergraphic polytopes
Graph associahedra
References

Graph associahedra and elimination trees

When $H=(V, \mathcal{E})$ is the graphical building set of a graph $G=(V, E)$:

$$
\mathcal{E}:=\{S \subseteq V: G[S] \text { is connected }\}
$$

then the hypergraphic polytope P_{H} of H is the graph associahedron of G.

Graph associahedra and elimination trees

When $H=(V, \mathcal{E})$ is the graphical building set of a graph $G=(V, E)$:

$$
\mathcal{E}:=\{S \subseteq V: G[S] \text { is connected }\}
$$

then the hypergraphic polytope P_{H} of H is the graph associahedron of G.

- Vertices of P_{H} are one-to-one with elimination trees of G,
- and the skeleton of P_{H} is the rotation graph on elimination trees of G.

Elimination trees

$$
a, b, c, d, e, f, g
$$

Elimination trees

Elimination trees

Rotations in elimination trees

Graph Associahedra

permutahedron

G

associahedron

stellohedron

Distances and diameters of graph associahedra

- Distances: Computing rotation distances is NP-hard

Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023

Distances and diameters of graph associahedra

- Distances: Computing rotation distances is NP-hard

Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023

- ... unless the graph is a star or a complete split graph.
C., Pournin, Valencia-Pabon 2023
- Diameter:
- Tree associahedra have worst-case diameter $\Theta(n \log n)$ C., Langerman, Perez-Lantero 2018

Distances and diameters of graph associahedra

- Distances: Computing rotation distances is NP-hard

Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023

- ... unless the graph is a star or a complete split graph.
C., Pournin, Valencia-Pabon 2023
- Diameter:
- Tree associahedra have worst-case diameter $\Theta(n \log n)$ C., Langerman, Perez-Lantero 2018
- Tight bounds for complete split or complete bipartite graph associahedra.
C., Pournin, Valencia-Pabon 2022

Distances and diameters of graph associahedra

- Distances: Computing rotation distances is NP-hard

Ito, Kakimura, Kamiyama, Kobayashi, Maezawa, Nozaki, Okamoto 2023

- ... unless the graph is a star or a complete split graph.
C., Pournin, Valencia-Pabon 2023
- Diameter:
- Tree associahedra have worst-case diameter $\Theta(n \log n)$ C., Langerman, Perez-Lantero 2018
- Tight bounds for complete split or complete bipartite graph associahedra.
C., Pournin, Valencia-Pabon 2022
- Hamiltonicity: Always!

Manneville-Pilaud 2015, C., Merino, Mütze 2023

Table of Contents

Flip Graphs Problems Matroids Polymatroids Hypergraphic polytopes Graph associahedra

References

Associahedra

- Jean-Louis Loday. Realization of the Stasheff polytope. Arch. Math. (Basel), 83(3):267-278, 2004.
- Lionel Pournin. The diameter of associahedra. Adv. Math., 259:13-42, 2014.
- Vincent Pilaud, Francisco Santos, and G ünter M. Ziegler. Celebrating Loday's associahedron. Arch. Math. (Basel), 2023. To appear.

Polymatroids and generalized permutohedra

- Alexander Postnikov, Victor Reiner, and Lauren Williams. Faces of generalized permutohedra. Doc. Math., 13:207-273, 2008.
- Alexander Postnikov. Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN, 2009(6):1026-1106, 2009
- Marcelo Aguiar and Federico Ardila. Hopf monoids and generalized permutahedra. To appear in Mem. Amer. Math. Soc. 2017.

Acyclic orientations

- Carolina Benedetti, Nantel Bergeron, and John Machacek. Hypergraphic polytopes: combinatorial properties and antipode. J. Comb., 10(3):515-544, 2019.
- Vincent Pilaud. Acyclic reorientation lattices and their lattice quotients. Proceedings of the 34th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), 2022.
- Jean Cardinal, Hung Phuc Hoang, Arturo I. Merino, Ondrej Micka, and Torsten Mütze. Combinatorial generation via permutation languages. V. Acyclic orientations. SIAM J. Discret. Math., 37(3):1509-1547, 2023.

Graph associahedra

- Michael P. Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra. Topology Appl., 153(12):2155-2168, 2006.
- Thibault Manneville and Vincent Pilaud. Graph properties of graph associahedra. Sém. Lothar. Combin., 73:Art. B73d, 31, [2014-2016].
- Jean Cardinal, Arturo Merino, and Torsten Mütze. Efficient generation of elimination trees and graph associahedra. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2022.
- Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. Diameter estimates for graph associahedra. Ann. Comb., 26(4):873-902, 2022

Computational complexity

- Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, and Yoshio Okamoto. Hardness of finding combinatorial shortest paths on graph associahedra. In Proc. 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023.
- Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. The rotation distance of brooms. European J. Combin., 2023. To appear.
- Jean Cardinal and Raphael Steiner. Inapproximability of shortest paths on perfect matching polytopes. In Integer Programming and Combinatorial Optimization - 24th International Conference, IPCO 2023.
- Jean Cardinal and Raphael Steiner, Shortest paths on polymatroids and hypergraphic polytopes, preprint on https://arxiv.org/abs/2311.00779.

